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Abstract—Time-resolved 3-D cardiac imaging in the catheter
laboratory using C-arm computed tomography (CT) could
provide valuable information to physicians during interven-
tions. However, for clinically reasonable acquisition protocols,
electrocardiography (ECG) gated reconstructions of individual
heart phases are severely degraded due to sparse view sam-
pling artifacts. As they appear at different locations for each
heart phase, these artifacts strongly influence motion estimation,
thus impairing a subsequent motion-compensated reconstruction
which has been shown to greatly improve image quality. We
present a method for reducing such artifacts by an adaptive
smoothing in the temporal domain, guided by a projection-based
motion detection step which incorporates the heart rate as prior
knowledge. In our experiments on clinical data and a numerical
heart phantom, we show that the increased temporal consis-
tency achieved for initial images propagates into the motion-
compensated reconstructions, improving their quality.

I. INTRODUCTION

During interventions in the catheter laboratory, functional
evaluation of the heart motion today is mostly limited to 2-D
ventriculography. Modalities commonly used for wall motion
analysis such as cardiac magnetic resonance imaging or 3-D
echocardiography are inconvenient to apply intra-procedurally.
Therefore, availability of interventional 3-D reconstructions of
multiple heart phases (i. e., 4-D imaging) would be highly ben-
eficial. For instance, they could provide valuable information
regarding the area of latest contraction to cardiologists during
cardiac resynchronization therapy procedures, and support
them in finding the optimal lead position [1].

Using C-arm devices as they are commonly found in
catheter labs, rotational angiography can, in principle, provide
such images by means of multi-segment retrospective ECG-
gating [2]. However, even when employing a specifically
designed contrast and acquisition protocol for dynamic cardiac
imaging [3], the gated reconstructions suffer from severe noise
and streaking artifacts due to sparse view sampling.

Several contributions have been made to improve quality
of 4-D imaging with C-arm systems explicitly. A notable one
by Mory et al. employs 4-D iterative reconstruction incorpo-
rating both spatial and temporal regularization [4]. Another
very promising approach combines reconstruction techniques
based on filtered back-projection with motion-compensation
[5]. It treats the ECG-gated reconstructions as initial images
from which the motion between all phases is estimated, and
subsequently performs a final reconstruction using all acquired

Fig. 1. Initial images for patient data set 1 reconstructed using ECG-gated
filtered back-projection, with (middle) and without (left) the artifact reduction
and denoising steps described in section II-A. On the right, the adaptive
temporal smoothing described in section II-B was applied to the middle image.

projection data by taking the motion into account. However,
the accuracy of motion estimation is highly sensitive to the
quality of the initial images [5].

Artifacts appearing unpredictably over the whole spatio-
temporal domain strongly disturb image registration, lead-
ing to false motion patterns—an effect we term temporal
inconsistency. We present a method for increasing temporal
consistency by an adaptive temporal smoothing which aims
to reduce artifacts in the initial images while keeping motion
corresponding to the heart pace. A novel, projection-based
motion detection step is introduced to guide the smoothing.

II. MATERIALS AND METHODS

Below, we first introduce the workflow of the motion-
compensated reconstruction technique used in this study (sec-
tion II-A). We continue by describing the two main steps of
our proposed method, which aims to improve image quality
within this framework (section II-B). Afterwards, some details
regarding our experimental data are provided (section II-C).

A. Motion-compensated Cardiac C-arm CT Reconstruction

A temporal sequence of initial images is generated using
retrospective ECG-gating with a rectangular gating window
and Feldkamp-Davis-Kress (FDK) filtered back-projection re-
construction. Few-view artifacts appear since only a subset of
the projection images is used. Denoising and artifact reduction
are performed by the following steps: (i) High-density objects
within the reconstruction field of view (FOV) such as catheters
are removed [6]. (ii) Artifacts caused by cables outside the
FOV are reduced by a threshold-based masking in the filtered
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projection images. (iii) To further reduce few-view artifacts,
an approach by McKinnon and Bates [7] is employed in
which object-dependent artifact images are estimated and
afterwards subtracted from the original images. (iv) Spatial
domain denoising is performed with a joint bilateral filter using
a reconstruction from all available data as the guidance image
[8], [9]. Fig. 1 exemplarily shows the combined effect of these
steps on an initial image. A coarse region of interest (ROI)
around the heart is sketched manually to which the subsequent
motion estimation is constrained for increased efficiency.

Pairwise 3-D/3-D motion estimation is performed for
all phases using a uniform cubic B-spline motion model
and normalized cross-correlation as the image similarity
metric [5]. Optimization is performed on a 3-level multi-
resolution pyramid with a quasi-Newton method, the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-
rithm. 10,000 random image samples per iteration and level are
evaluated within the ROI. Our implementation uses elastix,
a toolbox for nonrigid registration of medical images [10]. The
B-spline motion model, which has an isotropic control point
spacing of 8mm, is evaluated on the image grid to obtain
a dense deformation field. This is incorporated into a voxel-
driven FDK reconstruction which compensates for the motion
by shifting the currently considered voxel according to the
deformation field during the back-projection step [11].

Our method consists in an adaptive temporal smoothing
applied to the initial images prior to motion estimation in order
to improve the quality of motion-compensated reconstruction.

B. Adaptive Temporal Smoothing

1) 3-D Motion Detection: As a preparation for the sub-
sequent smoothing, a motion detection step aims to deter-
mine how much each voxel position x = (x, y, z)> is
affected by cardiac motion. In the initial images It(x), t ∈
{0, . . . , Nphases}, however, intensity changes over the cardiac
phase t may either be due to actual heart motion or artifacts.
Our key ideas to distinguish between both effects are the
following ones: (i) The projection images show the heart
motion, but no artifacts correlated with this motion. (ii) They
also offer a very high temporal resolution, showing many
individual heart beats as opposed to one “average” cycle
obtained by ECG-gated reconstruction. (iii) The frequency of
the motion, i. e., the heart rate, is known from the ECG.

Let us follow the forward-projection of x over the sequence
of acquired projection images P k, k ∈ {0, . . . , Nproj} after
line integral conversion. More precisely, forward-project x to
each image and consider the sequence of line integral values
pk(x), k ∈ {0, . . . , Nproj} as a temporal profile for x. This
profile will exhibit several effects. It will have a low-frequency
component (“base-line drift”) as lateral projections at the
beginning and end of the sweep, having traveled through more
tissue, show larger integrals than the frontal ones. Locally,
spikes will appear when objects of high density such as cables
or catheters pass behind or in front of x. If the tissue located at
x is affected by heart motion, we expect the profile to have a
periodic component with a frequency equal to the heart rate for

Fig. 2. For each 3-D position x, the energy M(x) of the heart rate is
computed from the line integral images P k .

most of the scan. The magnitude of this component is what we
are looking for. For this purpose, it seems natural to perform
frequency analysis. We first apply a windowing function—in
our experiments, we used the “exact Blackman” window—to
the pk(x) to enforce periodicity, making the profile vanish at
both ends. Then, we compute the Fourier transform to obtain
the power spectrum, including the power (or energy) M(x)
associated with the heart rate for each voxel position x. This
approach is illustrated in Fig. 2. A visualization of the spatial
distribution of the detected energies is shown in Fig. 3.

However, using the Fast Fourier Transform (FFT), this
is rather inefficient for a large number of projections and
voxels. If we were to analyze each voxel in parallel, memory
complexity would be in O(Nproj ·Nvoxels). While it is possible
to do it sequentially or in small blocks at the cost of increased
runtime, there is a more elegant solution. The Discrete Fourier
Transform (DFT) for a single frequency can be computed in
O(n), where n ≡ Nproj in our case, which is computationally
less demanding than the O(n log n) complexity of FFT. The
Goertzel filter [12] is a simple recursive filter that performs this
computation efficiently and with a constant memory footprint,
independent of the sequence (profile) length.

2) Temporal Gauss Filter: In regions not affected by car-
diac motion, we can apply strong temporal smoothing to
eliminate temporally inconsistent artifacts. For this purpose,
we use a simple 1-D Gauss filter in the temporal dimension,
i. e. we blur the It(x) along t,

It
s(x) =

Nphases∑
t′=0

It′(x) · 1

σ(x)
√
2π

exp

(
−dist2(t, t′)

2σ2(x)

)
, (1)

where dist(·, ·) denotes the absolute distance of two phases
in the cardiac cycle. In contrast, wherever we assume to have
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Fig. 3. Color-coded visualizations of the cardiac motion detected by our
method inside the considered region of interest for patients 1 and 2. It is
overlayed on a reconstruction from all data for anatomical orientation. Warmer
hues correspond to larger motion.

cardiac motion, we need to take care so as not to lose actual
motion in the process, and therefore narrow the smoothing
kernel down by decreasing the standard deviation σ(x).

For determining the appropriate σ(x) for each x, we make
use of the heart rate energies M(x), which are converted to
a weight map Mw(x): First, we remove outliers and denoise
M(x) by applying a 3× 3 median filter as well as a blur
filter with 1.5mm standard deviation, respectively. In order to
normalize the values, we perform a global linear scaling such
that the mean M of M(x) over the considered ROI is mapped
to 1. Values larger than this mean are clamped; thereby, we
assign the maximum weight of 1 to all positions x for which
M(x) ≥M . For all other positions, the weights vary in the
range [0; 1] and can be used to interpolate between a σmin (in
case of strong motion) and a σmax (no motion),

σ(x) = σmin ·Mw(x) + σmax · (1−Mw(x)). (2)

In our experiments, we set σmin and σmax to 1% and 50%
of the cardiac cycle, respectively. Additionally, for improved
convergence of motion estimation, the ROI was narrowed
down by removing voxels for which M(x) ≤ 0.5M .

C. Experiments

1) Clinical Data: Two clinical patient data sets were ac-
quired using an Artis zeego system (Siemens AG, Healthcare,
Forchheim, Germany). One C-arm rotation of 14 s dura-
tion was performed, capturing 381 projection images at ap-
prox. 30Hz with an angular increment of 0.52◦. The isotropic
pixel resolution was 0.31mm/pixel (0.21 in isocenter), the
detector size 1240 × 960 pixels. The heart was stimulated
through external pacing to 115 bpm. The gating window width
was chosen as 10% of the heart cycle. 10 cardiac phases were
reconstructed at a phase increment of 10% for both the initial
and motion-compensated images. 91ml of undiluted contrast
agent were administered in the pulmonary artery at a speed of
7ml/s. The appropriate X-ray delay was determined by a prior
test bolus injection. Image reconstruction was performed on a
volume of size (25.6 cm)3, distributed on a 2563 voxel grid.

2) Phantom Model: A ventricle data set similar to the
XCAT phantom was created [13], [14]. Projections of this
phantom were simulated using a polychromatic X-ray spec-
trum with 56 energy bins from 10 keV to 150 keV and a

Fig. 4. Motion-compensated reconstructions of the end-diastolic phase for
patient data set 1 and color-coded difference images between the end-diastolic
and end-systolic phase. Motion has been estimated from initial reconstructions
processed with (bottom) and without (top) temporal smoothing.

time-current product of 2.5mAs per X-ray pulse. The material
properties of bones and bone marrow were chosen according
to the mass attenuation coefficients of the NIST X-ray table1.
All other structures were assumed to have the same absorption
behavior as water with modified densities. The densities of
the contrasted left ventricle blood pool, the myocardial wall
and the contrasted blood in the aorta were set to 2.5 g/cm3,
1.5 g/cm3 and 2.0 g/cm3, respectively. To obtain a gold stan-
dard reconstruction, projection images for a single cardiac
phase (static phantom) were generated. Other properties of the
data set, such as the heart rate, number of projection images,
resolution and dimensions, were chosen equivalently to the
clinical data sets described above.

III. RESULTS AND DISCUSSION

Fig. 4 shows that the intensity differences between end-
systolic and end-diastolic phases in uncontrasted cardiac tissue
and blood presumed—or in case of the phantom, known—
to appear static decrease considerably while heart motion
is preserved. For the quantitatively evaluated static regions
depicted in Fig. 5, the average standard deviation w. r. t. the
heart phases was reduced by more than 50%, whereas it
was only reduced slightly in the contrasted left ventricular
blood pool. In our phantom study, the root mean square
error (RMSE) over the ROI, computed between the motion-
compensated and the static ground truth reconstruction, is
lowered from 771.4 to 689.1, a decrease of about 9%. As
expected, this improvement is not as dramatic as that observed
for the temporal variance, but it nonetheless indicates that
enforcing consistency in time also reduces artifacts in the
spatial domain. A visualization of the differences is found in
Fig. 6. Errors at the heart walls can partially be attributed to
residual motion within the gating window.

One might argue that the motion detection step could be
replaced by a coarse segmentation of the heart. However,

1http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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Data set TS Uncontrasted Contrasted

Patient 1 - 634± 70 [221] 964± 154 [446]
X 635± 32 [102] 959± 148 [434]

Patient 2 - 776± 49 [153] 870± 83 [252]
X 776± 23 [74] 866± 78 [236]

Phantom - 593± 33 [100] 1232± 110 [298]
X 594± 12 [38] 1230± 107 [292]

Fig. 5. In all data sets (from left to right: patients 1 and 2, phantom), a region
containing unconstrasted cardiac tissue and blood (yellow), which should
appear mostly static, as well as a region tightly surrounding the contrasted
left ventricular blood pool in end-diastole (red), where the most prominent
motion should be expected, were selected for quantitative evaluation. The table
shows temporal statistics (i. e., with respect to the heart phases) of intensity
values in motion-compensated reconstructions, averaged over all voxels in
the respective region, in the format mean± std [max−min]. The column TS
indicates whether the proposed temporal smoothing was applied to the initial
images used for motion estimation.

Fig. 6. Left: A motion-compensated reconstruction of our phantom model
using the proposed method. For the two color-coded error images, computed as
the maximum intensity projection along the z-axis of the absolute differences
to the ground truth reconstruction, motion has been estimated from initial
images processed with (right) and without (middle) temporal smoothing.

unlike most organ segmentation algorithms, it neither requires
nor imposes any prior knowledge on the shape of the consid-
ered objects apart from the (known) frequency. It can identify
regions with varying degrees of motion directly from the
projection images without the need for a reconstruction of mul-
tiple phases or sophisticated registration methods. At the same
time, it is computationally undemanding due to the use of the
Goertzel filter. In our clinical data sets, projections acquired
from lateral directions suffer from low contrast. Naturally, this
affects both reconstruction as well as our motion detection
method. However, we have observed that it mainly causes the
motion mask to be spread out in anterior-posterior direction,
i. e. motion is potentially overestimated. For the subsequent
adaptive smoothing step, this is inconvenient, yet uncritical; it
merely causes a less aggressive removal of artifacts.

IV. CONCLUSION

For the reduction of temporal inconsistency in motion-
compensated image reconstruction, a voxel-based temporal
smoothing of the initial image sequence used for motion
estimation is proposed. The degree of smoothing depends
inversely on the magnitude of cardiac motion detected by a
novel scheme based on frequency analysis of projection data.
For future work, other potential uses for the detected motion,
e. g. as prior knowledge for regularization, as well as extending
the method to irregular cardiac motion can be considered.
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