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Abstract— Using multiple inertial sensors for energy ex-
penditure estimation provides a useful tool for the assessment 
of daily life activities. Due to the high variety of new upcoming 
sensor types and recommendations for sensor placement to 
assess physiological human body function, an adaptable iner-
tial sensor fusion-based approach is mandatory. In this paper, 
two inertial body sensors, consisting of a triaxial accelerometer 
and a triaxial gyroscope, were placed on hip and ankle. Ten 
subjects performed two trials of running on a treadmill under 
three speed levels ([3.2, 4.8, 6.4] km/h). Each sensor source was 
separately subjected to preprocessing, feature extraction and 
regression. In the final step, decision level fusion was per-
formed by averaging the predicted results. A mean absolute 
error of 0.50 MET was achieved against indirect calorimetry. 
The system allows an easy integration of new sensors without 
retraining the complete system. This is an advantage over 
commonly used feature level fusion approaches. 

Keywords— Energy expenditure, inertial sensor, regression, 
decision level fusion, treadmill. 

I. INTRODUCTION 

The World Health Organization states that the 4th lead-
ing risk factor for mortality is insufficient physical activity 
[1]. Several studies showed that physically active people 
have higher levels of health-related fitness and lower rates 
of various chronic diseases compared to physically inactive 
people [2]. 

The quantitative assessment of the physical activity dur-
ing individual daily life is of major interest for an objective 
and quantitative monitoring of fitness. Fitness provides a 
measure for the health status and individual quality of life. 

 One commonly used assessment of physical activity is 
energy expenditure [3]. Energy expenditure can be meas-
ured by indirect calorimetry [4]. The approach estimates the 
expended energy from oxygen consumption and carbon 
dioxide production. Energy expenditure is mostly expressed 
in metabolic equivalent (MET). MET is considered as the 
ratio of work metabolic rate to a standard resting metabolic 
rate [3]. Although indirect calorimetry is accurate in meas-
uring the expended energy under various conditions, the 

technical requirements impair the application for daily life 
physical activity measurement.  

In recent years, small and lightweight wearable sensors 
like inertial measurement units were used to provide a relia-
ble, unobtrusive and objective measurement of physical 
activity. Besides the classification of daily life activities [5], 
they are commonly applied in the field of energy expendi-
ture estimation, which is shown in the following paragraphs. 

In [6], a triaxial accelerometer was placed on the lower 
back. Eleven subjects performed sedentary activities and 
walked on a motor driven treadmill with different speed 
levels. The summed integral of the absolute value of each 
accelerometer signal was used as input for a linear regres-
sion. The model achieved a standard error of estimate of 
0.70 W/kg.  

In [7], a triaxial accelerometer and a triaxial gyroscope 
were placed on the hip. Eight subjects walked on a motor 
driven treadmill with different speed levels. The average 
integral of the mean-subtracted sensor output was used as 
feature for each of the six sensor axes. Bayesian linear re-
gression was applied to estimate oxygen consumption and a 
root mean square prediction error of 35 ml/min was 
achieved.  

In [8], two triaxial accelerometers were placed on hip 
and wrist. Furthermore, ventilation was measured by a sen-
sor secured to the abdomen. Fifty subjects performed 13 
activities of varying intensity. In total, 63 features in the 
time domain and frequency domain were computed. A Sup-
port Vector Machine was applied to identify the types of 
physical activity. In a second step, a Support Vector Re-
gression model was built for each predefined groups of 
activities. All in all, the approach achieved a root mean 
square error of 0.54 MET using the two accelerometers and 
0.42 MET using an additional ventilation sensor. For the 
activity group, which includes treadmill running with dif-
ferent speed and inclination levels, a mean absolute error of 
0.36 MET was achieved.  

In [6], only one sensor was used for the estimation of the 
expended energy. In [7, 8], the general applicability of using 
several sensor types and positions was shown to estimate 
the energy expenditure. In [7, 8], feature level fusion was 
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performed. In feature level fusion, features from different 
sensor axes are extracted and fused [9]. The final regression 
result is based on the fused features. If additional sensor 
types like magnetometer, or sensor positions like thigh, 
should be integrated into the regression system, the com-
plete system has to be retrained. Due to the high variety of 
new upcoming sensor types and recommendations for sen-
sor placement, an adaptable integration of new information 
into the estimation process is needed. In [10], a system was 
introduced for the classification of daily life activities, 
which used decision level fusion of different sensor loca-
tions for the integration of new information. 

The purpose of this paper is to introduce a generalized 
approach for energy expenditure estimation based on deci-
sion level fusion extending our findings in [10]. The system 
needs no complete retraining after adding new sensor types 
and positions. 

II. METHODS 

A. Data Acquisition 

Two SHIMMER sensor nodes (Shimmer Research, Dub-
lin, Ireland) were placed on the hip and ankle (Fig. 1). Each 
sensor node consisted of a triaxial accelerometer and a tri-
axial gyroscope. The range of the accelerometer was ±1.5 g 
on the hip and ±6 g on the ankle. The range of the gyro-
scope was ±500 °/s on the hip and ±2000 °/s on the ankle 
for 70 % of the subjects and ±500 °/s for 30 % of the sub-
jects due to sensor problems. The sampling rate for all sen-
sors was 204.8 Hz.  

A study with ten healthy subjects (seven male and three 
female, age 49 ± 12 years, height 178 ± 10 cm, weight 80.7 
± 14.6 kg) was performed. All subjects gave written in-
formed consent about their participation. Approval from the 
ethical committee was received (Re.-No. 181 12B, 
24.07.2012, Medical Faculty, Friedrich-Alexander-
University, Erlangen-Nuremberg, Germany). 

In one trial, each subject had to run on a treadmill (hp-
cosmos model mercury med 5.0, Traunstein, Germany) at 
three different speed levels ([3.2, 4.8, 6.4] km/h) The speed 
levels were chosen according to [11]. In a second trial, an 
oscillating treadmill was used imposing different levels of 
physical activity. Each speed level lasted six minutes ac-
cording to [11]. Fig. 2 shows the angular velocity during 
running on a treadmill without oscillating for the speed 
levels [3.2, 6.4] km/h. For the expended energy, expressed 
in MET, the oxygen consumption was measured by a spi-
rometry system and was divided by 3.5mL·kg-1 min-1 [4]. 
The sampling rate was 0.2 Hz. Table 1 shows the average 

mean, standard deviation and range of the measured ex-
pended energy. 

B. Proposed Regression System 

The proposed regression system is depicted in Fig. 3. 
Four sensor sources were defined: accelerometer on the hip 
(HPA), gyroscope on the hip (HPG), accelerometer on the 
ankle (AKA) and gyroscope on the ankle (AKG). Each sen-
sor source was processed separately. The processing includ-
ed preprocessing, feature extraction and regression. In the 
following sections, the details are described.  

Table 1 Mean, standard deviation and range of measured expended en-
ergy [MET] by indirect calorimetry with respect to speed levels. 

 
Fig. 1 SHIMMER placement on hip (A) and ankle (B). 

 
Fig. 2 Angular velocity during treadmill running at [3.2, 6.4] km/h. 

 
Fig. 3 Proposed regression system for the four sensor sources accel-

erometer on the hip (HPA), gyroscope on the hip (HPG), accelerometer on 
the ankle (AKA) and gyroscope on the ankle (AKG). 

a) Preprocessing 
Processing of the acquired inertial data and MET data 

was performed in non-overlapping sliding windows. The 

Speed level MET 
(mean) 

SD Range 

3.2 km/h 3.44 0.88 2.37-7.07 
4.8 km/h 3.91 0.56 2.90-5.52 
6.4 km/h 5.51 0.91 4.12-8.23 
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width of the windows was set to 30 seconds, which was 
proposed in [6, 8]. The corresponding ground truth MET 
values in each sliding window were averaged. Furthermore, 
only sliding windows with a steady metabolic state were 
considered. Therefore, only the final three minutes of the 
six-minute periods of exercise were used for further pro-
cessing, which was proposed in [11]. 

b) Feature Extraction 
Nine features were computed for each sensor axis. In or-

der to characterize the signal distribution, the mean of the 
absolute signal amplitudes, the standard deviation, the 10th, 
25th, 50th, 75th, 90th percentiles, minimum and maximum 
value were computed. This resulted in 27 features for each 
sensor source. In order to reduce the feature set, a sequential 
forward selection was performed [12]. 

c) Regression 
The following regression algorithms were compared: 

Support Vector Regression (SVR) with polynomial kernel 
[13], classification and regression tree (CART) [14] and 
multiple linear regression (MLR) [15]. For performance 
assessment, the mean absolute error was computed with a 
leave-one-subject-out cross-validation. For further pro-
cessing, the best regression algorithm for each sensor source 
was considered. 

d) Decision Level Fusion 
The predicted MET values of all four sensor sources 

were fused in the final step. In this case, the mean of all 
predicted MET values was taken as final predicted MET 
value.  

III. RESULTS 

Table 2 shows the mean absolute error of the four sensor 
sources regarding the three compared regression algorithms 
SVR, CART and MLR. The best accuracy of 0.61 MET was 
achieved by HPA and AKG. 

Table 3 shows the mean absolute error of the four sensor 
sources regarding the three speed levels.  

Table 4 shows the mean absolute error of the energy ex-
penditure estimation after the decision level fusion regard-
ing the three speed levels. An overall mean error of 0.50 
MET was achieved. 

Table 2 Mean absolute errors [MET] regarding the four sensor sources. 
Best results are printed bold. 

Algorithm HPA HPG AKA AKG 

SVR 0.64±0.45 0.79±0.71 0.71±0.53 0.61±0.41 
CART 0.61±0.36 0.96±0.72 0.71±0.51 0.67±0.50 
MLR 0.77±0.58 0.79±0.71 0.66±0.48 0.85±0.46 

Table 3 Mean absolute errors [MET] of four sensor sources regarding 
the three speed levels. Best results are printed bold. 

Speed level HPA HPG AKA AKG 

3.2 km/h 0.47±0.24 0.56±0.42 0.44±0.32 0.40±0.25 
4.8 km/h 0.57±0.29 0.63±0.58 0.62±0.42 0.61±0.35 
6.4 km/h 0.79±0.72 1.15±1.32 0.92±0.80 0.83±0.72 

Table 4 Mean absolute errors [MET] after decision level fusion regarding 
the three speed levels. 

Speed level Error 

3.2 km/h 0.37±0.24 
4.8 km/h 0.51±0.35 
6.4 km/h 0.62±0.49 

IV. DISCUSSION 

In this paper, a generalized approach for energy expendi-
ture estimation was proposed, in which additional sensor 
information can easily be integrated into the system using 
decision level fusion.  

Regarding the mean absolute error of the four sensor 
sources and the three compared regression algorithms 
(Table 2), the two best accuracies were achieved by HPA 
and AKG with the algorithms CART and SVR, respectively. 
The reason in the case of HPA might be that no significant 
rotational movements were present during treadmill run-
ning. This might change during daily life activities like 
vacuuming. The reason in the case of AKG might be based 
on significant movements in the sagittal plane during 
treadmill running.  

Regarding the mean absolute error of the four sensor 
sources and the three speed levels (Table 3), the best accu-
racy for speed level 3.2 km/h was achieved by AKG. The 
best accuracy for speed levels 4.8 km/h and 6.4 km/h was 
achieved by HPA. Thus, for higher intensity levels, the up-
per part of the body has more influence on the energy ex-
penditure than the lower part [16]. 

Regarding the mean absolute error after decision level 
fusion (Table 4), it can be summarized that this reduced the 
error by 7.5 %, 10.5 % and 21.5 % regarding the speed 
levels 3.2 km/h, 4.8 km/h and 6.4 km/h, respectively. This 
indicates that fusing different sensor sources improves the 
energy expenditure estimation, especially for higher speed 
levels. 

During data acquisition, the triaxial accelerometer often 
reached the saturation state, which might affect the regres-
sion. Thus, using an accelerometer with a higher range 
might improve the regression results. 

The accuracy might be further improved by using differ-
ent approaches in the decision level fusion. The predicted 
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MET values can e.g. be used as features for an additional 
regression procedure including a feature selection step. The 
feature selection might eliminate the sensor sources that are 
not suitable for the prediction of the energy expenditure. 

In [8], a mean absolute error of 0.36 MET was achieved 
for moderate locomotion with two accelerometers and a 
ventilation sensor. This means an improvement of 28 % 
compared to the proposed system. Thus, by further integrat-
ing a ventilation sensor, the accuracy of the proposed sys-
tem might improve. The ventilation sensor would be an 
additional sensor source, which can easily be integrated in 
the pipeline as an additional block (Fig. 3). A retraining of 
the complete system is not necessary. The idea of activity-
dependent regression in [8] can also be integrated in the 
proposed system. For this purpose, the proposed system can 
be combined with the classification system described in 
[10], which also performed a sensor-dependent processing 
and decision level fusion. 

In summary, the proposed system showed the general 
applicability in predicting the energy expenditure during 
running on a treadmill. Furthermore, additional sensor 
sources can easily be integrated into the system. This adapt-
able integration is mandatory due to the high variety of new 
upcoming sensor types and recommendations for sensor 
placement. 

V. CONCLUSION 

Fusion of different sensor sources is often used in the es-
timation of energy expenditure. In this paper, triaxial accel-
erometers and gyroscopes were placed on hip and ankle, 
defining four sensor sources. Preprocessing, feature extrac-
tion and regression were separately performed for each 
sensor source. In the final step, decision level fusion was 
performed by taking the mean of all predicted MET values 
of the sensor sources. The proposed system reached a mean 
absolute error of 0.50 MET. It allows an easy integration of 
new sensors without retraining the complete system. 

In the future, additional sensors can be integrated in the 
regression system, e.g. ventilation or electrocardiogram 
sensors. Furthermore, the regression system can be evaluat-
ed during daily life activities. 

The proposed regression system can deliver a quantita-
tive assessment of the physical activity in order to monitor 
the health status and to provide feedback about the individ-
ual quality of life. The feedback can motivate physically 
inactive people to be more active. This leads to lower rates 
of various chronic diseases, which should be one major goal 
for the future. 
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