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Abstract. Fluoroscopic images are characterized by a transparent pro-
jection of 3-D structures from all depths to 2-D. Differently moving struc-
tures, for example due to breathing and heartbeat, can be described
approximately using independently moving 2-D layers. Separating the
fluoroscopic images into the motion layers is desirable to facilitate inter-
pretation and diagnosis. Given the motion of each layer, it is state of the
art to compute the layer separation by minimizing a least-squares objec-
tive function. However, due to high noise levels and inaccurate motion
estimates, the results are not satisfactory in X-ray images.
In this work, we propose a probabilistic model for motion layer sepa-
ration. In this model, we analyze various data terms and regularization
terms theoretically and experimentally. We show that a robust penalty
function is required in the data term to deal with noise and shortcomings
of the image formation model. For the regularization term, we propose to
enforce smoothness of the layers using bilateral total variation. On syn-
thetic data, the mean squared error between the estimated layers and
the ground truth is improved by 18% compared to the state of the art.
In addition, we show qualitative improvements on real X-ray data.

1 Introduction

Minimally-invasive interventions are often guided by fluoroscopic X-ray imaging.
X-ray imaging offers good temporal and spatial resolution and high contrast of
interventional devices and bones. However, the soft-tissue contrast is low and the
patient and the physician are exposed to ionizing radiation. In addition to the
low soft-tissue contrast, the loss of 3-D information due to the transparent pro-
jection to 2-D complicates interpretation of the fluoroscopic images. To simplify
the analysis, fluoroscopic images can be decomposed into independently moving
layers. Each layer contains similarly moving structures, leading to the separation
of background structures like bones from moving soft-tissue like the heart or the
liver. In addition, other post-processing algorithms like segmentation or frame
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interpolation can benefit from the motion layer separation. Another clinically
relevant post-processing application is digital subtraction angiography (DSA).
DSA is performed by subtracting a reference frame. However, if there is too
much motion, the selection of an appropriate reference frame is difficult. In par-
ticular for coronary arteries, complex respiratory and cardiac motion complicate
traditional DSA and make motion layer separation a good alternative [17].

In the literature, multiple approaches to layer separation have been investi-
gated. Layer separation is sometimes combined with motion estimation, but we
limit ourselves to layer separation in this work. Close et al. estimate rigid motion
of each layer in a region of interest [3]. The layers are computed by stabilizing
the sequence w.r.t. the layer motion and subsequent averaging. Preston et al.
jointly estimate motions and layers using a coarse-to-fine variational framework
[10], but the results are not physically meaningful motions or layers. In [14], an
iterative scheme for motion and layer estimation is used. For layer separation,
a constrained least-squares optimization problem is solved. Weiss estimates a
static layer from a transparent image sequence exploiting the sparsity of images
in the gradient domain [16]. Zhang et al. assume the motions as given and solve
a constrained least-squares problem for estimating the layers [17].

So far, regularization has rarely been applied to aid layer separation. Ex-
ception are [10], where a layer gradient penalty is introduced, and [16], where
the objective function implicitly favors smooth layers. In other areas of image
processing, regularization is widely used. Inverse problems in image processing,
often formulated to minimize an energy function, benefit from regularization,
for example denoising [11], image registration [7], and super-resolution [4]. Total
variation is a popular, edge-preserving regularization that was originally intro-
duced for denoising [11]. Super resolution is conceptually similar to layer separa-
tion and is often formulated as a probabilistic model with robust regularization,
e.g., bilateral total variation [4].

In this paper, we introduce a novel probabilistic model for layer separation
in transparent image sequences. As likelihood and prior in the Bayesian model,
we propose to use a robust data term and edge-preserving regularization. In
particular, a non-convex data term is used that is robust w.r.t. noise, errors in
the image formation model, and errors in the motion estimates. Furthermore, we
theoretically analyze different spatial regularization terms for layer separation.
Inference in the Bayesian model leads to maximum a posteriori estimation of
the layers, as opposed to the previously used maximum likelihood. In the ex-
periments, we extensively compare possible data and regularization terms. We
show that layer separation can benefit from our robust approach.

2 Materials and Methods

2.1 Image Formation Model

In this paper, we are interested in separating X-ray images It ∈ IRW×H , t ∈
{1, . . . , T} into different motion layers Ll, where each layer may undergo inde-



pendent non-rigid 2-D motion v
t

l
. A motion layer can roughly be assigned to

each source of motion, e.g., breathing, heartbeat, and background.
In our spatially discrete formulation, the images and layers are vectorized

to I
t,Ll ∈ IRWH . The transformation of a layer by its motion and subsequent

interpolation is modeled in the system matrix W
t

l
∈ IRWH×WH [14]

I
t =

N
∑

l=1

W
t

lLl + ǫ
t , (1)

where we introduce ǫ
t to account for model errors and observation noise. N

is the number of layers in the image sequence. This model is justified by the
log-linearity of Lambert-Beer’s law applied to X-ray attenuation. In W

t

l
, we

use bilinear interpolation, but the method generalizes to other interpolation or
point spread functions. Boundary treatment for image pixels moving outside of
the spatial support of the layers is to take the nearest layer pixel. Alternatively,
the layer support can be increased to cover all motions in the current sequence
[15]. For all images and layers, the joint forward model is used

I = WL+ ǫ , (2)

where I =
(

I
1⊺, . . . , IT ⊺)⊺

, L = (L1
⊺, . . . ,LN

⊺)
⊺
, and ǫ =

(

ǫ
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⊺)⊺

.

The system matrix W =
(

W
1⊺, . . . ,W T ⊺)⊺

is composed of matrices W
t =

(W t
1, . . . ,W

t

N
) to transform all layers to a certain point in time.

2.2 Probabilistic Approach to Layer Separation

The goal of layer separation is to find the layers L given the images I and the
motions encoded in W . From a Bayesian point of view, the observed images
I, the noise ǫ, and the layers L are random variables. Assuming conditionally
independent observed images, the posterior probability of the layers given the
images p (L|I) is given by

p (L|I) = p (L) p (I|L)

p (I)
=

p (L)
∏T

t=1 p (I
t|L)

p (I)
, (3)

with the prior probability for the layers p (L) and the likelihood p (It|L) for each
image given the layers. Common priors in image processing are defined on local
neighborhoods, such that Eq. (3) corresponds to a Markov random field. The
maximum a posterior (MAP) estimate

L̂ = argmax
L

p (L)

T
∏

t=1

p
(

I
t|L

)

(4)

yields the statistically optimal layers for the given model and input images.
In previous work, no probabilistic motivation [3] or maximum likelihood (ML)
estimation was often used [14,17], implicitly assuming a uniform prior p (L).



By applying the logarithm and negating, the probabilistic formulation can
be equivalently regarded as an energy. Assuming positive values, it is possible
to write prior p (L) and likelihood p (It|L) as p (L) = 1

ZR
exp (−λR (L)) and

p (It|L) = 1
ZD

exp (−D (It,L)), where ZR, ZD are partition functions to nor-
malize the probabilities. Consequently, MAP inference as in Eq. (4) turns into
energy minimization

L̂ = argmin
L

λR (L) +

T
∑

t=1

D
(

I
t,L

)

, (5)

where D (It,L) is the data term, R (L) the regularization, and λ ∈ IR+
0 the reg-

ularization weight. In the following sections, we concretize D (It,L) and R (L).

2.3 Data Term

The data term describes how deviations from the image formation model are
penalized. From a probabilistic point of view, it corresponds to an assumption
on the observation noise ǫ

t. The classic choice of a least-squares data term

DL2

(

I
t,L

)

=
∥

∥I
t −W

t
L
∥

∥

2

2
(6)

corresponds to a Gaussian noise model, which has been used in most of the prior
work [10,14,17] and is a fitting model for images with good photon statistics [9].
This model is easy to optimize by solving a sparse linear system of equations. Its
major drawback is the sensitivity to outliers, i.e., a few erroneous measurements
lead to artifacts in the estimated layers. However, outliers are very common in
X-ray layer separation, for example due to errors in motion estimation, which
is challenging in X-ray without knowing the layers (Section 2.6). Another im-
portant source of outliers is the simplified image formation model (Section 2.1).
Many effects occurring in X-ray images are not captured by this model, e.g.,
foreshortening and out-of-plane motion.

The least absolute deviation corresponds to a Laplacian noise model

DL1

(

I
t,L

)

=
∥

∥I
t −W

t
L
∥

∥

1
, (7)

which is more robust to outliers and still a convex function. In contrast to Eq. (6),
it is not smooth due to the non-differentiability at 0. Therefore, a smooth ap-
proximation to the L1-norm is helpful for gradient-based optimization schemes,
e.g., the Charbonnier function ‖z‖1 ≈ φ(z) =

√
z2 + τ2 − τ , for τ > 0 [13].

A non-convex data term can be derived using a generalization of the Char-
bonnier function φα(z) =

(

z2 + τ2
)α−τ2α [13]. φ(z) is equivalent to φ0.5(z) and

z2, as used in DL2
, is equivalent to φ1(z). Then, the general data term is

DCha.

(

I
t,L

)

=
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∑
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φα

([

I
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t
L
]

k

)

. (8)
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Fig. 1: Behavior of different penalty functions (best viewed in color).

[x]k extracts the k-th component of x. Using the generalized Charbonnier func-
tion, the value of α can be tuned to fit the statistics of the observation noise. τ
is only required for numerical reasons and set to 0.01. The penalty functions are
visualized in Fig. 1. It is evident that L1 and L2 are convex penalties, and that
large deviations are penalized less by φα(z) with smaller values of α.

2.4 Regularization Term

Common priors in image processing favor smoothness of the images. The most
basic prior is based on Tikhonov regularization and penalizes high gradients

RL2
(L) =

N
∑

l=1

‖∇Ll‖22 , (9)

where ∇ is a matrix computing the spatial derivatives for each layer. As im-
age gradients in natural images are heavy-tailed, Eq. (9) leads to oversmoothed
images. For layer separation, the L2 regularization term is particularly counter-
productive. Assume a certain gradient at an image location has to be represented
somehow by the layers. The L2-norm gives the lowest penalty if all layers con-
tribute equally to the image gradient. However, this corresponds to a separation
into two equal layers.

To better preserve edges in the layers, the total variation (TV) regularization

RTV (L) =
N
∑

l=1

‖∇Ll‖1 (10)

is useful [11], which again leads to a convex optimization problem. In contrast
to the L2-norm, the L1-norm does neither hinder nor enforce layer separation.
Sparse solutions, i.e., an image gradient is represented by a single layer, have the
same energy as equal gradients in all layers.

In super-resolution, bilateral total variation (BTV) is a popular regularizer
[4]. It generalizes TV regularization to include a wider spatial support of 2P +1



pixels in each dimension, can lead to better edge preservation, and is convex.
BTV is defined as

RBTV (L) =

N
∑

l=1

P
∑

m=−P

P
∑

n=−P

β|m|+|n| ‖Ll − S
m

v S
n

hLl‖1 , (11)

where 0 ≤ β ≤ 1 is a spatial weighting factor and S
m
v (Sn

h
) corresponds to

vertical (horizontal) shifts of the layer Ll by m (n) pixels.
All the aforementioned regularization terms are spatially independent. Ad-

ditional information for layer regularization can be gained from the images, i.e.,
the regularization term can be generalized to R (I,L). For example, the image
gradient offers information about the desired position and direction of the layer
gradients. Preston et al. use this to define the regularization term

RPres. (I,L) =

T
∑

t=1

N
∑

l=1

WH
∑
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(

∥

∥∇
[

W
t
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k

∥

∥

2
−

(

∇
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W
t

lLl

]

k

)⊺

n
t

k

)

(12)

to remove the penalty if the layer gradient is in the same direction as the image
gradient [10], which is computed using ∇. The image gradient is thresholded

n
t

k =







∇[It]
k

‖∇[It]
k‖2

if ‖∇ [It]
k
‖2 > δ

0 else
, (13)

such that small gradients caused by noise do not influence the regularization.
Other than that, the magnitude of the image gradient is not important. Conse-
quently, at a single position the gradients of multiple layers can point in the same
direction without increasing the energy. An advantage of this regularization term
is that layer gradients with magnitude 0 always lead to 0 energy. In this sense,
it is a TV regularization that is switched off if the layer gradient points in the
same direction as the image gradient.

Inspired by [16], we define another regularization term that uses image gradi-
ent information. Assuming sparsity of layer gradients, it is likely that an observed
image gradient comes from a single layer. Therefore, the magnitude of the layer
gradient should be the same as the image gradient, as in the regularization term

RWeiss (I,L) =

T
∑

t=1

N
∑

l=1

∥

∥∇W
t

lLl −∇I
t
∥

∥

1
. (14)

For the layer that explains the corresponding image gradient, 0 energy is in-
curred. However, the remaining layers all create an energy of ‖∇I‖1. The min-
imum value of this regularization term is not attained for a layer without gra-
dients, as in TV or L2-regularization. Instead, it is attained when the layer
gradient is equal to the median of the image gradients over time [16], where
the layer motion is compensated in the image. As the image gradient is sparse
and the layer motions are independent, the median is often close to 0. For the



(a) Layer (b) RL2
(c) RTV (d) RBTV (e) RWeiss (f) RPres.

Fig. 2: Penalty of the ground truth layer (a) for different regularization terms.
Dark corresponds to low and bright to high penalty (best viewed in color).

previously described regularization terms, the L1-norm can be replaced by the
generalized Charbonnier penalty φα to enforce sparsity even more.

Fig. 2 shows the effects of the different regularizers. RL2
focuses on large gra-

dients in the layer, leading to oversmoothing. RTV is more robust, i.e., the rela-
tive penalty on large gradients is reduced compared to RL2

. RBTV is a smoothed
version of RTV, because the spatial shifts cover a wider area. RWeiss has no
penalty for the gradients of Fig. 2a. However, a penalty must be paid for image
gradients that are not explained by this layer, which could lead to worse sepa-
ration. RPres. is identical to RTV, except that the TV penalty is switched off if
there is an image gradient. Due to their dependence on the layer motions, RPres.

and RWeiss have artifacts for inexact motion estimates.

2.5 Numerical Optimization

The layer estimation problem is processed in a coarse-to-fine pyramid. This
ensures that an approximate solution is found quickly on low-resolution images
and greatly reduces computation time. In contrast to [17], we estimate all layers
on all resolutions. Thus, the coarse-to-fine pyramid is mainly used for speeding
up the convergence. In addition, it helps to avoid local minima for the non-convex
energy terms involving the generalized Charbonnier penalty.

The optimization method on each level is limited-memory Broyden-Fletcher-
Goldfarb-Shanno with bound constraints (L-BFGS-B). This method requires
smooth gradients, so all L1-norms are approximated by the Charbonnier func-
tion. For some combinations of data terms and regularization terms, specialized
solvers exist that are much faster. For example, a L2 data term with L2 regu-
larization can be solved in closed form using the pseudo-inverse, and L2 data
term with TV regularization can be optimized using a split-Bregman solver [5].
However, as we prefer generality over runtime in this work, we always use L-
BFGS-B. Optimization is run until convergence on each level of the pyramid.
Boundary conditions are enforced for the layers that can be derived from the
additive image formation model, e.g., non-negativity [14].



2.6 Sources of Layer Motions

An important prerequisite for our approach to layer extraction from fluoroscopic
images is the motion of each layer. By itself, this is a challenging problem.
However, there are several applications where this is feasible.

The first application is joint layer and motion estimation. The layers and their
motions are assumed to be unknown and jointly estimated from a fluoroscopic
sequence. This can be optimized using an alternation scheme, with the two
subtasks of motion estimation given the layers and layer estimation given the
motions. For the latter, the proposed method of this paper is applicable. In
particular for this application, it can not be presupposed that the given layer
motions are accurate. Consequently, robust methods are mandatory.

The second application is post-processing of fluoroscopic sequences. Sepa-
rated motion layers are useful for improved interpretation of the image content.
Dense motion of the background can be computed using robust parametric reg-
istration methods [1]. More complex motion patterns require more effort. A
possibility is tracking of control points, devices [6] or anatomical curves [2]. To
get a dense motion field from the tracking results, interpolation methods like
thin-plate splines (TPS) can be used. In post-processing, there is enough time
to accurately perform these tasks.

2.7 Experiments

Synthetic data is used for quantitative analysis and real X-ray data for qualita-
tive results. The synthetic data is created by independently projecting different
organs of the XCAT phantom to 2-D [8,12]. The resulting layers are transformed
using 2-D motion fields. The 2-D motion is created by TPS interpolation of man-
ual control point motions. In total, we use two datasets, each with N = 2 layers
and T = 10 images of size W = H = 250 and with a dynamic range of [0, 1]. On
the synthetic data, we simulate different types of errors. First, we add measure-
ment noise in the form of Gaussian and Laplacian noise to the image intensities
(σGauss = σLaplace = 0.01). Second, we simulate registration and model errors by
smoothing the ground truth motion field and randomly disturbing it by adding
Gaussian noise to the motion vectors (σmotion = 1.5 px). In addition, two im-
ages of the sequence are translated randomly (σtrans = 4.0 px). For each of the
datasets, 10 instances with random errors are created. As the error measure
for ground truth comparison, we use a modified version of the mean squared
error (MSE). As a uniform intensity offset can not be determined using layer
separation, the means of the layers are subtracted before computing the MSE.

The real X-ray data consists of a sequence of 10 images of W = 670, H =
1000. The required layer motions are extracted from the images manually. In
each image, the motion of ∼ 25 control points is annotated. The motion of these
control points is converted to a dense motion field using TPS interpolation.

To find the parameters for each method, we perform grid search. For DCha.,
α is searched in {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. For the regularizers, λ is searched
in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5} while α is fixed. The



Table 1: MSE (·10−3) for different data terms on synthetic test data (mean ±
std). Grid search determined α = 0.25 for DCha..

DL2
DL1

DCha.

MSE 8.9± 5.6 8.5± 5.5 8.3± 5.4

(a) Ground truth

(b) None (c) RL2
(d) RTV

(e) RBTV (f) RPres. (g) RWeiss

Fig. 3: View of a region of interest (red) of a layer extracted using different
regularization terms. DCha. is used in all cases.

threshold for the gradient magnitude δ in RPres. is set to 0.01 [10]. The pa-
rameters of RBTV are searched in β = {0.5, 0.7, 0.9} and P = {3, 5}. For each
experiment, 10 different random instances with the same error and noise type
are used as training data. We use forward differences to approximate spatial
derivatives ∇. The coarse-to-fine pyramid is implemented with a downsampling
factor of 0.5 and 6 levels.

3 Results

3.1 Analysis of Data Terms

To analyze the behavior of different data terms, we apply ML estimation without
regularization for each of them. For DCha., the grid search yields α = 0.25.
The MSE decreases with increasing robustness of the data term, see Table 1.
Qualitatively, the errors in DL2

correspond to artifacts at positions of wrong
motion. Note that DL2

is the common data term in the state of the art [10,14,17].
Using robust data terms, these artifacts in the layers are removed.

3.2 Analysis of Regularization Terms

We investigate all combinations of DCha. with α = 0.25 and the introduced
regularization terms. Grid search yields β = 0.5 and P = 5 for RBTV . The
respective regularization weights are listed in Table 2, together with the exper-
imental results. All regularization methods improve the MSE compared to ML



(a) Input (b) Ground truth (c) DL2
(d) DCha. +RBTV

Fig. 4: An image of the input sequence (a), a ground truth layer (b), and the
corresponding layer extracted with the state of the art (c) and our method (d).

Table 2: Value of regularization weight λ found using grid search on training
data, MSE (·10−3), and runtime [s] on test data (mean ± std).

- RL2
RTV RBTV RPres. RWeiss

λ - 1.0 0.5 0.1 0.05 0.0001
MSE 8.3± 5.4 8.1± 5.5 7.8± 5.3 7.3± 5.7 8.1± 5.0 8.3± 5.4
Runtime 55.8± 9.2 50.0± 8.1 42.5± 9.6 203± 114 116± 18.4 117± 25.5

estimation. The image-driven regularizers RPres. and RWeiss have only a small
effect, as training assigned low weights. This means that using higher weights
for these regularizers deteriorates the results. With an MSE of 7.3 · 10−3, RBTV

is the best regularizer in our experiments. RTV is second, as it also preserves
edges. Since RBTV is a generalization of RTV, it is more flexible. RBTV has the
highest runtime as multiple finite differences are evaluated. RWeiss and RPres.

are slow as well, since they must be computed for each point in time.
A qualitative impression of the effect of the regularization is given in Fig. 3 for

a region of interest. The robust data term already removed most of the outliers.
The main difference between the regularization terms the denoising performance,
including edge preservation. In Fig. 4, we highlight the the difference between
the state of the art and the proposed robust probabilistic model. DL2

has blurred
edges and a high-noise level, while our method is closer to the ground truth.

3.3 Real X-Ray Data

For the real X-ray data, the same parameters as in Table 2 are used. The ex-
periments on real data have to deal with many sources of error. The manual
labeled motion is inaccurate, because it is only based on a few sparse control
points. In addition, the layered image formation model is not fulfilled here. A
reconstructed layer from an X-ray sequence containing soft tissue motion of the
heart, lung and diaphragm is shown in Fig. 5. Ribs, spine, and skin markers are
static and should be removed from the shown layer. The state-of-the-art DL2

data term without regularization creates artifacts and smooths edges (bottom



(a) Image (b) DL2
(c) DL1

(d) DCha.

(e) DCha. +RL2
(f) DCha. +RTV (g) DCha. +RBTV (h) DCha. +RPres.

Fig. 5: Layer extracted from a real X-ray sequence using different combinations
of data and regularization term (contrast enhanced for display).

left). DL1
and DCha. are able to suppress most of the artifacts. High noise levels

are visible for all data terms (top left).

All regularizers help to reduce this noise. As RPres. and RWeiss have similar
results, only the former is shown. Both do not sufficiently suppress noise. RTV

and RBTV smooth the noise and preserve the edges, for example near the di-
aphragm and the heart shadow. In contrast, RL2

slightly blurs edges and does
not suppress noise. RBTV is best at reducing streak artifacts (bottom middle).

4 Conclusions and Outlook

In this paper, a Bayesian probabilistic model for layer separation in transparency
was presented. As this model is only a rough approximation of the real X-ray im-
age generation process, it has to tolerate many outliers. To this end, we introduce
robust data terms and robust regularization for motion layer separation in fluo-
roscopy. A slowly increasing penalty function like the generalized Charbonnier is
crucial in the data term. Furthermore, we showed that robust regularization like



BTV yields semantically better separation. Image-driven regularization did not
improve upon BTV, but might help in joint motion and layer estimation [10].

For the future, there are several areas for possible improvements. The im-
age formation model can be extended to better model true X-ray physics, e.g.,
scattering. Joint motion and layer estimation with anatomically plausible lay-
ers would greatly enhance the practical usefulness. Another issue is runtime.
Although the coarse-to-fine approach considerably reduces runtime, the current
configuration of the optimizer requires up to a minute for computing the layers.
The runtime can be improved using preconditioning or specialized solvers [5].
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