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8.1 Introduction 

The main source of noise in X-ray images is quantum noise. It follows a Poisson process that has 

a standard deviation of √𝑁, where 𝑁 is the number of photons that arrived at the detector pixel. 

Thus, resulting signal-to-noise ratio is #
√#
= √𝑁, i.e. the more photons arrive at the detector, the 

higher the signal-to-noise ratio. As the number of measured photons is proportional to the 

number of emitted photons at the source, image noise is inversely proportional to the dose that is 

applied to the patient. Thus, methods for the reduction of image noise also enable a reduction in 

patient dose. For this reason, noise reduction techniques have been investigated in literature 

extensively.  

8.2 Noise in X-Ray Images 

In order to understand the nature of noise reduction techniques, it is useful to have understanding 

of the properties of noise in X-ray images.  

8.2.1 Noise in Projection Data 

The distribution of noise in an X-ray projection image follows Beer-Lambert’s Law For the 

monochromatic case, the measured intensity 𝐼&	at the detector is found as 

𝐼& = 𝐼(𝑒*∫ ,(.)01,      (8.1) 
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where 𝐼( is the intensity that was emitted at the source, 𝑓(𝑥) the object that was irradiated, and 𝑙 

the line that follows the path of the X-ray. Note that  

𝐼( = 𝑁( ⋅ 𝐸(       (8.2) 

is composed of the number of photons 𝑁( and their respective energy 𝐸(. Thus the number of 

photons is proportional to the measured intensity and the monochromatic case follows exactly 

the Poisson distribution given by 

𝑃(𝑛) = :;

<!
⋅ 𝑒*:     (8.3)	

where 𝑃(𝑛) is the likelihood of observing 𝑛 photons and 𝜅 = 𝑁& = ?@
AB

 is the expected value of 

the Poisson process. 

For the polychromatic case, the measured intensity 𝐼C is found as an integral along energy 𝜖 that 

is present at the source 𝐼E  

𝐼C = ∫ 𝐼E𝑒*∫ ,(.)01d𝜖.     (8.4) 

Figure 8.1 displays an example for an X-ray spectrum at 90 kVp. As a consequence, the noise is 

no longer a single Poisson process, but its distribution is now an integral over all Poisson 

processes at each individual energy 𝜖. For simplification, we will assume in the following that 

our source is able to generate monochromatic X-rays. 

[insert Fig. 8.1 near hear] 

8.2.2 Noise in Reconstructed Image Data 

In order to compute noise in reconstruction domain, one has to determine line integrals 𝑝 from 

measured intensities 𝐼&: 

𝑝 = ∫ 𝑓(𝑥) = − ln ?@
?B

      (8.5) 

As 𝐼( is known from the X-ray tube parameters, the main effect on the noise is the application of 
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the logarithm. For high number of photons, it is valid to approximate the Poisson process by a 

Gaussian distribution with mean value 𝜇 = 𝑁& and standard deviation 𝜎 = 	M𝑁&. By 

application of a first order Taylor expansion [1, 2], one is able to show that the log transform 

results in a new mean value of 𝜅C = − 𝑙𝑛 #@⋅AB
?B

 and 𝜎C =
N

M#@
. Figure 8.2 shows a noise-free 

projection, a noisy projection, and their difference. Note that the noise variance increases with 

object thickness. 

[insert Fig. 8.2 near hear] 

The reconstruction process involves filtering and back-projection. Back-projection 𝑏(𝑥) is – 

depending on the imaging geometry – only a weighted sum of the projection values 𝑝P with back-

projection weights 𝑐P 

𝑏(𝑥) = ∑ 𝑐P𝑝PP .     (8.6) 

Even, if the effect of the filter is not considered, one immediately understands that the noise 

variance becomes object dependent at this point, as 𝑝P and the noise at this detector pixel 𝜎CS  is 

dependent on the number of photons that arrived at this detector pixel 𝑁&. Figure 8.3 shows 

these effects in the reconstructed images. In the water cylinder, the most noise is found in the 

center of the object. In a non-circular object like the one shown on the right, streak structures 

appear in the noise. Thus noise removal in the reconstructed image needs to consider the 

directional nature of the noise generation. The effects of filtering on the noise properties and how 

to reconstruct the noise variance at every pixel are beyond the scope of this book chapter and we 

refer to further literature [3, 4, 5]. 
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[insert Fig. 8.3 near hear] 

8.3 Denoising Methods 

In the following, we will give a short introduction to the most common denoising methods. We 

start with the simple Gaussian filter and extend this concept to edge-preserving methods. All 

reported methods can be employed for 2D and 3D denoising. For sake of simplicity, we will stay 

in 2D space in the following. Note that we only selected a subset of possible denoising 

algorithms that we deem as the most important selection, e.g. we omit methods that require an 

iterative solution such as diffusion filters. 

convolution2D (image){ 
 sumWeight = 0; 
 sumFilter = 0; 
 step = halfWidth*2+1; 
 for (j=0; j < step; j++){ 
  for (i=0; I < step; i++){ 
   nx = halfWidth + i; 
   ny = halfWidth + j; 

g = geomClose(nx, ny, sigma_spatial) 
   sumWeight += g; 
   sumFilter += g * image[(x-nx)+((y-ny)*width)]; 
  } 
 } 
 return sumFilter/sumWeight; 
} 
 
Algorithm 8.1: Pseudo code for a 2D convolution for application of a Gaussian kernel of odd 

neighborhood size, e.g. 𝒩 = 5x5 using halfWidth=2. The function geomClose refers to 

the computation of 𝑔(𝑥, 𝑦, 𝜎W	 ) with sigma_spatial as 𝜎W	 , image denotes 𝑝(𝑥, 𝑦) and 

sumWeight and sumFilter are used to compute 𝑘(𝑥, 𝑦, 𝜎W	 ) and 𝑝Y(𝑥, 𝑦, 𝜎W	 ) incrementally. 

Note that x and y are not arguments of our kernel function, as the kernel code is intended to be 

executed in parallel in a 2D grid structure with x and y as grid indexes. 
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8.3.1 Gaussian Filter 

The Gaussian filter is the most common way of suppressing noise in any kind of image. It is 

applied as convolution in projection space 

𝑝Y(𝑥, 𝑦, 𝜎W	 ) =
N

Z(.,[,\]	 )
∑ 𝑝(𝑥Y, 𝑦Y) ⋅ 𝑔(𝑥Y, 𝑦Y, 𝜎W	 ).^,[^∈𝒩      (8.7)	

𝑔(𝑥, 𝑦, 𝜎W	 ) = 𝑒
*.

`a[`

b\]` 			

𝑘(𝑥, 𝑦, 𝜎W	 ) = c 𝑔(𝑥Y, 𝑦Y, 𝜎W	 )
.^,[^∈𝒩

 

where 𝑝(𝑥, 𝑦) is the projection image at coordinates (𝑥, 𝑦), 𝑔(𝑥, 𝑦, 𝜎W	 ) is the Gaussian function 

with standard deviation 𝜎W	 , 𝑘(𝑥, 𝑦, 𝜎W	 ) the mass of the kernel, 𝒩 the neighborhood in which the 

kernel is evaluated, and 𝑝Y(𝑥, 𝑦, 𝜎W	 ) the filtered projection image. This kind of filtering is often 

included in the filter kernel of filtered back-projection-type reconstruction methods [4]. Thus 

explicit implementation is often not required. For small kernel sizes, the implementation in 

spatial domain is efficient. For larger kernels, the convolution in Fourier space is more efficient.  

Nonetheless, investigation of the algorithm as graphics card implementation is interesting, as one 

can see how the computation is parallelized. Algorithm 8.1 lists pseudo code for the spatial 

implementation on a graphics card. The code omits a loop over the coordinates (𝑥, 𝑦) as the 

kernel code is designed to be executed in a parallel grid structure that matches the image 

dimensions. The main part of the code are the two for-loops over the double sums that are 

required to compute 𝑘(𝑥, 𝑦, 𝜎W	 ) and 𝑝Y(𝑥, 𝑦, 𝜎W	 ). Note that the values of 𝑔(𝑥, 𝑦, 𝜎W	 ) are the same 

in all kernel executions as the kernel is shift-invariant. In this example, we do not pre-compute 

the values of 𝑔(𝑥, 𝑦, 𝜎W	 ). Depending on the graphics card hardware, this may lead to an increase 

or decrease in run time. If the hardware has much compute power, the implementation in 

Algorithm 8.1 will be more efficient, as only a single access to the global memory is performed. 
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In this case, the hardware is memory- or bandwidth-limited, i.e. the execution is limited by 

memory transfers. Thus additional operations in the kernel that are computed in local or shared 

memory only can be done without increasing the run time as the global memory transfers are the 

dominating factor in the execution time. If the hardware is compute-limited, i.e. the 

computational power is already maxed out. In this case, the online computation of 𝑔(𝑥, 𝑦, 𝜎W	 ) 

will add to the run time. It is therefore advisable to pre-compute the values of 𝑔(𝑥, 𝑦, 𝜎W	 ) as it 

will result in a reduced run time. Unfortunately, this behavior is problem- and hardware-

dependent. Thus, the most efficient implementation depends on the actual use-case. This effect 

can be exploited for various applications in the field of medical image computing [6, 7]. 

 

8.3.2 Bilateral Filter 

The bilateral filter [8] is an extension of the Gaussian filter that adds edge-preservation. The 

bilateralFilter (image){ 
 sumWeight = 0; 
 sumFilter = 0; 
 step = halfWidth*2+1; 
 for (j=0; j < step; j++){ 
  for (i=0; I < step; i++){ 
   nx = halfWidth + i; 
   ny = halfWidth + j; 

g1 = geomClose(nx, ny, sigma_spatial) 
g2 = intensityClose(nx, ny, x, y,  
     sigma_int, image) 

   sumWeight += g1*g2; 
   sumFilter += g1*g2*image[(x-nx)+((y-ny)*width)]; 
  } 
 } 
 return sumFilter/sumWeight; 
} 
 
Algorithm 8.2: Pseudo code for a bilateral filter. Note the similarity to Algorithm 8.1. The only 

difference is the introduction of a new function intensityClose that computes the 

closeness of the two intensities of the image. 
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concept is very easy to follow, the implementation is straight-forward, and its parameterization 

can be determined directly from the image. These properties make the bilateral filter to one of 

the most popular edge-preserving filtering methods. Unfortunately, the bilateral filter has a rather 

high computational complexity. Parallel execution hardware such as graphics cards have 

lessened this burden which lead to a broad application of the bilateral filter. 

The definition of the bilateral filter is  

𝑝dY(𝑥, 𝑦, 𝜎W	 , 𝜎P	) =
N

Ze.,[,\]	 ,\S
	f
∑ 𝑝(𝑥Y, 𝑦Y) ⋅ 𝑔(𝑥Y, 𝑦Y, 𝜎W	 ).^,[^∈𝒩 ⋅ 	𝑔(𝑝(𝑥Y, 𝑦Y) − 𝑝(𝑥	, 𝑦	), 𝜎P	)   (8.8)	

𝑘(𝑥, 𝑦, 𝜎W	 , 𝜎P	) = c 𝑔(𝑥Y, 𝑦Y, 𝜎W	 )
.^,[^∈𝒩

⋅ 	𝑔(𝑝(𝑥Y, 𝑦Y) − 𝑝(𝑥	, 𝑦	), 𝜎P	) 

where we introduce another standard deviation 𝜎P	 which describes the intensity similarity 

between the pixel at 𝑝(𝑥Y, 𝑦Y) and 𝑝(𝑥	, 𝑦	). If they are identical, their difference is zero which 

leads to a maximum in the Gaussian function. If the kernel is evaluated in a uniform image area, 

all differences will be zero which leads the normal Gaussian kernel. In the presence of an 

intensity difference, the pixels that have different intensities will contribute less to the filtering, 

i.e. the edge is preserved. Doing so, the filtering is not shift-invariant and pre-computation of 

𝑔(𝑝(𝑥Y, 𝑦Y) − 𝑝(𝑥	, 𝑦	), 𝜎P	) is impossible.  

In order to choose 𝜎P	, it is advisable to measure the smallest edge in the image that should still be 

preserved. For projection images, 𝜎P	 should be chosen very small as too high values might 

introduce streaks in the reconstruction. In this case 10% of the smallest edge value are advisable. 

In reconstruction space, 𝜎P	 can be chosen up to the value of the smallest edge. Note that this will 

already lead to a slight blurring of the edge [9]. 

Algorithm 8.2 depicts pseudo kernel code. Again, the parallelization is performed over the image 

coordinates (𝑥, 𝑦). Also in this implementation, we do not pre-computation the geometric 
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closeness as in the previous example which may lead to increased run time depending on the 

execution hardware and problem size. 

8.3.3 Joint Bilateral Filter 

The joint bilateral filter is an extension of the bilateral filter that introduces a so-called guidance 

image [10]. The idea is that one image shows the desired information in very noisy conditions 

while another one shows the correct edge information. In the original paper, the desired 

information is a color photograph that was taken without flash and the edge information comes 

from an image with flash that has suboptimal color information. Thus, the bilateral filter is 

adjusted in the following manner: 

 

𝑝gY(𝑥, 𝑦, 𝜎W	 , 𝜎P	) =
N

Ze.,[,\]	 ,\S
	f
∑ 𝑝(𝑥Y, 𝑦Y) ⋅ 𝑔(𝑥Y, 𝑦Y, 𝜎W	 ).^,[^∈𝒩 ⋅ 	𝑔e𝑝h(𝑥Y, 𝑦Y) − 𝑝h(𝑥	, 𝑦	), 𝜎P	f(8.9)	

𝑘(𝑥, 𝑦, 𝜎W	 , 𝜎P	) = c 𝑔(𝑥Y, 𝑦Y, 𝜎W	 )
.^,[^∈𝒩

⋅ 	𝑔e𝑝h(𝑥Y, 𝑦Y) − 𝑝h(𝑥	, 𝑦	), 𝜎P	f 

jointBilateralFilter (image, guide){ 
 sumWeight = 0; 
 sumFilter = 0; 
 step = halfWidth*2+1; 
 for (j=0; j < step; j++){ 
  for (i=0; I < step; i++){ 
   nx = halfWidth + i; 
   ny = halfWidth + j; 

g1 = geomClose(nx, ny, sigma_spatial) 
g2 = intensityClose(nx, ny, x, y,  
     sigma_int, guide) 

   sumWeight += g1*g2; 
   sumFilter += g1*g2*image[(x-nx)+((y-ny)*width)]; 
  } 
 } 
 return sumFilter/sumWeight; 
} 
 
Algorithm 8.3: Pseudo code for the joint bilateral filter. The only difference is that 

intensityClose now operates on a guidance image guide. 
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In this formulation, we have now introduced a guidance image 𝑝h(𝑥	, 𝑦	) that is used to compute 

the geometric closeness. Everything else is identical to the bilateral filter. Subsequently, also 

Algorithm 8.3 is almost identical to Algorithm 8.2. The only change is the introduction of the 

guidance image. If the original image is supplied as guidance image, this implementation will 

result in the original bilateral filter. 

While the implementation is straight-forward, results are astonishing and find applications in 

many fields from super resolution [11], over multimodal imaging to energy-resolving detectors 

[9]. 

8.3.4 Guided Filter 

The guided filter [12] is a common alternative to the joint bilateral filter. The main idea is to 

express the filtered image as a linear transform of the guidance image: 

𝑝h,	 Y(𝑥, 𝑦) = 	𝑎Z𝑝h(𝑥, 𝑦) +	𝑏Z      (8.10) 

The local coefficients 𝑎Z and 𝑏Z  are found as the solution to the following optimization problem: 

𝑎Z, 𝑏Z = argminp,d ∑ qr𝑎	𝑝h(𝑥Y, 𝑦Y) +	𝑏 − 𝑝(𝑥Y, 𝑦Y)		s
b
+ 𝜖𝑎bt.^,[^∈𝒩    (8.11) 

These optimal coefficients are found as 

𝑎Z =
uvw𝒩eC,Cxf
yz{𝒩eCxfaE

     (8.12) 

𝑏Z = Mean𝒩(𝑝) − 𝑎Z ⋅ Mean𝒩e𝑝hf 

Where 𝑀𝑒𝑎𝑛𝒩(𝑝) computes the mean of the image 𝑝 in the local neighborhood 𝒩, 𝑉𝑎𝑟𝒩(𝑝	) 

computes the local variance of 𝑝 and 𝐶𝑜𝑣𝒩e𝑝, 𝑝hf computes the covariance between 𝑝 and 𝑝h. 

If we consider the case where the guidance image is identical to the filtered image and 𝜖 = 0, we 

can make the following observations:  

• The covariance in the numerator of 𝑎Z becomes a variance.  
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• If the neighborhood is completely homogeneous, this variance will become zero and 

therewith 𝑎Z will become 0. Thus the filtered image will only consist of 𝑏Z  which is the 

mean value of the neighborhood. 

• If the variance is not 0, 𝑎Z will become 1 and thus 𝑏Z  will be zero. In those regions, the 

filtered image will consist only of the original image values. 

With a value of 𝜖 that is higher than zero, one can adjust the filter behavior between these two 

extreme cases. Note that for actual application on an image, the local values of 𝑎Z and 𝑏Z  have to 

be determined first for every pixel. Then, a low-pass filter has to be applied to all of the 𝑎Z and 

𝑏Z  before the final filter is computed. As mean filters can be implemented very efficiently, the 

guided filter can be applied fast, even if it is applied on large neighborhoods. Algorithm 8.4 

describes a summary of the steps that need to be done in order to compute the guided filter. In 

contrast to previous algorithms, it does not describe kernel code, but subsequent steps that can be 

executed parallel for every pixel. 

 

8.3.5 Structure Tensor 

The idea of the structure tensor-based filtering is to use a structure detector – the structure tensor 

- to steer the denoising of the image. Before doing so, we decompose the projection stack into 

guidedFilter (image, guide){ 
 compute 𝑎Z and 𝑏Z for all pixels 

apply smoothing 𝑎Z and 𝑏Z for all pixels 
compute final filter for all pixels 

} 
 
Algorithm 8.4: In contrast to previous algorithms, the guided filter has to be separated into 

several kernel executions. Thus it cannot be described as a single kernel. The code above gives 

an abstract description on how the filter is implemented.  
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directional high frequency components and into a single low frequency component [13]. Next, a 

structure tensor is computed for every pixel in order to measure the amount of structure and its 

contributions to the different spatial directions. If a high amount of structure is detected, more 

weight is given to the respective directional high-pass component. If the tensor reports a low 

value, more weight is given to the low-pass component. In the end, the filtered image is 

recovered as a weighted sum of its high and low frequency components.  

Again, this filter cannot be described by a single kernel. Algorithm 8.5 reports the individual 

steps which can be computed in parallel. For the filtering, the use of fast Fourier transforms is 

advisable. Note that if this code is to be executed on a graphics card on an entire projection stack 

with six directional components in floating point precision up to 24 times the projection stack 

memory may be required. Thus, it is advisable to process the data in smaller blocks. 

8.4 Denoising for CT 

The previously described methods are directly applicable to X-ray projection images or to 

reconstructed CT slice data in 2D or 3D. However, there have been many adaptations of these 

structureTensorFilter (image){ 
 compute directional high-pass components at each pixel 

compute low-pass component at each pixel 
compute structure tensor for each direction at each pixel 
low-pass filter structure tensor 
compute filter output for each pixel 

} 
 
Algorithm 8.5: In order to filter the image with a structure tensor, the image needs to be 

decomposed into directional high frequency components and a low pass component. Then the 

structure tensor is computed for each pixel and low-pass filtered. In the final step the filter 

output is computed as a weighted sum of low-pass and high-pass components where the 

weights are determined from the structure tensor. 
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methods that aim at modeling prior information about X-ray imaging process into the denoising 

process. In the following, we present a small subset of the literature that is found on this broad 

topic. We regard these methods to be the most important ones in everyday use.  

Projection Domain 

In filtered back-projection-type algorithms, streak noise as shown in the beginning of this chapter 

can be omitted by projection-based noise reduction. All of the previously mentioned methods can 

be extended to incorporate the average path-length of the photons through the object. Kachelriess 

et al. developed a method based on triangular filters that performs filtering on the entire 

projection stack [14]. Zeng at al. included such ray-dependent weighting into the ramp filter of 

the filtered back-projection algorithm and combined it with an edge preserving filtering in 

reconstruction domain [15]. Furthermore, also the structure tensor can be applied in projection 

domain by processing the entire projection stack [13]. Schäfer et al. investigated several 

implementations of edge-preserving and noise-adaptive filtering and found that filtering 

minimizing the total variation worked best in their high-contrast examples [16]. 

8.4.1 Iterative Reconstruction 

Although iterative reconstruction is an order of magnitude slower than analytic reconstruction 

methods, there is a broad variety of iterative reconstruction approaches that aim at reducing the 

image noise and reducing the X-ray dose. Probably the most well-known one is penalized least 

squares iterative reconstruction [17]. It aims at weighting each ray with its noise variance. Doing 

so, the noisy ray get a reduced weight while the more reliable rays with a lower path length get 

more influence in each iteration. Recently, iterative methods that reduce the total variation in 

reconstruction space became more and more popular [18]. In these approaches, the assumption is 

made, that the object of interest is piece-wise constant which allows extreme noise suppression. 
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If performed in an extreme way, the resulting images are often described as surrealistic or 

commix-like. Thus such regularization has to be performed with caution. In general, iterative 

reconstruction methods are able to deliver superior image quality compared to traditional 

methods. However, their parameterization is difficult and requires a lot of experience and/or grid 

search of the parameter space which increases their run time even further. Thus, iterative 

methods are not of great clinical relevance today. If applied in a clinical context, often only a 

single iteration is performed. 

8.4.2. Reconstruction Domain 

There is a large body of literature on noise reduction in reconstruction space. Many approaches 

build on the previously presented denoising methods. A quite different approach that uses 

wavelets for denoising was presented by Borsdorf et at. [19]. This approach aims at estimating 

the noise by a dual reconstruction. The set of projection images is split in half and each set is 

reconstructed individually. Then both reconstructions are correlated against each other in wavelet 

domain and only correlated structures, i.e. structures that belong to the object are preserved. 

Bruder et al. have shown that given a high projection number as in the case of CT penalized least 

squares regularization can be expressed entirely in image domain as a non-linear filter [20]. 

Given a piece-wise constant object, non-linear filtering can also achieve reconstructions that 

resemble the outcomes of total variation-based iterative reconstruction methods [21].  In this in 

line with Manhart et al. who reported a filtered back-projection-type method for perfusion C-

Arm CT that delivers image quality that is en par with comparable iterative methods [22]. The 

run time of the analytic method, however, was more than 23 times faster than the iterative 

method, although both were implemented on graphics cards.  
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8.5 Summary 

This chapter gave a comprehensive summary of denoising algorithms for GPU. We described the 

underlying physical processes that cause the noise from photon statistics to the noise in 

reconstruction domain and gave examples what kind of structure the noise can exhibit. This was 

followed by an introduction to denoising methods in general with a focus on GPU 

implementation. We started from shift-invariant Gaussian filtering, introduced the edge-

preserving bilateral filter, the guided filter, and structure tensor-based image filters. In the last 

part of the chapter, we discussed important implementations of noise reduction methods into the 

reconstruction process which included projection-based, iterative, and reconstruction-based 

denoising methods. In order to implement fast and reliable noise reduction, a combination of 

projection-based and reconstruction-based filtering is probably the fastest and easiest way to 

incorporate noise reduction [9, 15]. 

All examples in this book chapter have been created with CONRAD an open-source software 

framework for CT Simulation and Reconstruction [23]. 
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Figure 8.1: The intensity measured at the detector is found as integral over the source spectrum 

after attenuation by the object. This spectrum was simulated using CONRAD. 

 

Figure 8.2: Noise-free and noisy projection of a water cylinder. The third image shows the 

difference between the two. The longer the path length in water, the higher is the noise variance. 

These images were created using CONRAD. 

 

Figure 8.3: The left side shows the noise in the reconstruction of a water cylinder phantom. The 

noise is stronger in the center than in the off-center regions. The right side shows an elliptic 

phantom with two high intensity insets. In the center, streak noise emerges that is caused by the 

high attenuating structures. For both simulations 𝑁( = 90.000 photons @ 75 keV per pixel were 

used. The display window/level is [-200,200] HU. These images were created using CONRAD. 

 

 


