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Abstract. In cases of aortic valve diseases, diagnosis and subsequent
interventional planning are highly facilitated by deriving exact three-
dimensional geometric models of a patient’s aortic valve apparatus from
Cardiac Computed Tomography Angiography data. Fully-automatic ap-
proaches to do so however lack in absolute reliability and manual editing
of the initially detected geometric model is often required. We therefore
present an interactive editing method for this scenario – in particular
for editing the aortic root model – based on the As-Rigid-As-Possible
(ARAP) surface modeling paradigm, which allows efficient, robust, in-
tuitive and physically plausible deformations of three-dimensional geo-
metric models. The user constrains a model’s surface by setting and
moving handles – the so-called constraints – while the remaining, and
only the remaining, free part of the surface is deformed automatically in
a way such that the global shape is preserved in real-time. We extended
the classical ARAP approach for our scenario by an energy smoothness
regularization to overcome non-smooth artifacts at constrained positions.
We furthermore incorporated the use of image evidence-based cues in the
interactive workflow such that handles can be made “snap” into visible
3-D surface indicators. We evaluated our method in a user study regard-
ing intuitiveness, achievable accuracy, inter-user variability, required time
and robustness. The participants started with an initial average mesh-
to-mesh surface error of 1.65 mm and achieved after 50 mouse clicks on
average and less than 3.5 minutes an average error of 0.48 mm with re-
spect to an expert-defined ground truth. The inter-user variability was
0.43 mm.

1 Introduction

Cardiac Computed Tomography Angiography (CCTA) is a widely used acquisi-
tion technique to provide insights into a patient’s heart anatomy. In order to fully
leverage the rich anatomical information contained in the data for interventional
planning, e. g., for planning Trans-Aortic Valve Implacement (TAVI) procedures,
or for further usage like 3-D printing for interventional training, it is highly de-
sirable to use the data also for deriving exact patient-specific three-dimensional
geometric models of the underlying anatomy. While fully-automatic approaches
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exist, their clinical acceptance may be hampered by non-intuitive and therefore
time-consuming editing tools for subsequent exact adjustment. These may even
prevent the user from eventually achieving his ultimate goal: having a 3-D model
of a patient’s anatomy meeting the clinical needs with respect to accuracy.

We therefore present a novel solution for the associated problem of semi-
automatically deriving an accurate patient-specific three-dimensional geometric
model of the aortic valve apparatus – in particular of the aortic root model –
from 3-D CCTA data. Our solution is a two-step approach: first a fully auto-
matic detection is attempted, then we adopt the As-Rigid-As-Possible (ARAP)
paradigm for realistic global shape editing in a new hybrid approach that addi-
tionally can take into account local shape evidence from the underlying image
data. It is embedded in a user-friendly interactive real-time workflow that is
equally transparent, robust and flexible with regards to the finally achieved geo-
metric models.

Work related to our research can roughly be subdivided into three fields:
1) manual segmentation and surface reconstruction, 2) fully-automatic detec-
tion of the heart valve apparatus, and 3) segmentation refinement in medical
images. On the one hand, completely manual methods like the one presented by
Liu et al. [4], where a 3-D geometric model can be built from scratch by drawing
contours on several individual slices, tend to be very time-consuming and chal-
lenging when trying to achieve highly accurate 3-D models. Additionally, these
are not restricted by any physical or other constraints, which may yield unreal-
istic shapes. On the other hand, totally neglecting manual editing, Ionasec et al.
[3] proposed the first fully automatic system for patient-specific modeling of the
aortic valve apparatus in 4-D Cardiac CT images. The output of this detection
algorithm is a set of 3-D geometric models, which are represented by triangle
meshes. Grbić et al. [1] later extended the method to the whole valvular heart
apparatus, containing the ascending aorta and the left and right heart valves.
After the initial detection process, it could however be necessary to perform an
editing step to reach better segmentation accuracy. Being a representative of
segmentation refinement in medical images, Ijiri and Yokota [2] presented an
interface for refining volume segmentation based on triangle meshes, which can
be seen as the most comparable one to our work. The user draws several cut
strokes in 3-D, which intersect the current 3-D model and generate contours on
it. These contours can then be refined on 2-D cross-sectional views using a set of
specific tools. Based on these new contours, the 3-D model is deformed using a
global free-form surface editing method called Laplacian surface editing [7]. Ijiri
and Yokota [2] applied their approach to medical image data, but not for the
heart valve apparatus. Laplacian surface editing [7] can be seen as a predecessor
of ARAP surface editing [6], which forms the basis of our method, and – to the
best of our knowledge – has not been applied for generating and refining 3-D
geometric models of the heart valve apparatus from CCTA data.
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2 Methods

We consider a triangle surface mesh M = {V, E ,F}, where V represents the
set of vertices, E ⊂ V2 the set of actually non-directed edges, i. e., (i, j) ∈ E ⇔
(j, i) ∈ E , notated as a set of directed edges for convenience, and F ⊂ V3 the set
of triangular faces. The geometry of the surface is defined by the vertex positions
vi ∈ IR3, i ∈ V. Surface deformation implies manipulating the geometry while
preserving the topology. That means, the graph structure remains the same,
while only the vertex positions are displaced.

2.1 As-Rigid-As-Possible Surface Modeling

Surface deformation is applied by moving vertex positions vi, i ∈ V, of the initial
shape S to new vertex positions v′i of the deformed shape S ′. For a non-rigid
deformation, Sorkine et al. [6] defined the deviation from rigidity by an energy
function

EARAP(S ′) =
∑

(i,j)∈E

wij‖(v′i − v′j)−Ri(vi − vj)‖2 (1)

where Ri ∈ IR3×3 are the rotation matrices which best align the initial edge
vectors (vi−vj) with the deformed ones (v′i−v′j). The cotangent weights wij =
1
2 (cotαij + cotβij) equalize varying edge lengths, where αij and βij denote the
opposite angles corresponding to the edge (i, j). Given the initial vertex positions
vi and certain constrained vertex positions v′c, ARAP surface deformation is
applied by minimizing the ARAP energy, which results in solving a nonlinear
optimization problem. This is applied in an iterative scheme by first solving for
the best-aligning rotations, and then for the new vertex positions v′i (please see
[6] for details).

The global energy formulation of (1) is a weighted sum of squared lengths
of local error (vector) terms aij = (v′i − v′j) −Ri(vi − vj) over all edges (i, j).

Let k : IN2 → IN, (i, j) → k, be a mapping and ak = aij . We define the matrix

A ∈ IR|E|×3 containing each local energy term ak in a separate row k, and we
use the diagonal edge weighting matrix W = diag(w1, . . . , w|E|) to reformulate
(1):

EARAP(S ′) =‖A‖2W = tr(ATWA) (2)

This matrix-based reformulation was presented in a similar way by Martinez-
Esturo et al. [5] who provided a triangle-centric formulation using the triangle
gradient operator. We applied their formulation to the vertex one-ring represen-
tation of the original ARAP surface modeling formalism [6]. According to [5],
we use the notation ‖A‖2W as defined above for a squared matrix norm that is
induced by a symmetric and positive definite matrix W . For the identity matrix
W = I (which corresponds to uniform weights), the defined norm is identical to
the squared Frobenius norm ‖·‖2F. Now we decompose the matrix A = EV ′−C,

where E ∈ IR|E|×|V| is the edge matrix, which contains one row k for each di-
rected edge ek. The components are 1 in the column of the vertex index where
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ek starts, −1 for the vertex index where ek ends, and 0 for the rest. The matrix
C ∈ IR|E|×3 is the matrix of rotated edges, containing the term ck = Ri(vi−vj)
in each row k. The whole linear system can now be expressed as follows:

ETWEV ′ = ETWC (3)

Most surface editing methods that are based on solving a linear system like
the one above are challenged by the fact that the energy always has a maximum
at the constrained vertex positions. This usually yields non-smooth results. We
therefore aim for smoothing their contributions to the overall energy while solv-
ing the system. Martinez-Esturo et al. [5] defined the smoothness energy as
follows:

ESMOOTH(S ′) = ‖DA‖2G = ‖D(EV ′ −C)‖2G (4)

where G ∈ IR|E|×|E| is a diagonal matrix of edge lengths and D ∈ IR|E|×|E| is a
discrete differential operator on the local energy components ak with elements

dab =


1, if ea = (i, j) ∈ E ∧ eb = (k, i) ∈ E .

−1, if ea = (i, j) ∈ E ∧ eb = (j, k) ∈ E .

0, otherwise.

The definition of energy smoothness in (4) measures the squared differences of
the non-rigidity energies along each directed edge, weighted by the edge length.
We can now combine the non-rigidity energy of (2) and the energy smoothness
of (4) and weight them with a regularization parameter λ ∈ [0, 1[:

E(S ′) = (1− λ)EARAP(S ′) + λESMOOTH(S ′) = ‖A‖2X
with

X = (1− λ)W + λDTGD .

According to [5], appropriate reformulation of the linear system of (3) yields:

ETXEV ′ = ETXC (5)

It is a system of equations with a system matrix M = ETXE ∈ IR|V|×|V|

and a right-hand side B = ETXC ∈ IR|V|×3. Building and factorizing the
system matrix leads to a non-scaling computational overhead compared to the
non-smooth ARAP version. This however is negligible as the system matrix
must only be built when a new vertex is constrained or freed. To incorporate
the constraints into the linear system, we first have to remove all rows and
columns from M which belong to a constrained vertex. We get the free part

MF ∈ IR|V
′
F|×|V

′
F| and the constrained part MC ∈ IR|V

′
F|×|V

′
C| of the system

matrix. Then, we have to erase the corresponding rows in the right-hand side,

resulting in BF ∈ IR|V
′
F|×3. This yields

MFV
′
F = BF −MCV

′
C,
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where MC ∈ IR|V
′
F|×|V

′
C| is the constrained part of M , and V ′C ∈ IR|V

′
C|×3 is the

matrix including the constrained vertex positions as row-vectors. In Figure 1,
we illustrate the decomposition of M into MF and MC. On the left there is
an example mesh with V ′C = {5, 9}. In the middle there is the corresponding
system matrix (for simplicity it is the Laplacian matrix L as considered in [6],
with uniform weights) and, on the right, there is the permuted system matrix
containing LF as upper left part and LC as upper right part.

The sparse symmetric positive definite system matrix allows us to use a
sparse Cholesky factorization, such that the system can be solved in an efficient
manner.

Fig. 1. Decomposition of the system matrix into free and constrained part. From left
to right: an example mesh, the corresponding system matrix, and the permuted system
matrix.

In Figure 2 we see in the first picture the mean shape model of the aortic root
which is smaller than the actual aortic root. Therefore we used five constraints to
adjust the mesh. In the second picture, ARAP editing with the parameter λ = 0,
resulting in the non-smooth version with artifacts at the constrained positions,
was applied. In the third picture, the smooth ARAP version with λ = 0.33 (as
suggested in [5]) was applied. As can be seen, the non-smooth artifacts disappear
and the mean shape model is optimally scaled with only five constraints. In the
bottom row, the corresponding meshes in 3-D are shown with the non-rigidity
energy color coded. Smooth ARAP yields a more even distribution of the energy
over the shape surface.

2.2 Image Evidence-Based Boundary Suggestion

For our scenario, we want the surface to correlate with the image data. Therefore,
we have to identify the correct object boundaries inside the image, where the
handle vertices can be made “snap” into. While moving a handle vertex v′i in
the direction d of a boundary or edge inside a 3-D volume an edge may be
located where the magnitude of the image gradient ∇ has a local maximum. If
the sharpest boundary is desired, one may look for the highest local maximum.
Therefore we sample all voxels pk ∈ {p1, ..., pK} = PK along the moving direction



6

Fig. 2. Initialization of editing workflow (left), result obtained by classical ARAP (mid-
dle), and result obtained by smooth ARAP (λ = 0.33) (right).

d inside a certain observation radius R:

PK = {pk : ‖vi − pk‖ ≤ R ∧ ∃ l : vi + ld lies inside voxel pk}

where pk is the world position of the center of the voxel pk. Then, we compute
for each sampled voxel the gradient magnitude ‖∇k‖. The edge aimed for is
located inside the voxel pk̂ where pk has the highest local maximum in gradient
magnitude:

k̂ = argmax
k
{‖∇k‖ : ‖∇k−1‖ < ‖∇k‖ ∧ ‖∇k+1‖ < ‖∇k‖} (6)

Once we have the voxel center pk̂, we have to locate the correct position v′i
inside the voxel, since we want v′i to reside on the line vi + ld. Therefore, we
compute the orthogonal projection of the voxel center pk̂ onto the line vi + ld:

v′i = vi +
(pk̂ − vi) · d
‖d‖

d

This results in real-time “snapping” suggestions located in the moving direc-
tion of the mouse once the user has decided to start constraining an individual
surface vertex. These suggestions can either be accepted or rejected if they do
not meet the user’s expectation.

We have used the gradient magnitude as the low-level image feature to lo-
cate object boundaries in our current system prototype. This can be extended
to higher-level edge indicating features in a straightforward manner, e. g., to
features computed by machine learning techniques [1] or by more sophisticated
higher-order filtering techniques.
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3 Experimental Setting and Results

We have evaluated our system (smooth ARAP with λ = 0.33), which has been
implemented relying on MeVisLab 2.6.1 (64 Bit), on a standard notebook with
Intel Core i7-4700MQ CPU (2× 2.40 GHz) and 4 GB RAM. Regarding perfor-
mance of our system we worked on an aortic root mesh with 1440 nodes. After
fully-automatic detection of the initial geometric model [1] our editing method
could be initialized in less than 100 ms and response time to a user input was
less then 10 ms making our prototype a real-time system. Setting and moving
the constraints was performed in best fitting short-axis views (see top row of
Figure 2), exploiting the regular, sliced structure of the mesh.

In order to evaluate achievable accuracy, required editing time, and inter-
user variability of our new editing workflow we used six data sets depicting the
appropriate heart phase. In cases the automatic detection was already sufficiently
good (i.e. for DS 1-5), we replaced the detected model by a mean shape model
to simulate initial deviation. For all the six data sets we carried out a user study,
where four non-expert respondents had to edit the aortic root mesh until they
felt satisfied with the achieved result. In all cases the initial average mesh-to-
mesh error could be decreased from 1.64 mm to 0.48 mm with 50 mouse clicks
within 207 s on average. The maximum mesh-to-mesh error could be decreased
from 7.74 mm to 2.06 mm. The inter-user variability was 0.43 mm. The low
initial value of 1.64 mm at the beginning of our editing may suggest that rigid
initialization is already sufficiently good. From a clinical perspective it however
is not good enough as Figure 3 and the maximum mesh-to-mesh error show.
Figure 3 shows some examples for one of the data sets. In the first row, we see
the initialized mean shape mesh (from left to right: short-axis, long-axis, and
3-D view), in the second row we see one of the results after editing.

Fig. 3. Examples: initialization (top) and results after editing (bottom).



8

Following usual practice we used ground-truth annotations from a purely
manual tool for our experiments. This way we avoided a possible bias regarding
the amount of shape detail that can be handled by our ARAP-based method.
Due to its lack of intuitiveness and usability the manual tool is likely to lead
to higher inter-/intra-user variability and more inaccuracies than our approach.
This strengthens the fact that we cannot achieve maximum accuracy in our
experiments. However, our findings suggest that our approach may lead to even
more accurate ground-truth annotations if used appropriately in this scenario.

4 Conclusions

We presented a method for interactive, semi-automatic, and image information-
assisted editing of 3-D geometric models, which are fully-automatically detected
in an initial step, and applied it to accurately modeling the aortic root from
CCTA data. We used the concept of ARAP surface editing to deform a surface
while preserving its global shape. To also provide smooth results, we extended
the classical ARAP surface editing formalism by a smoothing regularization.
We further incorporated image information to provide “snapping” suggestions,
which are associated with surface cues to be found in the data at hand. We eval-
uated our interactive editing workflow in a user study, where it was shown to be
intuitive, fast and robust. Our method allows experts to derive exact geometric
models of a patient’s aortic valve apparatus in terms of the surrounding aortic
root including the interventionally relevant aortic annulus with reduced effort.
This is crucial for diagnosis and interventional planning of aortic valve diseases.
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