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Abstract. C-arm computed tomography reconstruction of multiple car-
diac phases could provide a highly useful tool to interventional cardiolo-
gists in the catheter laboratory. Today, however, for clinically reasonable
acquisition protocols the achievable image quality is still severely limited
due to undersampling artifacts. We propose an iterative optimization
scheme combining image registration, motion compensation and spatio-
temporal regularization to improve upon the state-of-the-art w. r. t. im-
age quality and accuracy of motion estimation. Evaluation of clinical
cases indicates an improved visual appearance and temporal consistency,
evidenced by a strong decrease in temporal variance in uncontrasted re-
gions accompanied by an increased sharpness of the contrasted left ven-
tricular blood pool boundary. In a phantom study, the universal image
quality index proposed by Wang et al. is raised from 0.80 to 0.95, with
1.0 corresponding to a perfect match with the ground truth. The results
lay a promising foundation for interventional cardiac functional analysis.

1 Introduction

Ventricular wall motion analysis is commonly performed with cardiac magnetic
resonance imaging or 3-D echocardiography. However, as these modalities do
not readily fit into the workflow of most cardiac interventions, 2-D ventriculog-
raphy is still frequently used for intraprocedural functional evaluation of cardiac
motion. During cardiac resynchronization therapy, volumetric reconstruction of
several heart phases, i. e. 4-D imaging, could help physicians find the optimal
lead position by providing valuable information regarding the area of latest con-
traction [2]. Rotational angiography using C-arm devices as they are commonly
found in catheter labs in combination with multi-segment retrospective ECG-
gating could generate such images [4]. However, for protocols that achieve clin-
ically reasonable acquisition times by performing only a single sweep [1], the
gated reconstructions suffer severely from sparse view sampling.
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Fig. 1. A schematic overview of our iterative method, notation and paper structure.

In recent literature, several publications have focused on 4-D imaging with
C-arm systems. For instance, Mory et al. employ 4-D iterative reconstruction
with both spatial and temporal regularization [8]. While this approach can be
of use in coping with angular undersampling, the achieved image quality is still
severely limited by the small amount of data available for each cardiac phase
and the “cartoon-like” appearance of the reconstructed images. Müller et al. at-
tempt to overcome this problem by combining analytical reconstruction with
motion compensation [10]. They estimate the motion between all phases of the
initial, ECG-gated reconstruction, and then compensate for it in a final recon-
struction step using all acquired projection data. However, motion estimation
is highly sensitive to the quality of the initial images and artifacts typically
propagate into the final images as artificial motion patterns. In this paper, we
propose a method to combine the state-of-the-art motion-compensated filtered
back-projection reconstruction technique with a novel iterative process incor-
porating spatio-temporal regularization to reduce artificial motion and further
improve both image quality and accuracy of motion estimation.

2 Materials and Methods

Below, we first describe the generation of ECG-gated initial images (section 2.1).
They serve as the input to our joint motion estimation and compensation frame-
work presented in section 2.2. An overview of the method is shown in Fig. 1.
Afterwards, details regarding our experimental data are provided (section 2.3).

2.1 Initial Image Generation

Initial images for each heart phase are generated using Feldkamp-Davis-Kress
(FDK) filtered back-projection reconstruction combined with retrospective ECG-
gating using a rectangular window. As only a subset of the projection images is
used, we perform the following steps for denoising and reduction of few-view ar-
tifacts: (i) A two-pass removal of high-density objects such as catheters within
the reconstruction field of view (FOV) [9]. (ii) A threshold-based masking in
the filtered projection images to reduce artifacts caused by cables outside the
FOV. (iii) An approach by McKinnon and Bates [7] to further reduce under-
sampling artifacts, in which object-dependent artifact images are estimated and
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subsequently subtracted from the original images. (iv) Denoising with a joint
bilateral filter [14] guided by a standard FDK reconstruction from all data.

2.2 Joint Motion Estimation and Compensation

Artifacts in the initial images propagate through motion estimation, leading to
inconsistent movement patterns. Motion-compensated images, due to smooth-
ness of the motion model and the no longer incomplete sampling, offer a clearer
distinction of structures in the sense that high intensity differences are much
more likely to be caused by an actual difference in underlying anatomical prop-
erties instead of merely artifacts. This enables us to use more aggressive edge-
preserving filtering to eliminate inconsistency in both the spatial and temporal
domain while preserving actual motion. In turn, these filtered images allow for
a much more robust motion estimation, leading to a motion compensation with
fewer inconsistencies. By iteratively filtering, estimating and compensating for
motion, we can jointly improve both our images and our motion estimate.

Let I = {It : t ∈ Nph} denote 3-D images for all cardiac phases t, with
Nph = {1, . . . , Nphases}. Similarly, M = {M t→t′ : t, t

′ ∈ Nph} are deformation
operators, where M t→t′I

t is the image It transformed to phase t′, i. e. deformed
according to the motion between cardiac phases t and t′. M t→t is defined as
the identity transform and not part of the optimization process. The steps of
motion estimation, compensation and spatio-temporal regularization described
below are performed in an alternating manner.

Motion Estimation is performed by pair-wise 3-D/3-D image registration
of all combinations of cardiac phases,

M∗ =

{
argmin
Mt→t′

[
D
(
It′ ,M t→t′I

t
)]

: t, t′ ∈ Nph, t �= t′
}
, (1)

where D(·, ·) is a dissimilarity measure. In our experiments, we use the negative
normalized cross correlation and a uniform cubic B-spline motion model [10] with
an isotropic control point spacing of 8mm for the deformation operators M .
Optimization is performed on a multi-resolution pyramid with 3 levels using a
quasi-Newton method, the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm. 10,000 random image samples per iteration and level are
evaluated. For faster convergence, motion estimation is restricted to a manually
defined region of interest (ROI) containing the heart and covering roughly 5 −
10% of the full volume. Our implementation is based on elastix, a toolbox for
nonrigid registration of medical images [3]. In the first iteration, I consists of
the initial images (cf. section 2.1). In later iterations, we perform registration on
the current regularized motion-compensated images, but do not initialize with
the previous motion estimate so as not to introduce bias towards a solution
potentially converged to an undesirable local minimum.

Motion Compensation amounts to incorporating the current motion esti-
mate in the data fidelity equation of the reconstruction problem for all phases,

I∗ =
{
It : At′M t→t′I

t = P t′ ; t, t′ ∈ Nph

}
, (2)
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where At′ is the X-ray projection operator belonging to the measured projection

data P t′ assigned to phase t′ during gating. Thus, for reconstruction of each
individual phase t, data belonging to all phases t′ are used. The images I∗ are
found using a variant of FDK-type filtered back-projection which compensates
for motion by shifting each voxel according to the given transformation during
the back-projection step [11]. This approach is efficient, which is crucial for use
in an interventional setting, and at the same time guarantees that we do not lose
resolution through repeated interpolation and regularization as we reconstruct
anew—directly from the projection images—in each iteration.

Spatio-temporal Filtering is introduced to regularize the optimization.
For this purpose, we adopt the common notion of favoring piece-wise constant
images and apply spatial and temporal bilateral filters which are straightforward
to parameterize and increase sparsity in the gradient domain. They read,

It
S(x) =

∑
x′∈N(x)

It(x′)
wS

· exp
(
−‖x− x′‖22

2σ2
S

− (It(x)− It(x′))2

2σ2
I

)
, (3)

It
ST (x) =

∑
t′∈Nph

It′
S (x)

wT
· exp

(
−dist2(t, t′)

2σ2
T

− (It(x)− It′(x))2

2σ2
I

)
, (4)

with σS , σT and σI the Gaussian standard deviations in the spatial, temporal
and intensity domain, respectively. N(x) is a local neighborhood around x, wS

and wT are normalization factors. dist(·, ·) denotes the distance of two phases
in the cardiac cycle, taking periodicity into account. By means of this edge-
preserving filtering, we produce cleaner images I∗

ST =
{
It
ST : t ∈ Nph

}
with

an improved temporal consistency for motion estimation in the next iteration.
Note, however, that we stop iterating right after the motion compensation step
to avoid an over-smoothed appearance in the final output.

2.3 Experiments

Clinical Data. Three data sets of clinical cases were acquired with an Ar-
tis zeego system (Siemens AG, Healthcare, Forchheim, Germany). 381 projec-
tion images were captured at approx. 30Hz with an angular increment of 0.52◦

during one 14 s long rotation of the C-arm. The isotropic pixel resolution was
0.31mm/pixel (0.21 in isocenter), the detector size 1240 × 960 pixels. Exter-
nal pacing was applied to ensure a heart rate of 115 bpm. The gating windows
cover 10% of the heart cycle each and are chosen to use all data without over-
lap, resulting in 10 cardiac phases to be reconstructed for both the initial and
motion-compensated images. Undiluted contrast agent was injected in the pul-
monary artery at a speed of 7ml/s (91ml total). All images were reconstructed
on a grid of 2563 voxels covering a volume of size (25.6 cm)3.

Phantom Model. For further evaluation, a numerical phantom data set was
used [12,5]. 381 projection images of the phantom were simulated using a poly-
chromatic spectrum, discretized in energy bins 2.5 keV wide from 25 keV to
120 keV (peak energy), and a time-current product of 2.5mAs per X-ray pulse.
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For bones and bone marrow, material properties match the mass attenuation
coefficients found in the NIST X-ray table1, while other structures were mod-
eled with the absorption behavior of water for modified densities. For the con-
trasted left ventricular blood pool, the contrasted blood in the aorta and the
myocardium, the densities were set to 2.5 g/cm3, 2.0 g/cm3 and 1.5 g/cm3, re-
spectively. Additionaly, a complete set of projection images for a single cardiac
phase (static phantom) was generated for reconstruction of a ground truth im-
age. Other properties of the phantom data set, such as the number of heart
beats and the resolution and dimensions of the images, were chosen to reflect
the clinical data sets used in this study.

Experimental Setup. Images It
3(x) reconstructed with 3 iterations of the

proposed method were compared to the the state-of-the-art method by Müller
et al. [9], which corresponds to the result It

1(x) of the first motion-compensation
step. As the preprocessing steps (ii) through (iv) (cf. section 2.1) have a strong
impact on initial image quality, they were also added to their approach to enable
a fair comparison with our method. In our experiments, we set σS = 5mm
and σT = 60% of the cardiac cycle. Although rather large, these spatial and
temporal kernel widths proved to work well for all our data sets as we choose σI

so as to preserve the expected gray value difference between contrasted blood
and surrounding tissue. In contrast to typical regularization weights, its value
can be intuitively defined on the same scale as the observed intensities, which
brings down the common, but often crucially unaddressed problem of proper
parameterization to a manageable level.

Evaluation Measures. For quantitative evaluation of the phantom study, we
compared the root mean square error (RMSE) as well as the universal im-
age quality index (UQI), a correlation measure proposed by Wang et al. [15],
w. r. t. the static ground truth reconstruction. For calculation of the UQI, the
volume was divided into regular blocks of size (16mm)3 each. Only those fully
encompassed by the ROI used for registration (cf. section 2.2) were selected,
resulting in a total of 9 blocks. To assess accuracy of motion estimation, we
compared the dense motion fields obtained by evaluating the estimated B-spline
model on the voxel grid against ground truth motion interpolated from the phan-
tom surface definitions [6] between end-systole and end-diastole. For all data sets,
overall visual image quality was scored by 9 experts in medical image process-
ing at our institute. The images were shown in a randomized order to scorers
blinded to the employed method. Similar to common approaches for (spatial)
signal-to-noise ratio estimation, temporal consistency can also be measured as
the temporal variance of intensity values in homogeneous regions consisting of
uncontrasted blood and tissue: Ideally, they should appear mostly static over
the course of the cardiac cycle as no motion is observed there. At the same
time, it is essential to rule out a critical loss of spatial resolution when apply-
ing spatio-temporal smoothing. For nonlinear, object-dependent reconstruction
methods, standardized modulation transfer function (MTF) evaluations cannot

1 http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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Table 1. For all data sets, the observed decrease in temporal variance, φ = 1 −(
vart[I

t
3]
) (

vart[I
t
1]
)−1

, averaged over homogeneous uncontrasted, i. e. ideally static re-
gions is given. Similarly, ξa and ξb are the ratios of edge sharpness estimates [13],
i. e. descriptors of the relative sharpness increase, in short-axis slices towards the apical
and basal ends of the end-diastolic heart, respectively. The visual image quality scores
assigned by 9 experts at our institute are given as s1 for It

1(x) and s3 for It
3(x), ranging

from 0 (unacceptable) to 4 (very good).

Data set φ̄ ξa ξb s1 s3

Patient 1 50.1% 1.22 1.24 2.1± 0.60 3.7 ± 0.50
Patient 2 31.5% 1.02 1.21 1.4± 0.73 2.4 ± 0.88
Patient 3 30.8% 1.03 1.22 1.4± 0.53 3.4 ± 0.73
Phantom 87.4% 1.02 1.05 1.9± 0.78 3.7 ± 0.50

be applied, necessitating measurements of edge sharpness instead. Following the
approach described in [13] for assessing reduction of motion blur, we measured
the sharpness of the contrasted left ventricular blood pool as the anatomical
structure of interest. For this purpose, ensembles of line profiles were placed
along the edge in short-axis views and then used to robustly estimate its slope.

3 Results and Discussion

For the phantom data set, our method reduced the RMSE over the ROI from
86.3HU to 73.6HU (a decrease of 14.7%), and raised the UQI from 0.80 to
0.95, where 1.0 would correspond to a perfect match. Although, like most, our
phantom is piece-wise constant and therefore matches the prior knowledge as-
sumption, rendering it easier to reconstruct with our method, we believe that it
is still meaningful to compare the images as they are unregularized filtered back-
projections of the same projection data albeit corrected according to different
motion estimates. The motion estimation error, computed as the average magni-
tude of the difference vectors over the ROI, was reduced from 2.08± 1.92mm to
1.52± 1.91mm, a substantial decrease. Note that the numbers are higher than
typically expected of target registration errors as we do not limit the evaluation
to landmarks for which the motion is known to be observable in the images.

The results of the observer study, listed in Tab. 1, demonstrate a clear prefer-
ence toward the proposed method as the images are disturbed less by artificial
motion patterns. This is also reflected by the fact that our method was able to
greatly reduce temporal inconsistency, as seen from the variance measurements
in Tab. 1. The same effect is visualized by the difference images in Fig. 2 where we
note a reduced amount of noise-like patterns. For visual comparison, animations
of reconstructed data sets are available on our website2. From the edge sharpness
measurements, which are also listed in Tab. 1, we observe a slight overall increase
in sharpness. In the phantom, edges already exhibit a high sharpness with the

2 http://www5.cs.fau.de/our-team/taubmann-oliver/supplementary-material

http://www5.cs.fau.de/our-team/taubmann-oliver/supplementary-material
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Fig. 2. Short-axis (left) and long-axis (right) views of patient data set 1 in end-diastole
reconstructed with both the proposed (bottom) and the state-of-the-art method (top).
The color-coded images show the difference between end-diastole and end-systole.

state-of-the-art method, leaving less room for improvement. The lowest values
in the clinical data sets occur for the motion-intensive apical regions of patients
2 and 3, which we could confirm visually to have worse contrast than patient 1,
thus requiring a more conservatively chosen value of σI . This also explains the
lower decrease in temporal variance observed in these data sets.

Performance-wise, the motion estimation step constitutes the computational
bottleneck of our current implementation. On average, registration of two vol-
umes takes 10 - 30 s on a machine equipped with a quad-core 2.93GHz CPU and
12GB of RAM. Run times of the regularization and reconstruction steps are
about 3 s and 85 s per volume, respectively.

4 Conclusion

For advancing accuracy and quality of interventional 4-D cardiac imaging, a
scheme for iterative motion estimation and compensation is proposed, enabling
the use of stronger regularization. Evaluations on C-arm CT data sets of clinical
patients and a numerical heart phantom reveal distinct improvements compared
to the state-of-the-art, both in terms of visual quality and accuracy of motion
estimation. The results hold promise for efforts toward interventional cardiac
functional analysis, which will also be subject of our future work.
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