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Abstract

Medical imaging plays an important role in diagnosis and grading of knee condi-
tions such as osteoarthritis. In current clinical practice, 2-D radiography is regularly
applied under weight-bearing conditions, which is known to improve diagnostic ac-
curacy. However, 2-D images cannot fully cover the complexity of a knee joint,
whereas current 3-D imaging modalities are inherently limited to a supine, unloaded
patient position. Recently, cone-beam computed tomography (CBCT) scanners for
3-D weight-bearing imaging have been developed. Their specialized acquisition tra-
jectory poses several challenges for image reconstruction. Patient motion caused by
standing or squatting positions can substantially deteriorate image quality, such that
the motion has to be corrected during reconstruction. Initial work on motion correc-
tion is based on fiducial markers, yet, the approach prolonged image acquisition and
required a large amount of manual interaction. The goal of this thesis was to further
develop innovative motion correction methods for weight-bearing imaging of knees.

Within the course of this thesis, the marker-based motion correction was steadily
enhanced. Manual annotation of markers has been replaced by a robust, fully au-
tomatic detection of markers and their correspondences. A clear disadvantage of
markers is the often tedious attachment, which decreases patient comfort and inter-
feres with the acquisition protocol. Also, the method is limited to rigid motion and
an extension to nonrigid deformations is nontrivial. To alleviate these drawbacks, we
introduce a novel motion estimation approach that makes use of a prior, motion-free
reference reconstruction. The motion of femur and tibia is determined individually by
rigid 2-D/3-D registration of bone segmentations from the prior scan, to each of the
acquired weight-bearing projection images. Reliability of the registration is greatly
influenced by the large amount of overlapping structures, especially for lateral view
directions. We compare two different similarity measures used for 2-D/3-D registra-
tion and also introduce a temporal smoothness regularizer to improve registration
accuracy. A common evaluation of marker- and registration-based approach yields
superior image quality using 2-D/3-D registration, particularly in presence of severe,
nonrigid motion. Further reduction of the algorithm’s runtime and an automation of
bone segmentations could allow for a complete replacement of marker-based motion
correction in future applications.

In case the clinical setup prohibits acquisition of a prior scan, motion correction
relies solely on the acquired projection images. We derived a new motion correction
method based on Fourier consistency conditions (FCC) which is independent of sur-
rogates or prior acquisitions. So far, FCC have not been used for motion correction
and were typically limited to fan-beam geometries. We first introduced the motion
estimation for the fan-beam geometry, followed by a practical extension to CBCT.
Numerical phantom simulations revealed a particularly accurate estimation of high-
frequency motion and of motion collinear to the scanner’s rotation axis. FCC are
currently limited to nontruncated, full-scan projection data, and thus, not yet appli-
cable to real weight-bearing acquisitions. However, a dynamic apodization technique
is introduced to account for axial truncation, allowing application to a squatting knee
phantom with realistic motion. Given the large improvements in image quality, we
are confident that FCC is a future candidate for a completely self-contained motion
correction approach in CBCT weight-bearing imaging of knees.



Kurzfassung

Die medizinische Bildgebung übernimmt eine wichtige Rolle bei der Diagnose von
Kniegelenkserkrankungen wie z.B. Arthrose. Im klinischen Umfeld wird hierbei oft
die 2-D Röntgenbildgebung im Belastungszustand angewandt, welche die hohe Kom-
plexität des Kniegelenks allerdings nicht vollständig abdecken kann. Aktuelle 3-D
Bildgebungsverfahren sind wiederum nur sehr bedingt unter Belastung anwendbar.
Erst vor Kurzem wurden spezielle Kegelstrahl-Computertomographen (KSCT) für die
3-D Belastungsbildgebung entwickelt. Allerdings stellen deren Aufnahmetrajektorien
auch erhöhte Anforderungen an die Bildrekonstruktion. So kann z.B. Patientenbe-
wegung die Bildqualität deutlich verschlechtern, so dass eine bewegungskorrigiert
Rekonstruktion nötig ist. Erste Ansätze basieren auf metallischen Markern, welche
jedoch die Bildaufnahmen verzögern und ein hohes Maß an manueller Interaktion
verlangen. Ziel dieser Dissertation war es, die Entwicklung bestehender Bewegungs-
korrekturen voranzutreiben und um hochinnovative Methoden zu erweitern.

Teil dieser Arbeit war eine stetige Weiterentwicklung der marker-basierten Korrek-
tur, wobei die manuelle Annotation durch eine robuste, vollautomatische Markerde-
tektion ersetzt wurde. Einen Nachteil stellt das mühsame Anbringen der Marker dar,
welches nicht nur den Ablauf der Bildaufnahmen, sondern auch den Patienten nega-
tiv beeinflusst. Außerdem ist die Methode derzeit auf rigide Bewegungen beschränkt
und nur schwer auf elastische Deformationen erweiterbar. Abhilfe schaffte eine neu
entwickelte Bewegungskorrektur, basierend auf einer bewegungsfreien Referenzrekon-
struktion. Eine 2-D/3-D Bildregistrierung von segmentierten Knochen aus der Re-
ferenzrekonstruktion, zu jedem Projektionsbild der Belastungsbildgebung, ermittelt
Bewegungen von Femur und Tibia. Die Robustheit der Registrierung wird hierbei
stark durch überlappende Strukturen beeinflusst. Um die Genauigkeit zu erhöhen,
verglichen wir verschiedene Ähnlichkeitsmaße und integrierten einen Regularisierer,
welcher eine zeitliche Glattheit der Bewegung erzwingt. Die gemeinsame Auswertung
von marker- und registrierungs-basiertem Ansatz zeigt eine überlegene Bildqualität
bei Einsatz der 2-D/3-D Registrierung, insbesondere bei starker nicht-rigider Bewe-
gung. Mittels einer automatisierten Knochensegmentierung und einer beschleunigten
Registrierung könnte der marker-basierte Ansatz somit komplett ersetzt werden.

Sollte keine bewegungsfreie Referenzrekonstruktion möglich sein, beruht die Be-
wegungskorrektur einzig auf den aufgenommenen Bildern. Basierend auf Fourier-
Konsistenzbedingungen (FKB) entwickelten wir eine Bewegungskorrektur, welche un-
abhängig von zusätzlichen Informationen oder Aufnahmen arbeitet. Bisher wurden
FKB nicht für die Bewegungskorrektur eingesetzt und waren auf die Fächerstrahl-
geometrie (FSG) begrenzt. Wir definierten zunächst eine Bewegungsschätzung für die
FSG, welche im Folgenden für KSCT erweitert wurde. Numerische Simulationen zeig-
ten eine besonders genaue Bewegungsschätzung für hochfrequente Bewegung, aber
auch für Bewegungen die kollinear zur Rotationsachse des Scanners erfolgten. Derzeit
sind FKB nicht auf realen Daten anwendbar, da sie nur für einen trunkierungsfrei-
en, vollständigen Scan gültig sind. Eine eigens entwickelte dynamische Apodisation
erlaubt den Umgang mit axialer Trunkierung, was die Evaluation auf numerischen
Kniedaten mit realer Bewegung ermöglichte. Eine starke Verbesserung der Bildqua-
lität zeigt, dass eine komplett unabhängige Bewegungskorrektur in der Belastungs-
bildgebung von Knien möglich ist.
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C H A P T E R 1

Introduction
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Since its discovery in 1895 by Wilhelm Conrad Röntgen, X-ray imaging has
steadily evolved, making it to one of the leading modalities in modern radiology.
For a long period of time, X-ray imaging was limited to radiography or fluoroscopy,
showing single or a sequence of 2-D projection images of the imaged anatomies. These
projection images offered the first possibilities to look inside a human body without
surgical intervention. They were especially helpful for conditions of the skeletal sys-
tem as bones yielded a suitable contrast due to their high absorption coefficient.
However, a spatially resolved representation of the imaged object is not possible with
2-D projection imaging as the images correspond to line integrals through the object.
All materials and objects between X-ray source and the detector are superimposed
and the order of transmission cannot be resolved from a single image.

The connection between line integrals acquired on a circular orbit and the object
function was the starting point of X-ray computed tomography (CT). The theoreti-
cal foundation was given by Radon [Rado 17] and Cormack [Corm 63] who solved this
connection, allowing computation of the function describing the imaged object. This
process is known as Radon inversion and generally referred to as CT image recon-
struction. Based on findings from Cormack and Radon, the first CT scanner applied
in the medical context was built by Hounsfield in the early 1970’s [Houn 73]. Since
that time CT has become an invaluable tool for diagnosis in the field of radiology,
with application areas ranging over almost the entire spectrum of medical fields.

Current systems can be separated into diagnostic and interventional CT. Diag-
nostic CT consists of a single or multiple rotating X-ray sources and circular detec-
tors. The plane of rotation and the source-detector-distance (SDD) as well as source-
isocenter-distance (SID) is fixed. A linear motion of the patient table as well as a
fast rotation of X-ray source and detector creates a helical source trajectory around
the patient. Interventional CT is usually done by a C-arm cone-beam computed to-
mography (CBCT) device using flat panel or image intensifier detectors. The C-arm
device can be used inside the interventional suite and allows for 2-D fluoroscopic but
also 3-D CT imaging. In contrast diagnostic CT, which allows for a full 360° rotation,
C-arm systems are usually limited to a short-scan rotation angle of about 200°. Their
X-ray source trajectory moves in a plane while acquiring high-resolution projection
images. A comparison of diagnostic and interventional CTs may be obtained from
[Mull 14a].
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2 Introduction

1.1 Motivation
The baseline of this thesis is work by Choi et al. [Choi 14a], who describe a novel
scanning setup allowing acquisitions of the lower extremities under weight-bearing
conditions. An interventional C-arm CBCT device is used, where the X-ray source
trajectory lies in a horizontal plane, such that the patient is able to stand or squat
during the imaging process. In general, image reconstruction for CT as well as CBCT
assumes a static object with an ideal geometry of the scanner, e. g., an X-ray source
moving on a perfect circle. An implication of weight-bearing imaging is an increased
level of patient motion, leading to severe motion artifacts. Among other sources of
artifacts, patient motion causes the highest degradation of image quality when using
the proposed scanning setup and needs to be corrected during image reconstruction.

As an initial motion correction method, Choi et al. proposed to use metallic fidu-
cial markers that can be tracked in the individual projection images acquired during
a weight-bearing scan [Choi 12, Choi 13, Choi 14c]. However, the method requires a
high amount of manual interaction which limited its practical applicability and thus,
its clinical value. Furthermore, the attachment of markers might be impractical for
the clinical workflow and causes discomfort to the patient. Also, the markers may
not accurately reflect motion at the knee joint, as they are attached to the skin at
the periphery of the joint.

The goal of this thesis is to further develop motion management methods for
weight-bearing imaging of the knees. In particular, the thesis focuses on the de-
sign and validation of motion-corrected image reconstruction algorithms that do not
require dedicated surrogate signals, such as fiducial markers. Purely image-based
motion correction methods are derived for knee imaging, exploiting information of
motion-free supine scans or data consistency conditions (CC). In addition, robustness
and autonomy of the marker-based approach are further optimized.

1.2 Contributions
In the course of this thesis, several contributions to the state-of-the-art in motion
correction and CT reconstruction have been made. Many of these contributions are
part of publications in national and international conferences but also in well known
journals. The main achievements are introduced in the following, accompanied with
the corresponding reference to the literature.

1.2.1 Fully Automatic, Marker-Based Motion Correction
An important part of marker-based motion estimation is the detection of the markers
in the projection image and the identification of their correspondences between differ-
ent images. In prior work [Choi 14c] this process required a large amount of manual
interaction. We propose a fully automatic detection of 2-D marker locations
and their correspondences. The method is based on an intermediate reconstruc-
tion of projection images showing segmented markers locations. For increased robust-
ness we propose to use the fast radial symmetry transform (FRST) algorithm
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for segmentation. In addition, a method for the removal of marker-induced
metallic artifacts is introduced. To further improve robustness of the motion esti-
mation, two methods for detection of outliers and a the use of a gradient-based
optimizer is proposed, where the gradient of the cost function is computed analyt-
ically. The methods are detailed in Chap. 4 and were presented in three conference
and a journal publication:

[Berg 14a]

M. Berger, C. Forman, C. Schwemmer, J. H. Choi, K. Müller,
A. Maier, J. Hornegger, and R. Fahrig. “Automatic Removal of
Externally Attached Fiducial Markers in Cone Beam C-arm CT”.
In: T. Deserno, H. Handels, H.-P. Meinzer, and T. Tolxdorff, Eds.,
Bildverarbeitung für die Medizin 2014, pp. 318–323, Mar 2014

[Mull 15a]

K. Müller, M. Berger, J.-H. Choi, S. Datta, S. Gehrisch, T. Moore,
M. P. Marks, A. Maier, and R. Fahrig. “Fully Automatic Head
Motion Correction for Interventional C-arm Systems using Fidu-
cial Markers”. In: S. King and M. Glick, Eds., Proc. Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, pp. 534–537, Jun 2015

[Mull 15b]
K. Müller, M. Berger, J.-H. Choi, A. Maier, and R. Fahrig. “Au-
tomatic Motion Estimation and Compensation Framework for
Weight-bearing C-arm CT scans using Fiducial Markers”. In: D. A.
Jaffray, Ed., IFMBE Proceedings, pp. 58–61, Jun 2015

[Berg 16a]
M. Berger, K. Müller, A. Aichert, M. Unberath, J. Thies, J.-H.
Choi, R. Fahrig, and A. Maier. “Marker-free motion correction in
weight-bearing cone-beam CT of the knee joint”. Medical Physics,
Vol. 43, No. 3, pp. 1235–1248, Mar 2016

1.2.2 Motion Correction Using 2-D/3-D Image Registration
A marker-free approach for nonrigid motion estimation of the knee joint was de-
veloped, based on a bone-wise 2-D/3-D registration of an artifact-free prior
volume to the individual projection images. The bones are segmented in a
reconstruction of a motion-free supine scan and then registered to the projection
images, yielding the individual bone motion over time. Evaluation included a com-
parison with marker-based motion correction and of different similarity measures
used for 2-D/3-D registration. Further details are presented in Chap. 5 and have
been published in a conference and a journal article:

[Berg 15]

M. Berger, K. Müller, J.-H. Choi, A. Aichert, A. Maier, and
R. Fahrig. “2D/3D Registration for Motion Compensated Recon-
struction in Cone-Beam CT of Knees Under Weight-Bearing Con-
dition”. In: D. A. Jaffray, Ed., IFMBE Proceedings, pp. 54–57, Jun
2015
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[Berg 16a]
M. Berger, K. Müller, A. Aichert, M. Unberath, J. Thies, J.-H.
Choi, R. Fahrig, and A. Maier. “Marker-free motion correction in
weight-bearing cone-beam CT of the knee joint”. Medical Physics,
Vol. 43, No. 3, pp. 1235–1248, Mar 2016

1.2.3 FCC for Motion Correction in Fan- and Cone-Beam CT
Fourier Consistency Conditions (FCC) define locations in the Fourier domain of the
projection images that are required to have an absolute value close to zero. We
show that FCC can be violated in case of object motion. Additionally, a
novel approach for motion estimation based on FCC has been proposed. The
method seeks to minimize the energy of the zero regions and requires no additional
acquisition or surrogate signal. We initially introduced the method for the 2-D fan-
beam geometry, followed by an extension to 3-D cone-beam geometries. Details may
be obtained from Chap. 6 and have been presented in a conference and a journal
publication:

[Berg 14b]

M. Berger, A. Maier, Y. Xia, J. Hornegger, and R. Fahrig. “Motion
Compensated Fan-Beam CT by Enforcing Fourier Properties of the
Sinogram”. In: F. Noo, Ed., Proc. The third international conference
on image formation in x-ray computed tomography, pp. 329–332,
Jun 2014

[Berg 16b]

M. Berger, Y. Xia, W. Aichinger, K. Mentl, M. Unberath,
A. Aichert, C. Riess, J. Hornegger, R. Fahrig, and A. Maier. “Trans-
lational Motion Compensation for Cone-Beam CT Using Fourier
Consistency Conditions”. Physics in Medicine and Biology, 2016.
(under revision)

1.2.4 Other Contributions to CBCT and Weight-Bearing Imaging
A series of contributions to the current state of CT reconstruction literature have been
made, that are in close connection to this thesis. Many of them are also dedicated to
challenges in image reconstruction of weight-bearing acquisitions of knees (cf. Sec. 2.4
for more details). The main developments include:

• a novel method to increase the field of view (FOV) of the scanner, using modified
source trajectories and detector offsets [Herb 14, Herb 15]

• a method for correction of detector saturation artifacts based on fitting simple
geometric objects to the acquired images [Preu 15]

• an investigation of hardware-based correction of saturation artifacts [Shi 16]

• a removal of artifacts originating from objects outside the scanner’s FOV [Bier 16a]

• an extrapolation of missing data using a cost function based on FCC [Pohl 14]
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• nonlinear denoising techniques in projection and reconstruction domain [Lorc 15]

• a preliminary approach for motion estimation based on 2-D/2-D registration of
maximum intensity projections (MIP) and acquired projections [Unbe 15]

• improvements of image quality for marker-based motion estimation [Choi 14b]

• a method to correct for artifacts caused by an insufficient scan range [Ries 13]

• advancements for truncation correction using a dynamic collimator in full-,
short-, and super-short-scans [Xia 13, Xia 14c, Xia 14b]

• a truncation correction that incorporates the patient outline [Xia 14a, Xia 15]

• a scatter correction using a spatial modulation of the X-ray source [Bier 16b]

• a learning-based material decomposition in poly-energetic projection images
[Lu 16]

1.3 Organization of this Thesis
Let us summarize the structure and contents of this thesis. A graphical overview of
parts and chapters is given by Fig. 1.1. In general, the thesis consists of three parts,
i. e., background, theory, along with experiments and results.

The thesis starts with an introduction in Chap. 1, providing an overview of the
topic and an outline of the thesis’ main contributions to the state-of-the-art. The
background part begins with Chap. 2, which elaborates on the medical background of
knee joint imaging, introduces CBCT weight-bearing imaging, and presents its main
challenges for image reconstruction. This is followed by a revision of basic principles
for image reconstruction in fan- and cone-beam CT presented in Chap. 3. In addition,
the chapter includes a thorough review of literature associated to motion correction
and introduces fundamental algorithms and concepts needed throughout this thesis.

The following theory part details the proposed methods and consists of three
chapters. Chap. 4 presents all modifications and improvements made to the original
formulation for marker-based motion correction [Choi 14c] in a unified mathematical
framework. This includes a fully automatic detection of marker, an outlier removal
method, and an analytic derivative of the cost function to allow for gradient-based
optimization. Motion correction based on 2-D/3-D registration is outlined in Chap. 5.
We present a novel approach for 2-D/3-D registration of multiple segmented, artifact-
free bone volumes to the individual projection images of a weight-bearing scan. Aside
from the method’s description, this chapter outlines the principle of 2-D/3-D registra-
tion in general and provides details to similarity measures and nonrigid extrapolation
of motion fields using thin plate splines (TPS). A novel method for motion correction
based on FCC is presented in Chap. 6. We show the derivation of a cost function for
motion estimation based on the 2-D and 3-D Fourier transform of fan- and cone-beam
projection data, respectively. Additionally, a particularly efficient implementation of
the cost function for optimizing detector translations is introduced. The chapter
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Figure 1.1: Overview of this thesis, separated into background (top, Part I), theory
(left center, Part II), and experiments and results (right center, Part III).

concludes with practical considerations, providing an efficient strategy for the im-
plementation of the cost function and its gradient. Note that all methods in the
theory part are based on one or more cost functions used for motion estimation. Op-
timization and regularization of these cost functions is outlined separately in each
chapter.

The experiments and results part begins with Chap. 7, where we introduce ac-
quisition details on real and simulated data, as well as common metrics used for
the experiments of this thesis. In Chap. 8 we conduct a common evaluation of the
marker-based motion correction and the approach based on 2-D/3-D registration
using two different similarity measures. The evaluation includes a qualitative com-
parison of reconstructed images, an image-based quantitative comparison w. r. t. the
motion-free supine reconstruction, and an evaluation of the reprojection error us-
ing the attached fiducial markers. In addition, a comparison of different removal
techniques for marker-induced metal artifacts is shown. The evaluation of the FCC-
based method is presented separately in Chap. 9, as it is not yet applicable to real
weight-bearing acquisitions. The assessment is performed on a challenging numerical
phantom for a series of simulated 3-D translational motion patterns. It contains a
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qualitative but also quantitative analysis of the image quality w. r. t. a motion-free
reconstruction. Additionally, deviations of true and estimated motion parameters are
obtained. Finally, a first evaluation of FCC-based motion correction for simulated
knee data is shown.

Both result chapters end with a discussion and conclusion providing strengths and
weaknesses of the evaluated methods and a short summary of the main findings.

The thesis concludes with an outlook in Chap. 10, which provides ideas for future
research directions, followed by a summary of the presented contents in Chap. 11.
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The first part of this chapter contains the clinical motivation (see Sec. 2.1) in-
cluding a description of the knee’s anatomy, common knee joint disorders and the
importance of weight-bearing conditions for diagnosis. This is followed by an overview
of CBCT weight-bearing imaging and a more detailed description of the clinical stud-
ies relevant for this thesis (see Sections 2.2 and 2.3). Thereafter, Sec. 2.4 describes
the implications of an acquisition under weight-bearing conditions for 3-D image re-
construction. Finally, a conclusion on the clinical relevance and its implications on
weight-bearing imaging is given in Sec. 2.5.

2.1 Medical Background

2.1.1 Knee Anatomy
The knee is the largest and most complex joint of the human body allowing rotation
in vertical axis but also flexion and extension [Kulo 32]. As can be seen in Fig. 2.1(a),
the knee joint is comprised by three different bones, i. e., femur (thigh), tibia (shin)
and patella (knee cap). Fig. 2.1(b) shows ligaments and tendons. Ligaments consist
of fibrous tissue and ensure stability of the knee by holding the individual bones
together. The lateral collateral ligament connects the fibula (calf-bone) to the femur,
whereas the posterior and anterior cruciate ligament as well as the medial collateral
ligament connect femur and tibia. The patella is attached to the quadriceps muscle
group and to the tibia by the quadriceps tendon and the patellar tendon, respectively.

Articular cartilage provides a low-friction surface at the distal femur and proximal
tibia, but also at the posterior side of the patella. Cartilage surfaces ensure a smooth
sliding motion during flexion, extension and rotation of the knee. Between tibial and
femoral cartilage are the menisci, i. e., two wedge-shaped layers of fibrocartilaginous
tissue that disperse friction and act as a shock absorber between femur and tibia
[Choi 14a].
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Figure 2.1: Anatomy of the knee joint with focus on bones (Fig. 2.1(a)) as well as
tendons and ligaments. (Images in public domain).

During flexion of the knee the collateral ligaments are relaxed, whereas the cruci-
ate ligaments are tense and effectively limit the amount of flexion to approximately
120° to 150°. The cruciate ligaments are twisted and unwound during medial and
lateral rotation, respectively. During large medial rotation, the medial collateral lig-
ament becomes tensed. Together with the maximum twist of the cruciate ligaments
the medial rotation is limited to about 45° to 60°[Plat 04, pp. 206-213].

The muscles of the knee joint are illustrated in Fig. 2.2. They can be categorized
into two main groups. The quadriceps group consists of the rectus femoris, the
vastus lateralis, the vastus medialis and the vastus intermedius, where the latter is
located underneath the rectus femoris and is therefore not visible in Fig. 2.2(a). All
quadriceps muscles are located at the anterior side of the femur and function mainly
as an extensor of the knee joint. The hamstring group located at the posterior side
of the femur consists of the semitendinosus, the semimembranosus, and the biceps
femoris muscle. Hamstring muscles build the counterpart to the quadriceps muscles
and function as flexor but also decelerate the lower leg.

2.1.2 Common Disorders of the Knee Joint
The functionality of the knee joint can be affected by a variety of conditions. The
focus of this thesis is on the two most commonly observed disorders, i. e., knee os-
teoarthritis (OA) and patellofemoral pain syndrome (PFPS).

Osteoarthritis

OA is a degenerative joint disease and the most frequent joint disorder in the United
States, with knee OA showing the highest incident rates among all joints [Zhan 10].
The risk of suffering from knee OA during lifetime has been reported 45 % and even
60 % for a body mass index ≥ 30 [Murp 08]. OA affects the whole knee joint, typically
causing a degeneration of the cartilage tissue and possibly also damage the synovium
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Figure 2.2: Muscles of the knee joint. Labels in (a) depict the quadriceps group
and labels in (b) the hamstring group. (Images in public domain)

or the joint capsule. Additionally, ligaments can be thickened, the menisci may wear
off and osteophytes are built at affected bone surfaces [Engl 12]. Typical symptoms
include knee pain, a limited range of joint motion, stiffness and joint swelling, which
all affect regular daily activities and work life.

Patellofemoral Pain Syndrome

PFPS is a common knee condition describing knee pain that originates from the con-
tact area of patella and femur. Recently an incidence rate of 2.2 % per year has been
reported in a US-based study involving 1525 participants [Boli 10]. Physically active
people performing sports such as running, basketball or other disciplines involving
load bearing of the knee, are known to have a higher risk factor. People suffering from
PFPS experience discomfort at activities involving knee flexion, such as prolonged
sitting, squatting, or climbing up- and downstairs. Besides several other reasons,
patellar maltracking is suggested to cause PFPS [Fred 06], yet the exact pathophys-
iological background is still an active field of research [Dye 05]. Patellar maltrack-
ing refers to an abnormal position or movement trajectory of the patella w. r. t. the
trochlea (patellar groove) of the femur, increasing stress on the patellar cartilage. An
imbalance between the vasti muscles, i. e., vastus intermedius, vastus lateralis and
vastus medialis, is thought to cause patellar maltracking [Fulk 02]. More specifically,
weakness or an activation delay of the vastus medialis was shown to correlate with
patellar maltracking [Wern 95, Saka 00, Pal 11].

2.1.3 Imaging for OA and PFPS
A standard clinical diagnosis and classification tool for knee OA is the Kellgren-
Lawrence scale (KLS) [Kell 57]. An essential part of the KLS is 2-D radiography to
measure narrowing of the joint-space width (JSW), development of osteophytes and
bone sclerosis. This information acts as a surrogate signal for the degeneration of
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cartilage and menisci. It has been shown that weight-bearing radiographs are more
sensitive when grading knee OA than non-weight-bearing acquisitions, where the
best results are achieved in anteroposterior rather then lateral radiographs [Altm 87].
Grading accuracy could be further improved using weight-bearing anteroposterior ra-
diographs acquired with a certain knee flexion angle [Rose 88]. A limitation of radio-
graphic imaging is that the cartilage is not directly visible in X-ray-based modalities
and it is also restricted to 2-D projection images. In contrast, magnetic resonance
imaging (MRI) offers great soft tissue contrast and is regularly used to analyze the
course of cartilage and meniscus consistency [Ecks 06]. However, its application under
weight-bearing conditions remains difficult.

Several imaging techniques have been proposed for diagnosis of PFPS, where the
imagery is mostly used to identify irregular positions of the patella. For example,
misalignment can be measured by a patella tilt angle, as well as a lateral or medial
shift of the patella w. r. t. the trochlea [Pal 11, Stan 88]. Fulkerson et al. [Fulk 02]
proposed weight-bearing anteroposterior radiographs with a 45° flexion angle, identi-
cal to imaging of knee OA used by Rosenberg et al. [Rose 88]. 3-D imaging methods
for patellar pose measurements include MRI [Powe 99] but also weight-bearing, open-
bore MRI [Powe 03, Besi 05, Drap 11].

2.2 CBCT Weight-Bearing Imaging

2.2.1 Motivation

It has been shown that weight-bearing imaging can provide an important tool to
better understand knee joint kinematics essential for diagnosis and analysis of knee
joint disorders, such as OA and PFPS. Regular daily activities causing pain in PFPS
patients are often performed under weight-bearing conditions, whereas the majority
of prior work is based on non-weight-bearing imaging methods [Souz 10]. Further-
more, studies showed substantial differences in kinematic properties of the knee under
weight-bearing and non-weight-bearing conditions [Powe 03, Drap 11]. This is further
supported by Thawait et al. [Thaw 15] who reports improved diagnosis of OA using
upright weight-bearing imaging. Single- or dual-plane weight-bearing radiography
was successfully applied for diagnosis of OA patients [Leac 70, Rose 88] but also for
analysis of knee kinematics [Tash 03, Li 08]. A drawback of radiographic imaging is
that it is inherently limited to 2-D images which may not fully cover the complex
3-D structure of the knee joint [Choi 14a].

Previous work in 3-D weight-bearing imaging include the usage of MRI in supine
scanning position with specialized weight-application devices [Pate 03, Coto 11]. Fur-
ther, open-bore MRI [Powe 03, Besi 05, Drap 09, Pal 11] has been used that allowed
standing and squatting on a slanted weight-bearing platform. However, conventional
but also open-bore MRI is still limited to supine or semi-upright postures due to the
scanner design. Fully upright standing is possible with CBCT scanners dedicated
to scanning extremities [Zbij 11, Tuom 13, Carr 14], yet, these devices offer only a
limited FOV, which might not allow for squatting positions or simultaneous imag-
ing of both knees. Choi et al. proposed the use of an interventional C-arm CBCT
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(a) First prototype (b) New robotic C-arm device

Figure 2.3: Typical weight-bearing scanning setups with the first prototype system
and the newer, robotic C-arm device.

with a high-resolution flat panel (FP) detector and a large SDD, thus substantially
increasing the FOV [Choi 14c].

2.2.2 CBCT Systems
The underlying imaging systems for this thesis are two interventional C-arm CBCT
systems as described in [Choi 14c] and [Choi 14a]. In contrast to a standard inter-
ventional use case, their X-ray source trajectory can be positioned in the axial plane
which allows scanning in fully upright standing and even squatting patient posi-
tion. Maier et al. [Maie 11a] investigated the feasibility of horizontal weight-bearing
trajectories for interventional C-arm devices. They conclude that horizontal trajec-
tories suffer from similar levels of C-arm “wobble” than vertical trajectories and that
proper trajectory calibration yields a stable and reproducible reconstruction quality
over multiple acquisitions.

A typical scanning setup for the prototype C-arm weight-bearing system (Ax-
iom Artis dTA, Siemens Healthcare GmbH, Forchheim, Germany) can be seen in
Fig. 2.3(a). It shows an interventional C-arm CBCT which was adjusted to enable
scanning with horizontal weight-bearing trajectories. The subject was positioned on
a stand to align the FOV with the center of the knee joint, as a lower trajectory was
not possible due to mechanical restrictions of the scanner. To fit both knees into
the FOV both legs have been wrapped using two hook-and-loop straps. Additionally
a layer of plasticine has been attached around the legs to avoid detector saturation
artifacts (see Sec. 2.4.2).

A newer weight-bearing imaging system can be seen in Fig. 2.3(b). It shows
a C-arm CBCT device that is mounted on an industrial robot system (Artis Zeego,
Siemens Healthcare GmbH, Forchheim, Germany) allowing for a wide variety of X-ray
source trajectories [Herb 15, Maie 15b, Yu 15, Stro 16a, Stro 16b, Gou 16]. In contrast
to the prototype system, no height adjustment of the subject is necessary allowing
for free, upright standing or squatting. The image also shows the patient position-
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ing platform that ensures a standardized pose throughout studies involving multiple
subjects or follow up scans. The plasticine wraps used for the prototype system
are replaced by two synthetic arc-shaped beam blocking devices that increase X-ray
absorption in anteroposterior view direction [Choi 14a].

Both prototype as well as robotic C-arm system are also capable of regular supine
acquisitions required in most studies to obtain a non-weight-bearing reference scan.
They cover a scan range of about 200° acquiring 100 to 500 projection images over
a scan time of 3 s to 20 s. The corresponding detector resolution equals 1240 × 960
pixels, with an isotropic pixel size of 0.308 mm. Further, the SID is 785 mm with an
SDD of 1198 mm, leading to a maximum isotropic reconstruction resolution at the
isocenter of ∼200 µm.

2.3 Clinical Studies Using Weight-Bearing CBCT

In the following, an overview on current clinical applications of weight-bearing CBCT
is given. The studies make use of the C-arm systems introduced in Sec. 2.2.2 and can
be grouped into an initial feasibility evaluation, a study related to OA investigating
dynamic cartilage properties, and an investigation of a novel treatment method for
PFPS patients. This section is mostly based on the work of Choi, who presented a
detailed description and motivation of the cartilage and PFPS study in [Choi 14a].
Note that the prototype C-arm system has only been used for the feasibility evaluation
in Sec. 2.3.1. All other studies (see Sections 2.3.2 and 2.3.3) are based on acquisitions
using the robotic C-arm device.

2.3.1 Feasibility Evaluation

The first step of validating the feasibility of weight-bearing acquisitions was based
on numerical simulations [Choi 13]. Motion measurements based on an optical track-
ing system were acquired from nine volunteers, holding a squat for 20 s. Besides an
analysis of the motion itself, the measurements have been incorporated into a numer-
ical dynamic knee phantom, which could then be used as part of a proof of concept
study to show feasibility of weight-bearing imaging [Choi 13]. As a next step in the
weight-bearing CBCT project, images from healthy volunteers were acquired. With
the application of improved OA diagnosis in mind, the goal was to verify whether the
new imaging modality could be used for 3-D measurements of the JSW, that serves
as biomarker for OA grading. Derived from typical 2-D radiography weight-bearing
protocols, all acquisitions included a supine non-weight-bearing reference scan, fol-
lowed by multiple weight-bearing scans with different flexion angles, e. g., 0°, 30° and
60°. Additionally, a calibration phantom has been scanned to allow for a subjected-
specific geometric calibration of the weight-bearing trajectory. This early project
phase confirmed expected challenges for 3-D image reconstruction, most importantly
patient motion as explained in Sec. 2.4. In addition to the verification of the weight-
bearing imaging mode, the acquired data helped to develop initial motion correction
algorithms based on fiducial-markers [Choi 12, Choi 13, Choi 14c].
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2.3.2 Cartilage Deformation Under Weight-Bearing Conditions

As an extension to JSW measurements, this study aims to investigate the cartilage
deformation over time. First results indicate that this deformation can directly be as-
sociated to cartilage health [Choi 16a]. However, cartilage tissue is usually not visible
in X-ray imaging modalities due to its low contrast w. r. t. the surrounding tissue. To
visualize the cartilage surface, direct arthrography is applied, i. e., a contrast medium
is injected between femoral and tibial cartilage [Llop 12]. Cartilage thickness can be
determined by measuring the distance of the contrast medium’s surface to those of
tibia and femur. This measurement is even more accurate than a comparable MRI-
based method [El K 04]. In addition, the high spatial resolution of ∼200 µm and
the relatively fast acquisition time of ∼8 s is well suited for in vivo weight-bearing
measurement of cartilage thickness.

The study protocol is as follows: (1) The volunteers are asked to avoid heavy
weight-bearing activities a day prior to the acquisitions. (2) No load is applied to
the leg of interest for at least 30 min prior to examination. (3) During this time, the
contrast agent is injected into the knee joint and a supine reference scan with high
angular resolution is acquired. (4) The subject is guided to the acquisition platform
(cf. Fig. 2.3(b)) and weight-bearing scanning starts at the moment load is applied
to the leg. (5) Five to six scans are acquired over a period of 15 min to 25 min with
a 0° flexion angle. Guided by the reading of a force plate, the subject continuously
holds ∼50 % of his body weight on the leg of interest. The scanning time points
are more densely sampled at the beginning of weight-bearing imaging to account for
faster deformations. (6) The study concludes with a supine scan to obtain another
high-resolution reference after prolonged and consistent application of load.

Subsequently, the supine and weight-bearing data is reconstructed and femur and
tibia are segmented. Inter-scan 3-D/3-D registrations of femur and tibia aligns them
to a common coordinate system. The contrast surface between femur and tibia is
manually segmented. Finally, the cartilage thickness for a given point on the bone’s
surface is calculated by the Euclidean distance to its closest point on the contrast
agent’s surface. The result is a spatially and temporally resolved cartilage strain
which could provide further insight into cartilage changes caused by OA.

2.3.3 Verification of Treatment Methods for PFPS

As explained in Sec. 2.1.2, one reason for PFPS can be caused by an imbalance of
activation times in the vasti muscles. Recent studies report a significant reduction
of pain after weakening the vastus lateralis using injections of Botulinium toxin type
A [Sing 11, Silb 12]. Chronic PFPS patients with known patellar maltracking are
recruited. Treatment includes the injection of Botulinium into 8 locations of the
vastus lateralis, followed by six weeks of guided home exercise program to strengthen
the quadriceps muscles. Two common pain scores are collected prior to treatment and
6, 12, 18 and 24 weeks after intervention. In this study, the volumetric changes of the
vastus medialis and vastus lateralis are examined before and after treatment using
supine CBCT imaging. Additionally, changes of the patellar position w. r. t. the femur
are evaluated under weight-bearing conditions to investigate the treatments effect on
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(a) Supine, close legs (b) Standing, regular legs (c) Standing, wrapped legs

Figure 2.4: Posteroanterior projection images for supine and standing positions.
Note that the FOV is too small to cover both legs in a regular stance (see Figure (b)).

patellar maltracking. CBCT imaging is conducted before treatment and six weeks
after Botulinium injection.

The imaging pipeline for each session is as follows: (1) A high-resolution supine
scan of the thigh is acquired to validate muscle volumes. (2) Then the patellofemoral
joint is scanned with a high-resolution supine protocol, followed by (3) two weight-
bearing scans with 0° and 30° flexion angle and a specified foot positioning [Choi 14a].

After reconstructing the acquired data, the vastus lateralis and medialis are seg-
mented to compare the ratio of their volumes before and after treatment. Addi-
tionally, a 3-D joint coordinate system is extracted from the patellofemoral scans to
identify the position of the patella w. r. t. the femur. This yields a total of six param-
eters that can be used to track post-intervention changes of the patellar position.

2.4 Challenges for Image Reconstruction
Weight-bearing imaging of the knee joint poses a series of challenges for 3-D image
reconstruction. In the following, the sources and implications of individual problems
are outlined in more detail.

2.4.1 Lateral Truncation / Limited FOV
Even though C-arm scanners have a considerably higher FOV than dedicated weight-
bearing scanners it may not be large enough to cover both legs in an posteroanterior
view direction. As a result lateral truncation at posteroanterior projection images
occurs that leads to truncation artifacts in the reconstruction domain, e. g., intensity
cupping. Fig. 2.4(b) shows a projection image of a subject with a regular standing
position where lateral truncation occurred at both legs. Adjustments to the scanning
setup can reduce truncation artifacts. For example in supine scanning, truncation is
less apparent as the legs are naturally closer together (cf. Fig. 2.4(a)). One possibil-
ity is to fasten the two knees together for imaging in a standing position, yet, this
comes with the cost of an unnatural stance, which may limit the diagnostic qual-
ity (cf. Fig. 2.4(c)). Additionally, changing the system’s focus to only one knee of
interest could improve image quality as truncation artifacts, such as cupping, have
usually a higher influence on the periphery of the FOV. Other methods aim to cor-
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Figure 2.5: Top: Illustration of erroneous exposure measurements for an AEC in
case of knees and a centered measurement region. Bottom: Reconstructions suffering
from saturation artifacts and a corrected version using a beam blocking device.

rect truncation algorithmically by extrapolation of the missing data using truncation
correction algorithms [Ohne 00, Hsie 04, Denn 13, Maie 12b, Xia 15]. Connected to
this thesis, Herbst et al. proposed to extend the FOV in lateral direction using a
dynamic detector offset in combination with an extended scan range [Herb 15]. An
analytic description between detector offset and necessary scan range is given for
elliptical FOVs suitable for knee imaging. However, such type of trajectories are not
supported by the robotic C-arm device used for this thesis and image reconstruction
requires specialized algorithms that are still under development. Hence, it is not yet
possible to apply this promising new technique during data acquisition.

2.4.2 Detector Saturation
Modern X-ray systems use an automatic exposure control (AEC) system to adjust
the acceleration voltage (kVp), exposure times (s), and the tube current (mA) to keep
the image quality consistent for all projection images. First, the actual exposure is
measured at a central region on the detector, which is then used to adjust kVp and
mAs settings accordingly. This procedure works generally well for dense, cylindri-
cal anatomies, yet, it causes problems for acquisitions of knees. Fig. 2.5 shows an
illustration of the acquisition for an anteroposterior and a lateromedial view. In case
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of an anteroposterior view a large number of X-ray photons will travel almost unaf-
fected from the X-ray source through the legs to the central detector region, leading
to a high signal provided to the AEC. In contrast, photons need to pass both legs to
reach the central detector region in a lateromedial view. The latter, causes the AEC
to increase exposure such that enough photons arrive at the central detector region.
Due to the finite number of bits available for discretization, the pixels showing the
periphery of the legs, where only low-density tissue is located, are saturated. A global
reduction of the requested peak tube voltage could reduce saturation artifacts, yet,
this may lead to photon starvation in case of the anteroposterior views.

A possible solution is an artificial increase of X-ray absorption at the periphery
of the legs, i. e., at the skin. For the first prototype scanning setup this was achieved
by wrapping the legs with a layer of plasticine which successfully restored the skin
outline in the reconstructed images [Choi 14a]. As the plasticine prohibits a natural
standing position, later acquisitions were conducted with specifically designed arc-
shaped beam blockers placed at the anterior of the knees (cf. Fig. 2.3(b)). An
example for saturation artifacts is shown in Fig. 2.5(c) along with a reconstruction
using the beam blocking device in Fig. 2.5(d).

Connected to this thesis, a study was conducted to correct for saturation artifacts
as a postprocessing step prior to reconstruction. Therefore, saturated areas are de-
tected and treated as missing data, which are then extrapolated by using circular and
ellipsoidal shapes representing leg, femur, and patella [Preu 15]. The ellipsoids’ radii,
densities and positions are estimated using a cost function based on Helgason-Ludwig
consistency conditions (HLCC) [Helg 80, Ludw 66]. Promising results have been re-
ported on a numerical phantom study, however, the method is currently limited to
the fan-beam geometry and has not yet been applied to real data.

Recently, we also proposed a saturation correction based on two very low energy
projection images used to determine the legs’ outline [Choi 16b]. This prior knowledge
is then incorporated into an extrapolation method [Xia 15], to recover the overexposed
projection data. Further, it has been shown that the exact patient outline can also
be determined using an external range imaging camera, thus, avoiding the additional
acquisitions entirely [Raus 16].

2.4.3 Patient Motion
It has been shown that calibration of the acquisition geometry is necessary to ac-
count for C-arm “wobble” and micro motion that deviates from an ideal trajectory
[Maie 11a]. However, much larger motion artifacts can be expected from patients
rather than unusual scanner motion. At an early phase of the weight-bearing project
associated to this thesis, an analysis of the lower body motion was conducted when
holding a squat of 60° flexion angle for 20 s [Choi 13]. Translations and flexion angles
of nine healthy subjects were recorded using a high-accuracy optical tracking system.
Results showed a mean translation of the knee center of 2.22 mm and a mean flexion
of 0.49°, where the subject with the largest motion showed a mean translation of
3.43 mm and a flexion of 0.63° as well as a maximum translation of 12.41 mm and
flexion of 1.97°. Considering the C-arm systems’ maximum isotropic image resolution
of ∼200 µm, a considerable amount of motion artifacts were expected given the results
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(a) Supine, no motion (b) Standing straight (c) Squat (60° flexion)

Figure 2.6: Comparison of reconstructions with supine, standing and squatting
patient pose. Motion artifacts are present in the weight-bearing scans and need to
be corrected, especially for higher flexion angles.

of the motion analysis. First acquisitions on the prototype system supported these
findings, showing clear motion-induced streaking and blurring artifacts especially for
squatting positions. Fig. 2.6 shows axial reconstructions of the femur and patella ac-
quired from the same subject in supine, straight standing and squatting position. No
visible motion artifacts are present in the supine acquisition seen in Fig. 2.6(a). Note
the slight increase of motion artifacts in case of straight standing (cf. Fig. 2.6(b)),
compared to the severe artifacts for a squatting pose (cf. Fig. 2.6(c)). For both
standing and squatting acquisitions, the diagnostic value is heavily reduced due to
blurring and streaking artifacts at bone outlines. To limit weight-bearing acquisition
time and thus patient motion, the weight-bearing scans contained only half projec-
tion images than the supine scans. This leads to an increased noise level and a lower
spatial resolution, as can bee seen in Figures 2.6(b) and 2.6(c).

Motion artifacts can be reduced by faster acquisitions or a fixation of the patient,
however, faster acquisitions would further reduce image quality and fixation limits
the diagnostic value. Hence, motion needs to be corrected programmatically in the
course of image reconstruction. A wide variety of motion correction approaches has
been introduced in the field of cardiac imaging [Laur 06, Prum 06, Prum 09b, Mull 13,
Mull 14c, Schw 13, Unbe 16a], yet, they all require a periodic motion pattern and
projection gating, which is not feasible for weight-bearing imaging of knees.

In prior work, knee motion could be successfully corrected using metallic fiducial
markers attached to the surface of the knees [Choi 13, Choi 14c]. Markers can be
detected in the projection images due to their high X-ray attenuation. These detec-
tions can be tracked over time, i. e., over the projection images, to estimate patient
motion. A more detailed explanation of the marker-based approach can be found in
Sec. 3.4.2.

2.5 Conclusion
This chapter gives an introduction into the anatomy of the knee joint with focus on
the bones, ligaments, and tendons as well as the muscles involved in the locomotor
system of the lower body. OA and PFPS are the most common knee joint disorders
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with generally high incident rates. Sec. 2.1.3 shows that imaging under weight-bearing
conditions is crucial for a more precise diagnosis of OA, but also to accurately identify
patellar maltracking known to be a common cause of PFPS.

2-D radiography is regularly applied under weight-bearing conditions, yet, the
complex 3-D structure of the knee may not be accurately covered by 2-D projection
images only [Choi 14a]. Current 3-D weight-bearing imaging of the knee includes MRI
using special weight-application devices but also open-bore MRI. Whereas the first
is still limited to an unnatural supine patient position, the latter is not commonly
available in clinics. Further, given the long acquisition times of MRI, patient motion
causes a substantial problem. This thesis is based on data acquired from CBCT
systems that allow 3-D weight-bearing imaging in an almost unsupported position
with reasonably fast acquisition times and high spatial resolution (see Sec. 2.2.2).

As shown in Sec. 2.4, CBCT weight-bearing imaging poses several challenges for
image reconstruction, including data truncation, detector saturation but foremost
patient motion. Correction of patient motion during image reconstruction is manda-
tory due to the large decline in image quality. In prior work, metallic fiducial markers
have been used to estimate motion parameters, yet, the approach required manual
interaction and lead to an increased acquisition time [Choi 13, Choi 14c].
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This chapter provides the theoretical foundation on image reconstruction and
motion correction algorithms in CBCT. Starting from the related fan-beam geome-
try, Sec. 3.2 gives basic knowledge about CBCT imaging, its acquisition geometry
and associated reconstruction algorithms. The definition and classification of mo-
tion correction algorithms can be obtained from Sec. 3.3. Subsequently, Sec. 3.4
provides a detailed review of state-of-the-art motion estimation methods, followed
by an overview of motion compensation algorithms in Sec. 3.5. Sec. 3.6 concludes
this chapter with a summary of methods and their effects to CBCT weight-bearing
imaging of the knee joint.

3.1 Mathematical Definitions
Some important functions and variables in this section are generically defined in the
N dimensional space, to allow later use with fan- (N = 2) and cone-beam (N = 3)
geometries. If not mentioned otherwise, the following mathematical notation style
is used in this thesis. We use upper-case, bold letters (e. g., A ∈ RN×N) to define
matrices and lower-case, bold letters (e. g., a ∈ RN) to denote vectors. Elements of
matrices and vectors are denoted by the same letter, but in lower-case and regular
font with a subscript describing the element’s location. For example, ai is the i-th
element of a and aij is the element of matrix A corresponding to the i-th row and
j-th column. Lower-case, regular font letters (e. g., a ∈ R) can also refer to scalar
values or constants. Upper-case, nonbold letters (e. g., Ω) are used for mathematical
sets or for geometrical parameters of the acquisition geometries (e. g., L). Integer
indices, e. g., subscripts for vectors, are lower-case, nonbold letters that may also
be defined by a range (e. g., i ∈ [1, · · · , N ]). The range of indices starts with 1
and ends with the maximum integer number also given by an upper-case, nonbold
letter. Functions may be introduced by definition of their input and output space,

23
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e. g., s(q) : R3 → C2 represents a function s that maps a vector q ∈ R3 to a
complex valued vector of length two, i. e., C2. Additional superscripts and subscripts
can be used, e. g., to denote dependencies or indices of 3-D structures, but will be
introduced accordingly. Throughout this thesis, rotation matrices are defined by
rational numbers, i. e., R ∈ RN×N . However, all rotation matrices are required to
fulfill RR> = I

N
and that |R| = 1, where I

N
is an N -dimensional identity matrix

and |R| is the determinant.

3.2 CBCT Imaging

This section introduces essential information about CBCT imaging, including the
imaging geometry, the imaging process and basic reconstruction algorithms. Many
of the presented concepts build on the books of Buzug [Buzu 08], Kak and Slaney
[Kak 01] and Zeng [Zeng 09].

3.2.1 X-ray Physics

Fundamental X-ray physics can be separated into three categories, i. e., X-ray gen-
eration, matter interaction and detection. For a detailed review of all categories we
refer to the book of Buzug [Buzu 08, pp. 15-72].

X-rays belong to the class of electromagnetic waves and can be classified by their
energy Ep or wavelength λp. X-ray photons are produced inside the X-ray tube, by
collision of accelerated electrons with an anode material. A filament is used as electron
source, followed by an electric field of high intensity to accelerate the electrons. The
interaction of electrons with the anode material releases X-ray photons with a certain
energy Ep. In medical CBCT scanners the individual X-ray energies differ, thus,
building a spectrum of energies. The shape of the X-ray spectrum is based on the
acceleration voltage, as well as the anode material. The number of emitted X-ray
photons N0 depends on the exposure time and the electric current produced by the
electron beam.

When an X-ray photon interacts with matter it may get absorbed, scattered or
it passes unaffected. The total amount of attenuation depends on object properties
and Ep. In the monochromatic case, i. e., for a fixed energy, this may be summarized
by the object function f(x) : RN → R, which provides the object’s linear attenuation
function given the fixed photon energy and location x ∈ RN . We define the location
vector to be x =

(
x y

)>
for N = 2 and x =

(
x y z

)>
for N = 3. Let us assume

that the photons propagate on a straight line, parametrized by the X-ray source
position c ∈ RN and a unit vector r ∈ SN , corresponding to the direction of the
line. Then, the number of X-ray photons Np, passing unaffected through the object
is given by Beer-Lambert’s law

Np = N0 e−
∫∞

0 f(c+βr) dβ , (3.1)
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where the integral is also known as the X-ray transform. Considering that Ep ∈
[0, Emax] and that the distribution N0(Ep) is known, we can specify Beer-Lambert’s
law for polychromatic X-ray energies

Np =
Emax∫
0

N0(Ep)
(

e−
∫∞

0 f(c+βr;Ep) dβ
)

dEp . (3.2)

Note, that in this case the function f also depends on the energy. However, most
reconstruction algorithms described in literature are based on the assumption of a
monochromatic attenuation. Polychromatic attenuation is also not of main interest
in this thesis. Thus, simulations have been done with a fixed monochromatic energy
and real data has been converted to a comparable monochromatic energy.

The goal of image reconstruction is to recover f(x) from a set of line integral
measurements. Line integrals are obtained from Eq. (3.1) by

− log Np

N0
=
∞∫
0

f(c + βr) dβ . (3.3)

Unless explicitly stated otherwise, in the remainder of this thesis all references made
to projection and sinogram domain refer to line integral data.

3.2.2 Fan-Beam CT
In the following the fan-beam geometry and algorithms are described in more de-
tail. The dimensionality of previously introduced functions and variables is N = 2.
This thesis contains data and experiments based on fan-beam as well as CBCT ge-
ometry. Note, that both approaches find their roots in the practically less relevant
parallel-beam geometry and its associated Radon transform [Helg 11]. Yet, a detailed
description of the parallel-beam geometry is omitted in this work. More information
on the connection and equalities from fan- and cone- to the parallel-beam geometry
may be obtained from Buzug [Buzu 08].

The 2-D fan-beam acquisition geometry can be considered an extension to the
conventional parallel-beam geometry and has a close connection to 3-D CBCT. It
is directly connected to parallel-beam imaging. Thus, line integral values can be
converted between fan and parallel geometries, given data completeness. The imaging
geometry is shown in Fig. 3.1. It depicts the X-ray source position c on the left and
the detector on the right. The imaging process describes the transform of the 2-D
image domain spanned by the x and y coordinate system, to the 2-D sinogram domain
described by the rotation angle λ and the detector position u. The source c rotates
around the isocenter with an SID of S and a rotation angle λ. The detector rotates
opposite to the source with a detector-isocenter-distance (DID) given by D. Let us
also define the SDD to be F = S +D. X-rays emitted from c travel on a linear path
to the detector and interact with the object based on Eq. (3.1). The line directions
r may be described by the fan angle γ = arctan

(
u
F

)
∈ [−γ′, γ′] w. r. t. the central

ray direction of the system. In theory the maximum fan angle is bounded by γ′ = π
2 ,

however, in a practical application γ′ is either limited by the finite size of the object
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Figure 3.1: Fan-beam scanning geometry. The source c and the detector rotate
around the isocenter and acquire line integrals through the object.

or the detector. Using the X-ray transform from Eq. (3.1), the fan-beam sinogram
g(λ, u) : R2 → R may be defined by

g(λ, u) =
∞∫
0

f(c(λ) + βr(λ, u)) dβ (3.4)

c(λ) = R(λ)
(
−S
0

)
(3.5)

r(λ, u) = R
(
λ+ arctan

(
u

F

)) (1
0

)
(3.6)

R(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, (3.7)

where c(λ) : R → RN and r(λ, u) : R2 → SN compute the source location and X-ray
direction w. r. t. λ and u. Further, R(φ) : R → R2×2 provides a 2-D rotation matrix
based on the angle φ.

A scan range of λ ∈ [0, 2π[ corresponds to a full scan which measures all ray
paths twice. To obtain the minimum set of complete data the trajectory needs to
satisfy Tuy’s conditions [Tuy 83]. It states that all possible lines through a point x
belonging to the object, need to intersect the source trajectory. In case of the fan-
beam geometry it can be shown that this is the case for λ ∈ [0, > (π + 2γ′)[ also
known as a short scan [Park 82].

Reconstruction

The most common image reconstruction algorithm for fan-beam CT is filtered back-
projection (FBP). It is derived from the parallel-beam geometry by exploiting iden-
tities between parallel and fan geometry [Kak 01]. It is given by three individual
steps, namely cosine weighting (cf. Eq. (3.8)), (2) ramp filtering (cf. Eq. (3.9)) and
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(3) backprojection with distance weighting (cf. Eq. (3.10)). The following derivation
result is obtained from [Kak 01] and given by

g̃(λ, u) = g(λ, u) cos(γ) = g(λ, u) F√
F 2 + u2

(3.8)

ĝ(λ, u) = g̃(λ, u) ∗ hramp(u) , (3.9)

where hramp(u) is the ramp filter kernel and g̃ and ĝ correspond to the sinogram after
cosine weighting and ramp filtering, respectively. Further, [ ∗ ] is the convolution
along u direction. The backprojection step projects the sinogram values back to the
image domain and is given by

f(x) = 1
2

2π∫
0

1
U(x, λ)2 ĝ(λ, F cos(γ(x, λ))) dλ (3.10)

U(x, λ) =
(

c(λ)>
−S

)
(x − c(λ)) (3.11)

cos(γ(x, λ)) = U(x, λ)
‖(x − c(λ))‖2

, (3.12)

where U(x, λ) : RN+1 → R is the projection of the vector connecting source and
world point (x−c(λ)) onto the central ray and is also known as depth of x. Further,
γ(x, λ) : RN+1 → R is the angle between the principle ray and vector (x − c(λ)).
Its cosine value can be computed by the ratio of the depth, to the length of vector
(x − c(λ)). The division by U(x, λ)2 is called distance weighting and is specific to
fan-beam reconstruction.

Eq. (3.10) describes the backprojection formula for a full scan. The redundancy
in the data can easily be corrected with a global multiplication by 1

2 , as all rays are
sampled twice. In case of a short scan only some rays are sampled twice whereas
others are sampled only once. Parker weighting can be used to reduce the weight for
oversampled data and is applied prior to the FBP algorithm [Park 82]. Additionally,
the range of the integral in Eq. (3.10) reduces from 2π to the short-scan range (π +
2γ′). In practice, an even smaller angular range (i. e., super-short-scan) is possible,
yet, requires specialized reconstruction algorithms [Noo 02]. The recently developed
Riess weighting accounts for missing data by using specialized redundancy weights
in angular direction [Ries 13].

3.2.3 CBCT
The cone-beam geometry with an FP detector is shown in Fig. 3.2. It has a close
relation to the fan-beam geometry, but uses a 2-D instead of a 1-D detector. When-
ever, it is referred to a cone-beam geometry we assume a dimension of N = 3. The
additional detector direction is denoted as v direction, whereas the remaining ge-
ometric parameters remain unchanged w. r. t. the fan-beam geometry explained in
Sec. 3.2.2. The world coordinate system is spanned by the x-, y- and z-axis, i. e.,
ex =

(
1 0 0

)>
, ey =

(
0 1 0

)>
and ez =

(
0 0 1

)>
. Without loss of generality

the rotation axis is defined to be ez. Let us further define that the principle ray in-
tersects the detector at v = 0 and u = 0, corresponding to a centered detector. Thus,
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Figure 3.2: CBCT scanning geometry. The X-ray source orbits around the object
on a circular trajectory acquiring 2-D projection images for rotation angles λ.

for v = 0 the cone-beam geometry degenerates to the fan-beam geometry which is
also known as central slice.

Similar to fan-beam CT, the image formation process of the cone-beam geometry
can be defined by using the X-ray transform

p(λ, u, v) =
∞∫
0

f(c(λ) + βr(λ, u, v)) dβ (3.13)

c(λ) = −SRz(λ) ex (3.14)
r(λ, u, v) = Rz(λ+ γ) Ry(κ) ex (3.15)

Rz(φz) =

cos(φz) − sin(φz) 0
sin(φz) cos(φz) 0

0 0 1

 (3.16)

Ry(φy) =

 cos(φy) 0 sin(φy)
0 1 0

− sin(φy) 0 cos(φy)

 , (3.17)

where Rz(φz) : R → R3×3 and Ry(φy) : R → R3×3 are 3-D rotation matrices around
z- and y-axis, respectively. Further, κ = arctan

(
v
F

)
∈ [−κ′, κ′] is the cone-angle in

v direction, r(λ, u, v) : R3 → SN is the ray direction in 3-D and p(λ, u, v) : R3 → R
is the function that represents the acquired projection images. Note that in theory
κ′ = π

2 , however, it is usually limited by the object or detector extent.
It is known that the circular source trajectory does only fulfill Tuy’s condition for

data completeness at the central slice, but not for off-center slices, causing cone-beam
artifacts [Buzu 08, p. 458]. Full sampling is possible using modified trajectories,
such as circle-plus-arc, circle-plus-line or reverse-helix trajectories [Hsie 13, Yu 13],
yet, this comes with the price of an increased complexity of the scanner and image
reconstruction algorithms.
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Reconstruction

The Feldkamp-Davis-Kress (FDK) algorithm is most commonly used for image re-
construction in current clinical CBCT [Feld 84]. FDK is an intuitive but heuristic
extension to the fan-beam FBP and can be implemented efficiently leading to very
fast reconstruction results [Wu 16]. All CBCT reconstruction algorithms derived in
this thesis build on the FDK algorithm. The algorithm is given by the same three
steps as for the fan-beam FBP, i. e., 3-D cosine weighting (cf. Eq. (3.18)), row-wise
ramp filtering (cf. Eq. (3.19)) and a 3-D backprojection (cf. Eq. (3.20)). The formulas
for cosine weighting and ramp filtering are given by

p̃(λ, u, v) = p(λ, u, v) cos(γ) cos(κ) = p(λ, u, v) F√
F 2 + u2 + v2

(3.18)

p̂(λ, u, v) = p̃(λ, u, v) ∗ hramp(u) , (3.19)

where hramp(u) is the ramp filter kernel and [ ∗ ] denotes a convolution over u direction.
Further, p̃ and p̂ correspond to the projection images after cosine weighting and ramp
filtering, respectively. The backprojection is given by

f(x) = 1
2

2π∫
0

1
U(x, λ)2 p̂(λ, F cos(γ(x, λ)), F cos(κ(x, λ))) dλ (3.20)

U(x, λ) = e>x Rz(λ)> (x − c(λ)) (3.21)

cos(γ(x, λ)) = U(x, λ)∥∥∥∥(ex ey
)>

Rz(λ)> (x − c(λ))
∥∥∥∥

2

(3.22)

cos(κ(x, λ)) = U(x, λ)∥∥∥∥(ex ez
)>

Rz(λ)> (x − c(λ))
∥∥∥∥

2

, (3.23)

where U(x, λ) is again the depth of x based on c and the principle ray direction.
Further, γ(x, λ) and κ(x, λ) : RN+1 → R are the angles between the principle ray
and the projection of (x−c(λ)) onto the rotated x-y and x-z plane, respectively. The
FDK algorithm may as well be extended to a short-scan acquisition by a row-wise
application of Parker weights [Park 82] prior to the reconstruction. Note, that FDK
is an approximate algorithm for off-center planes, yet, reconstruction artifacts are
usually dominated by the missing data due to the circular trajectory [Feld 84]. Theo-
retically, exact reconstruction algorithms have been presented by Grangeat [Gran 91]
and Katsevich [Kats 02]. However, their application to circular CBCT is of little
benefit, as the acquired data does generally not meet Tuy’s completeness condition.

3.2.4 Iterative Reconstruction
FBP as well as FDK are the most common reconstruction algorithms and also
the basis for the reconstruction algorithms derived in this thesis. Other, recon-
struction methods include algebraic and iterative reconstruction methods, where
the inversion is solved by iterative methods . This usually requires a regulariza-
tion term based on assumptions on the object function f(x), such as total variation
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[Sidk 06, Wu 12, Huan 16]. Iterative reconstruction techniques are not used in this
thesis and therefore omitted here, yet, the interested reader is referred to the follow-
ing prior work [Chen 08, Sidk 08, Pan 09, Hara 09, Tang 09].

3.2.5 Discretization and Projection Matrices
The projection and reconstruction algorithms in Sections 3.2.2 and 3.2.3 are based
on several geometric properties, e. g., perfect alignment of rotation axis to the world
coordinate’s z-axis, perfect orthogonality of detector u- and v-axis or an ideal intersec-
tion of the principle ray in the center of the detector. Also, the presented algorithms
are defined in the continuous domain. However, detector and angular sampling are
finite for real world CBCT scanners. Also, a more generic geometric description is
required to model imperfect detector coordinate systems, but also deviations in the
X-ray source trajectory. In this thesis we used the concepts of projective geometry,
i. e., projection matrices and homogeneous coordinates, to model the mapping of 3-D
world coordinates to 2-D detector coordinates. Many of the following principles are
based on the book of Hartley and Zisserman [Hart 04].

Let us first define ∆λ to be the angular spacing associated to rotation angle λ
as well as ∆u and ∆v to be the discrete pixel spacing in detector u and v direction,
respectively. Further, the dimensions of the detector are given by I and J in u- and
v-axis, respectively, while the number of projections is given by K.

We also define that the homogeneous representation of a vector a ∈ RN is given
by a =

(
a> 1

)>
. To revert the homogeneous mapping we introduce the function

h(a) : PN → RN that performs a division by the last component

h(a) = 1
aN+1

(
a1 · · · an

)>
. (3.24)

Note that we use h to map a point from projective space to the Euclidean space. The
presented notation is not defined in case aN+1 = 0, which would be equal to a point
in infinity. However, it can be ensured that for all practical applications used in this
thesis it holds that aN+1 6= 0.

The projection matrix P ∈ R3×4 encodes six extrinsic parameters, that define
rotation R ∈ R3×3 and translation t ∈ R3 of the world coordinate system. In
addition, it holds five intrinsic parameters in the matrix K ∈ R3×3, that determine
the mapping of world to detector coordinate system. Eq. (3.25) defines how P is
built given K , R and t.

P = K

1 0 0 0
0 1 0 0
0 0 1 0

(R t
0> 1

)
(3.25)

The K matrix may be defined by

K =


F

∆u ks cu
0 F

∆v cv
0 0 1

 , (3.26)
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where ks is a parameter to model skewness between detector u- and v-axis and cu and
cv denote the location of the principle point, i. e., the intersection between principle
ray and detector plane given, in pixel coordinates.

After applying R and t to the X-ray source c, it is by definition located at the
world coordinate origin and points in direction ez [Hart 04]. However, the circular
trajectory described in Sec. 3.2.3 is defined by the rotation axis ez, an initial source
location −S ex and a view direction ex. Thus, a rotation matrix A ∈ R3×3 is intro-
duced that maps the initial location of the x-ray source from x-axis to the z-axis, the
view direction from ex to ez, and that aligns the detector v-axis with the rotation
axis. Hence, the rotations and translations for our circular trajectory can be created
by

A =

0 1 0
0 0 1
1 0 0

 (3.27)

R = A Rz(λ)> (3.28)
t = AS ex = S ez . (3.29)

Note, that the null space of P is related to the X-ray source by ker(P) = c, where
ker(·) denotes the null space computation. Further, the rows of P may be interpreted
as planes, where the first two rows correspond to planes that contain c and also the
detector v- and u-axis, respectively. The plane described by the last row contains c
and is parallel to the detector plane [Hart 04, pp. 158ff.].

In real world systems, projection matrices are computed by system calibration,
using a calibration phantom that allows identification of 3-D positions from 2-D
measurements [Maie 11a]. For the remainder of this thesis the projection matrix
corresponding to the k-th projection image is referred by Pk, with its elements Kk,
Rk and tk, where k ∈ [1, · · · , K]. Note that projection matrices map 3-D points
in world coordinates to 2-D pixel coordinates u =

(
u1 u2

)
∈ R2. In contrast, the

previously introduced coordinates u and v are defined in mm. Let us define projection
image functions pk(u) : R2 → R for the k-th projection image. Their connection to
the continuous projection data p(λ, u, v) can be defined by

pk(u) = p((k − 1)∆λ, u, v) (3.30)

u = h
(

Kk

(
u v F

)>)
. (3.31)

The images pk(u) are usually discretized on a pixel grid with spacing ∆u and
∆v. We will use indices i ∈ [1, · · · , I] and j ∈ [1, · · · , J ] to identify pixels in u1
and u2 direction, respectively. Despite discretization of the images, the continuous
representation pk(u) of the projection images is used in this thesis. Data readout
at subpixel locations can be done using an interpolation method. If not mentioned
otherwise, bilinear interpolation is used as interpolation method [Keck 14].
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Figure 3.3: Motion correction consists of a motion estimation and motion compen-
sation step. These steps can appear in a single algorithm or separated. They may
also be executed repeatedly in an iterative manner.

Using projection matrices, we can now compute the discrete version of the con-
tinuous backprojection shown in Eq. (3.20). It is given by

u = Pk x (3.32)

f(x) = 1
2

K∑
k=1

1
(u3)2 p̂k(h(u)) , (3.33)

where we use the convenient property that the third component of u equals the depth
of x w. r. t. the X-ray source and the principle ray. Note, that this property holds
for our definition of P, but depends generally on the scaling of the projection matrix
and the encoded view direction [Hart 04, pp. 162f.]. Similar to the continuous case,
p̂k refers to the projection images pk, after application of cosine weighting and ramp
filtering. For discretization of cosine weighting and ramp filtering we refer to the
book of Kak & Slaney [Kak 01].

3.3 Motion Correction
Motion correction, motion estimation and motion compensation are often used in-
discriminately in literature. In the scope of this thesis, motion correction consist
of two building blocks, i. e., motion estimation and motion compensation. It refers
to a reconstruction algorithm that exploits information about the underlying object
or scanner motion to reduce motion artifacts in the reconstructed image. Fig. 3.3
depicts the key components of motion correction.

During motion estimation, parametrized motion models or even nonparametric
motion fields are estimated. This is usually based on a cost function that takes the
projection images containing the irregular motion, but also prior knowledge as an
input. Motion estimation typically results in 3-D rigid or nonrigid deformations
defined for individual or sets of projection images, yielding temporally resolved, 4-D
motion data. The output of the motion estimation step is a parameter vector α ∈ RL

that holds L parameters used to define the motion models. Alternatively, it encodes
the deformation directly containing 3-D translation vectors for each reconstructed
voxel and time point.
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Motion compensation refers to the process of incorporating the estimated mo-
tion into the reconstruction process. The goal of motion compensation can be a static
3-D reconstruction for a specific point in time or a time frame. Alternatively, 3-D
reconstructions can be conducted for a series of time points, yielding spatially and
temporally resolved data, also known as 4-D CT reconstruction.

Motion correction is essentially very similar to geometric calibration of the system
parameters. It can be shown that motion of the X-ray source, e. g., due to scanner
“wobble”, may be modeled by object motion [Hart 04]. By definition, calibration
and motion correction are treated separately in this thesis. It is assumed that the
calibration of the system is performed prior to the scan, yielding a set of calibrated
projection matrices Pi.

3.4 Motion Estimation Methods
We separate between three groups of “prior knowledge” for motion estimation al-
gorithms. First, surrogate signals that require simultaneous acquisition of the
surrogate (e. g., an Electrocardiogram (ECG) signal for coronary imaging) or dedi-
cated alterations to the image content (e. g., fiducial-markers for motion tracking).
Second, the usage of a prior reference image in the projection (2-D), reconstruc-
tion (3-D) or temporally resolved reconstruction (4-D) domain. And third, without
reference and surrogate signals, but possibly with assumptions imposed on the
motion model or the reconstructed image. The main differences are:

• Algorithms using surrogate signals usually interfere with the acquisition pro-
cess, e. g., by attaching fiducials or a surrogate acquisition.

• Algorithms based on prior image data do not interfere with the acquisition of
motion-corrupted data. However, depending on the acquisition protocol and
patient history, additional acquisitions may be required.

• Algorithms that work without reference and surrogate signals do not
require additional image data and do not cause alterations in the acquisition
process.

In consequence, the amount of data decreases from group one to three, yet, this may
cause limited accuracy or requires a reduction of complexity in the estimated motion
field. A higher flexibility during clinical acquisition may especially be given in the
third group.

3.4.1 Motion Models
Before the object motion can be estimated, a mathematical description that models
the motion needs to be defined. Rigid and nonrigid, but also parametric and non-
parametric motion models exist. Parametric models exist in both rigid and nonrigid
domain, whereas nonparametric motion is usually only applied in the field of nonrigid
image registration.
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Rigid Motion in 2-D and 3-D

We define rigid motion to be limited to translations and rotations, resulting in three
degrees of freedom for 2-D images and six degrees of freedom for 3-D volumes. In
that sense, rigid motion can be conveniently integrated to CBCT imaging when using
the concept of projection matrices introduced in Sec. 3.2.5. Rigid motion of the
object can be modeled by right multiplication of a projective transformation matrix
to the projection matrix, whereas rigid detector motion may be modeled by a left
multiplication. Let us define

Tk(α) =
(

Rk(α) tk(α)
0> 1

)
, (3.34)

such that Tk(α) : RL → R4×4 computes a rigid object motion that consists of
a rotation Rk(α) : RL → R3×3 and translation tk(α) : RL → R3 for the k-th
projection image, given the parameter vector α. Further details on the structure of
α and its mapping to the rigid motion matrices may be obtained from appendix A.1.
Similarly, 2-D rigid detector motion may be defined by

Qk(α) =

cos(φk(α)) − sin(φk(α)) sk(α)
sin(φk(α)) cos(φk(α)) tk(α)

0 0 1

 , (3.35)

where φk(α) : RL → R is the 2-D rotation angle for the k-th projection image.
Further, sk(α) : RL → R and tk(α) : RL → R are the corresponding detector
translations in detector u and v directions, respectively, given in pixel coordinates.
The motion may be incorporated into the projection matrices by

Pk(α) = Qk(α) ·Pk ·Tk(α) , (3.36)

such that Pk(α) : RL → R3×4 are the updated projection matrices based on motion
parameters α.

It is worth noting, that this type of linear model is not only applicable for rigid,
but to a much large class of motions, defined in 2-D or 3-D. An extension is straight-
forward by incorporating more parameters, e. g., for scaling or shear, into matrices
Qk(α) or Tk(α).

Nonrigid Motion

The scope of this thesis is restricted to parametric models. For more information
on nonparametric models it is referred to [Mode 03, Clar 06, Daum 11]. The most
common parametric nonrigid deformation models use B-splines [Ruec 99] or TPS
[Davi 97, Mull 13]. Both consist of a global rigid transformation and an additional
local transformation yielding a nonrigid motion field dk(x,α) : RN+L → RN . B-
splines and TPS use control points vak ∈ RN with a ∈ [1, · · · , A] and A being
the number of control points used. According to Davis et al. [Davi 97] the TPS
deformation function for dimension N = 3 is given by

dk(x,α) =
A∑
a=1

G(x − vak)bak(α) + h(Tk(α) x) , (3.37)
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where Tk(α) contains the rigid motion parameters and G(x − vak) : RN → RN×N is
the kernel function that provides the location specific weights for the spline coefficients
bak(α) : RL → RN . It is given by

G(x − vak) = ‖x − vak‖2 I3 , (3.38)

where ‖·‖2 is the L2 norm and I
N
∈ RN×N is an N -dimensional identity matrix.

Optimization of this type of motion field can be done in two ways. First, the unknowns
in Tk(α) and bak(α) are contained in α and optimized directly, thus, the total
number of parameters is (NA + 6)K. Another method for motion estimation is
to estimate the translations for each control point vak. In this case, inserting the
estimated deformations into Eq. (3.37) allows for a closed form solution of Tk(α)
and bak(α), thus, the number of parameters is NAK. The second variant may also
be used for extrapolation of sparse motion fields [Mull 13, Maie 14, Berg 16a]. In either
case we define that α contains the necessary information to compute translations at
arbitrary locations x. A similar approach has been shown for B-spline motion fields
[Ruec 99].

3.4.2 Based on Surrogate Signals (I)
This section provides a literature review of motion estimation methods using surro-
gate signals or dedicated alterations to the image content. We start with a detailed
description of the prior work on motion estimation of knees under weight-bearing
condition, which also built the baseline at the beginning of this thesis. This is fol-
lowed by a more general overview of motion estimation methods used in other fields
of CBCT imaging.

CBCT Weight-Bearing Imaging of Knees Using Fiducial Markers

At an initial phase of the weight-bearing imaging project associated to this thesis a
fiducial marker-based solution was used to estimate for knee motion during acquisition
[Choi 12, Choi 13, Choi 14c]. Tantalum beads with a 1 mm diameter were attached to
the knee and absorbed most X-ray photons due to their high attenuation coefficient.
This enables identification of markers in the individual projection images. Choi et al.
investigated performance of three different motion models, including translations of
projection images, nonrigid deformation of projection images using TPS and 2-D/3-D
registration of average 3-D marker locations to the individual projection images.
Results showed a superior image quality for the latter approach when evaluated with
a numerical XCAT phantom [Sega 10] but also on real acquisitions [Choi 13, Choi 14c].
In the following we introduce the motion estimation algorithm described by [Choi 13]
in more detail. Let the number of parameters be L = 6K such that α contains three
rotations and translations for each of K projection images. Then the cost function is
given by

argmin
α

K∑
k=1

M∑
m=1
‖mkm − ukm‖2

2 (3.39)

mkm = h
(
Pk ·Tk(α) · xm

)
, (3.40)
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where xm ∈ R3 is the average 3-D position of the m-th marker and ukm ∈ R2 are
the detected bead locations of the m-th marker on the k-th projection. Further,
mkm ∈ R2 is the projection of xm to the k-th projection image. Note, that mkm and
ukm are defined in pixel coordinates.

To evaluate Eq. (3.39), one has to identify potential candidates for ukm. Choi
et al. proposed to first enhance marker locations by building the gradient of the
projection images. After thresholding the gradient images with a heuristic lower
bound, the Hough transform was used to identify 2-D bead locations ukm [Choi 14c].

Moreover, the average 3-D positions xm of the markers need to be identified and
also their correspondence to the detected 2-D candidate points. This is done in a semi-
manual approach. First, the position of identical markers ũkm is annotated manually
in a small set (∼4) of projection images, distributed over the full-scan range. The
average 3-D position of the annotations x̃m can be computed in a closed form solution
using singular value decomposition (SVD) as shown in [Choi 14c]. This is equal to
finding the point, that is closest to all lines backprojected from the annotated points
on the detector to the X-ray source w. r. t. the L2 norm. The initially computed
x̃m are then forward projected to all projection images using Eq. (3.40), yielding first
estimates for mkm. The correspondence problem is now solved by assigning detections
ukm to those mkm, that are closest w. r. t. the Euclidean distance. The estimation of
the final xm may be computed using all assigned points ukm. Repeating this process
multiple times leads to an iterative refinement of xm and their assignments to the
detected 2-D points.

Drawbacks of the approach presented by Choi et al. include the time consuming
manual annotations ũkm. Assuming that M ≥ 6 which is the lower bound to avoid
an underdetermined optimization problem, the number of annotations would be ≥
6× 4 = 24. Also, the robustness of the Hough transform for small objects like beads
may be reduced in noisy environments, either limiting the number of detected markers
(high threshold) or increasing the number of wrong detections (lower threshold). As
markers manipulate the image data, they also cause high intensity streaking artifacts
in the reconstruction domain which reduces clinical usability [Berg 14a].

General Overview of Surrogate-based Motion Estimation

In addition to motion estimation of knees, fiducial markers have been used regularly
in the field of radiotherapy but also for estimating skeletal motion. During radio-
therapy it is essential to track tumor motion precisely to avoid harmful irradiation
of healthy tissue. Fiducial markers have been implanted close to the tumor allowing
real-time tracking of tumor motion during treatment, based on simultaneously ac-
quired projection images [Schw 00, Shir 03, Russ 05]. The estimated motion can then
be used to readjust or trigger the high energy radiotherapy beam.

Especially breathing motion causes problems during radiotherapy as an external
fixation is hardly possible. A multitude of motion estimation methods propose the
usage of infrared markers, externally attached to the chest of the patient. Motion of
the markers can be correlated to the internal motion based on a previously acquired
4-D CT. An overview of methods may be found in the review of Rit et al. [Rit 13].
Others proposed to use external 3-D range imaging sensors that are independent
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of markers, to track breathing motion during treatment [Baue 12, Baue 13, Wasz 16,
Geim 16].

A typical surrogate signal in the field of cardiac CBCT imaging is the ECG signal
simultaneously acquired with the projection images. Motion-corrected 4-D imaging
is possible for certain heart phases using ECG-gating. During gating the acquired
projections are assigned to a set of heart phases identified from the ECG signal. Those
projections can then be used for 3-D reconstruction of specified heart phases [Desj 04].
The position and size of gating-windows is known to be crucial, where a reduced
weight to periphery of the gating window has been shown to be beneficial [Rohk 11].
An extensions to regular ECG-gating are registration-based approaches that aim to
find the motion between individual heart phases [Schw 13, Mull 14b, Taub 16]. A
different solution is to model the entire 4-D reconstruction as a single optimization
problem, solved by iterative reconstruction methods, e. g., using a spatial and an
ECG-driven, temporal total variation regularizer [Wu 12, Haas 16].

3.4.3 Based on Reference Image (II)
The majority of motion estimation methods are based on artifact-free reference images
that may be defined in the projection, reconstruction or 4-D reconstruction domain.
These reference images can be acquired before or after the motion-corrupted scan.
They can also be derived from the motion-corrupted data directly, which usually
requires prior knowledge on the imaged object or surrogate signals. If reference data
is present, motion estimation is possible by (1) 3-D/3-D registration in the volume
domain, (2) 2-D/2-D registration of projection images and (3) 2-D/3-D registration
that estimates 3-D motion of a reference volume to 2-D projection images [Prum 09a,
Mull 14a]. In this context, all registration methods refer to image-based measures,
i. e., the cost functions used for registration are based on the image intensities of the
projection images, reconstructed volumes, or both.

3-D/3-D registration-based motion estimation requires that static 3-D volumes
can be reconstructed for individual time points with sufficient image quality. These
volumes can be pairwise registered using 3-D/3-D registration to determine the time-
dependent motion field between the individual motion states [Mull 14b, Taub 16]. A
key problem is the generation of static 3-D reconstructions with sufficient accuracy.
Projection gating can be used to determine a subset of projection images that belong
to the same motion state. However, due to the limited and nonuniform angular
sampling, gated reconstructions typically suffer from view aliasing artifacts which in
turn reduces registration accuracy [Prum 09b, Mull 14b]. In the field of radiotherapy,
gating information may be extracted directly from the projection images. For example
the Amsterdam shroud method [Sonk 05] exploits the high contrast diaphragm which
is tracked in superioinferior direction. It is assumed that the diaphragm’s motion
has a strong correlation with the respiratory motion. However, this method is not
applicable to knee imaging as it is restricted to motion mostly parallel to the rotation
axis of the C-arm. In general, knee motion in straight standing position is not periodic
and no intuitive surrogate signal is given.

Treatment planning in radiotherapy often involves a prior four-dimensional (4-D)
CT acquisition which is first partitioned into a small number of breathing phases, each
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corresponding to a static 3-D volume [Li 10, Li 11, Li 06, Rit 09a, Rit 09b, Wang 14,
Schw 05]. Time dependent deformations are obtained by nonrigid 3-D/3-D registra-
tion to a reference breathing phase. A typical assumption is that the prior motion is
similar to the respiratory motion during treatment. The acquired projections can be
assigned to one of the 3-D volumes, based on a similarity measure computed between
digitally reconstructed radiographs (DRRs) and the projection images. Thus, the
current motion estimate can simply be used from the precomputed deformations. Li
et al. extended this approach by training a statistical motion model on the prior
4-D CT data, which is then optimized by 2-D/3-D registration [Li 10, Li 11] during
treatment. If the prior 4-D CT is not directly available it can be replaced by a set of
gated 3-D reconstructions [Li 07] or generated numerically by interpolation between
two 3-D reconstructions of maximum inhale and exhale [Schw 05].

Other work has investigated 2-D/2-D registration to estimate motion. Typically,
the motion-corrupted projection images are registered to DRRs. A prior gated re-
construction was used to compute the DRRs in coronary imaging [Schw 13, Hans 08].
Otherwise, a prior acquisition may be used to render DRRs. Often segmentations
of high contrast objects are used to enhance anatomies of interest in the projection
domain prior to registration. For example, centerline extraction of vessels [Hans 08],
MIPs [Hans 08, Unbe 15] or top-hat filtering [Schw 13].

2-D/3-D registration algorithms estimate the 3-D pose of a prior volume such
that it fits best to the projection image. Most algorithms are based on the “projec-
tion strategy” [Mark 12]. First, the estimated motion is incorporated into the DRR
process which yields an updated, synthetic projection image. This projection im-
age is then compared to the acquired image by a similarity measure. The similarity
measure is optimized by an iterative refinement of the estimated motion. 2-D/3-D
registration has been widely used in the field of respiratory motion estimation for ra-
diotherapy. We refer to Rit et al. for a comprehensive review of the state-of-the-art
respiratory motion estimation approaches [Rit 13]. Additionally, methods have been
developed for vascular [Blon 06, Groh 08, Mitr 13], cardiac [Prum 09a] or skeletal mo-
tion [Russ 05, Bifu 09, Otak 13, Otak 15, Tsai 10, Zhu 12a, Zhu 12b, Lin 13]. Zeng et
al. have used nonrigid 2-D/3-D registration of a prior CT scan of the thorax to the
current on-board fluoroscopy image for respiratory motion estimation during radio-
therapy [Zeng 05, Zeng 07]. A parametric 3-D B-spline deformation was estimated by
optimization an sum-of-squared-differences (SSD) and logarithmic cross correlation
similarity measure. Gendrin et al. focused on a run-time optimized rigid 2-D/3-D
registration where a single registration of 5 rigid deformation parameters (excluded
depth information) was done in less than 0.5 seconds using graphics processing unit
(GPU) programming and a normalized mutual information (MI) similarity measure
[Gend 12]. Fu et al. separate the rigid registration problem into in-plane and out-
of-plane rotations which are estimated using a combined pattern intensity pattern
intensity (PI) and SSD similarity measure. For a detailed reviews of similarity mea-
sures we refer to [Penn 98] and [Gend 11].

In the field of skeletal 2-D/3-D registration, Russakoff et al. used an MI similarity
measure to register the rigid deformation of a prior 3-D spine CT to 2-D radiographs,
where a single fiducial marker is tracked and used as a regularizer to improve reg-
istration robustness [Russ 05]. Normalized cross correlation was used to register a
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vertebra volume to fluoroscopic images [Bifu 02, Bifu 09]. Otake et al. claim that
normalized gradient information (NGI) is a particularly robust similarity measure
for overlapping structures, when registering vertebrae to projection images [Otak 13].
NGI evaluates the similarity of gradient directions and weights them with the lower
gradient magnitude. More recently, however, they decided to use the gradient corre-
lation (GC) similarity measure [Otak 15], which was originally described by Penney et
al.[Penn 98]. Whereas, NGI weighs with the minimum gradient magnitude to provide
a more robust registration result in the presence of overlapping edges, GC is known
to be robust to linear transformations of the intensities between DRR and projection
image.

2-D/3-D registration for the knee anatomy includes work by Tsai et al., who intro-
duce the weighted edge matching score (WEMS) similarity measure that compares
edges extracted by a Canny edge detector, where longer edges are assigned a higher
weight [Tsai 10]. They reported a superior estimation of out-of-plane translations
compared to PI and gradient differences (GD). Lin et al. have also used WEMS
to register a motion-free knee MRI volume to an MRI slice acquired when using a
weight-bearing apparatus [Lin 13]. Similar methods for registration of bones in knee
and shoulder joints are presented by Zhu et al. [Zhu 12a, Zhu 12b]. First, the bone
meshes are extracted in the prior volume, then the bone outline on the projection
images is computed based on a direct projection of the bone meshes. Registration
is performed between the projected outline and the outline of the acquired bone,
obtained by segmentation in the projection domain.

A vast majority of related work uses a single or biplane imaging system, thus,
the number of unknowns for rigid 2-D/3-D registration is limited to six or 12, re-
spectively. Very little work was done when registering 3-D volumes to a full stack
of projections. Recently, Ouadah et al. proposed a geometric calibration for CBCT
systems based on the NGI similarity measure and a statistical optimizer [Ouad 16].
They registered a prior CT scan to each acquired 2-D projection image by optimizing
up to nine geometrical parameters per projection for a maximum of 496 projection
images, yielding a total of 9× 496 = 4464 parameters.

3.4.4 Without Reference and Surrogate Data (III)
Motion estimation becomes more challenging in case no prior imagery is available and
also no suitable surrogates can be acquired. Thus, less information is available for the
optimization of a motion model. Approaches, that are independent of prior images
and surrogates exist and can be assigned two one of two groups. First, assumptions
or prior knowledge about the shape, intensity distribution and other motion artifact
metrics (MAMs) can be optimized in the reconstruction domain. Second, mathemat-
ical CC that describe redundancies in the projection domain may be exploited for
motion estimation.

MAMs for Motion Estimation

The term MAM was defined by Rohkohl et al. [Rohk 13] and refers to image features
defined in the reconstruction domain that are ideally sensitive to different types of
motion artifacts. Optimization of such features could then be used to estimate a
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motion model. Image features used in literature are widespread. Wicklein et al.
compared a multitude of image features w. r. t. their sensitivity to motion-induced
artifacts in the field of neuroradiology [Wick 12]. They found that the image entropy
based on the histogram of the reconstruction provided best sensitivity over a set of
different motion types. The goal is to enhance sharpness of the image by minimization
of the gray level entropy, usually measured in a certain region of interest (ROI).

Entropy minimization has also been used for motion estimation by Kyriakou et al.
[Kyri 08], who optimized motion parameters for circular CBCT on a thorax phantom
and in a rat study. However, the complexity was limited to a small set of geometric
parameters. In contrast, Kingston et al. use the sum of gradient magnitudes, also
known as total variation, to measure image sharpness. The sharpness is maximized
on a subset of reconstructed slices in volume space, using a multiresolution approach.
Only a global alignment was optimized estimating a total of four parameters.

In the field of cardiac CT imaging, Rohkohl et al. optimize entropy but also
positivity to enhance image quality in an ROI extracted from a segmentation of
coronary arteries [Rohk 13]. Positivity aims to keep gray values in the ROI above a
user defined threshold. Based on a nonrigid spline-based motion model with control
points defined in spatial and temporal domain, they report promising results for
reconstructing coronary arteries.

Recently, Sisniega et al. proposed an MAM-based algorithm to correct for motion
of a knee acquired under weight-bearing conditions [Sisn 16]. They estimated six
rigid parameters per projection image, using total variation, entropy and a regularizer
that penalizes high-frequency changes of motion parameters. Large improvements in
image quality were reported when evaluating the method on a cadaveric hand. Image
quality also increased when applied to an in-vivo weight-bearing scan of a knee joint,
however, streaking artifacts were still visible after correction.

What are Consistency Conditions?

Another strategy for motion estimation is based on CC, which describe redundancies
in the projection or sinogram domain. These redundancies originate from repeated
scanning of the same physical object from different view points.

HLCC were derived by Helgason [Helg 80] and Ludwig [Ludw 66] and are best
known and most often used in literature. The HLCC build a set of relations between
the Radon transform (i. e., a parallel-beam sinogram) and the imaged object in the
world coordinate system. They are defined by

0 =
2π∫
0

 ∞∫
−∞

(up)νq(up, θ) dup


︸ ︷︷ ︸

Moments along up

e−inθ dθ (3.41)

∀n, ν ∈ N
∧

n > ν ≥ 0 ,

where q(up, θ) : R2 → R is the parallel-beam sinogram with detector position up
and rotation angle θ. Also, n is the order of the Fourier series expansion along the
rotation angle and ν is the order of the image moment. More specifically, HLCC
state that image moments of order ν cannot cause contributions to Fourier series
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coefficients of order n > ν. The theorem holds for ideal monochromatic line integrals
and the continuous Radon transform. In case of physics-, geometry- or sampling-
based deviations the HLCC are no longer fulfilled which allows their usage as cost
function to correct for these effects. It is referred to Welch et al. [Welc 98] for
a helpful and intuitive interpretation of image moments and their relations to the
world coordinate system.

Multiple extensions to fan-beam CT have been made over the last decade [Chen 05,
Yu 06, Leng 07, Clac 15]. Recently, Clackdoyle et al. proposed an extension to CBCT
geometries [Clac 13]. However, their theorem requires that all X-ray sources are
positioned on a plane which must not intersect with the object, thus, excluding
circular cone-beam trajectories.

Applications of the HLCC and their fan-beam extensions are widespread and
include attenuation correction of positron emission tomography (PET) and single
photon emission computed tomography (SPECT) acquisitions [Hawk 88, Natt 93,
Welc 98, Welc 03], extrapolation of missing or truncated projection data [Erla 00,
Chen 05, Star 05, Van 06, Xu 10] and correction of beam-hardening artifacts [Mou 06,
Tang 11]. In work associated to this thesis, we recently proposed a fan-beam exten-
sion of HLCC used to estimate location, density and shape parameters of simple
geometric objects with the application to overexposure correction [Preu 15].

Kudo et al. presented a different form of the HLCC where the moments are con-
verted to Chebyshev polynomials [Kudo 91]. They also propose an efficient evaluation
of the properties using the sine transform along the detector and the Fourier trans-
form over the angular direction. This is already very similar to another type of CC
which we call FCC. Edholm et al. [Edho 86] and Natterer [Natt 86] showed that the
2-D Fourier transform of a parallel-beam sinogram must have triangular regions with
absolute values close to zero. An extension to fan-beam geometries has been made
by Hawkins et al. [Hawk 88] and Mazin et al. [Mazi 10] who show that∣∣∣∣∫ ∫

g(λ, u)e−i2π(λω+uξ) dλ du
∣∣∣∣ ≈ 0 , (3.42)

where the regions can be defined by the following properties of ξ and ω∣∣∣∣∣ ω

ω − ξ(S +D)

∣∣∣∣∣ > rp
S

. (3.43)

ξ and ω are axes in frequency domain that correspond to the detector direction
u and the rotation angle λ, respectively. The size of the regions depends on the
maximum extent of the object rp w. r. t. the rotation center but also on geometric
parameters of the scanner geometry as introduced Sec. 3.2.2. FCC have been applied
for data extrapolation [Karp 88, Pohl 14] and attenuation correction in PET and
SPECT [Xia 95, Abel 09]. Extensions of the FCC have been made by Desbat et al.
[Desb 04] and Brokish et al. [Brok 06] who derived sampling properties for cone-beam
geometries using the 3-D Fourier transform of cone-beam projection data.

Both HLCC and FCC were defined for parallel-beam sinograms and subsequently
extended to fan- and cone-beam data. In contrast, John [John 38] presented CC that
define a system of ultrahyperbolic partial differential equations directly for cone-
beam projection images. Practical extensions of John’s theoretic concept have been
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made by Patch et al. with the application of estimating missing projection data
[Patc 02b, Patc 02a].

Consistency Conditions for Motion Estimation

All of the previously introduced CC are derived on ideal assumption. The projection
images are assumed to have an infinite extent such that no truncation is possible
and the physical model is restricted to monochromatic absorption as described in
Sec. 3.2. Furthermore, the CC do often not incorporate sampling information and
are presented for continuous signals. Also, no irregular patient or scanner motion
is allowed. The presented CC can be violated if any of these assumptions are not
fulfilled. This effect can be exploited in a practical scenario, e. g., if patient motion
violates a CC we can try to estimate the motion such that the consistency is best
restored.

Motion estimation based on HLCC and its extensions has been presented for
fan-beam CT by Yu et al. [Yu 06], where they derive a closed form solution to
estimate 2-D object translations directly from the sinogram, using polynomials as
motion model. In a later study they extended their motion class to 2-D translations
and rotations [Yu 07]. In general a closed form solution to motion estimation is of
great interest, however, their methods are currently limited to fan-beam geometries
and have not been applied to any real data which reduces their applicability to real
CBCT acquisitions.

Only a small number of algorithms exist that use CC for motion estimation in 3-D
cone-beam geometries. Leng et al. shows a heuristic extension of an existing fan-beam
CC [Chen 05] with application to motion estimation, yet, the extension is limited
to only small cone-angles. Aichert et al. proposed epipolar consistency conditions
(ECC) based on the equivalence of line integrals over epipolar line pairs [Aich 14,
Aich 15]. ECC showed promising results for estimating rigid motion using six X-
ray source positions distributed in 3-D space around the object. ECC have also been
applied for motion estimation on real short-scan CBCT acquisitions of a head [Frys 15]
and for correction of improper geometric calibration of CBCT systems [Debb 13,
Maas 14]. However, a circular CBCT geometry does not impose ideal conditions for
their algorithm due to unfortunate orientations of epipolar lines in case that all X-ray
sources are located in the same plane [Aich 15].

3.5 Motion Compensation Methods
The final step of motion correction is the reconstruction given the estimated mo-
tion models. Even though motion estimation is often more challenging and time
consuming, it is not necessarily given that reconstruction algorithms exist that are
able to provide exact solutions. In fact, it has been shown that algebraically exact
reconstruction is only possible for a certain class of motion models. Roux et al. de-
rived an exact algorithm for reconstruction of parallel- and fan-beam geometries with
2-D affine motion of the object [Roux 04]. They also show admissibility conditions
that need to be fulfilled during data acquisition given the affine motion. Desbat et al.
showed that an even larger class than affine transformations is possible, with the only
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limitations that rays in parallel-beam geometry remain parallel after the mapping and
rays in a fan-beam geometry also remain a fan-shaped [Desb 07].

More flexibility w. r. t. the motion model may be provided by approximate algo-
rithms. For many applications the limited accuracy of motion estimation or insuffi-
cient motion models build the bottleneck of the motion correction’s performance, with
only little improvement when using exact compensation methods. The scope of this
thesis is restricted to approximate motion compensation methods, that are able to
incorporate arbitrary rigid and nonrigid deformations in projection- or reconstruction
domain.

3.5.1 Updated Backprojection for Affine Motion
A well known compensation method has been introduced by Schäfer et al. [Scha 06]
and Prümmer et al. [Prum 06] for the field of cardiac imaging. The idea is easily
integrated into the standard FDK algorithm shown in Sec. 3.2.3. Let us first present
its application for rigid deformations in projection, as well as reconstruction domain.
The results of motion estimation is a parameter vector α, that contains the coeffi-
cients, describing the affine parameters in 2-D, 3-D or both. Looking at the affine
mapping for a rigid motion model in Eq. (3.36), we can obtain that all kinds of
affine motions can be incorporated into projection matrices. The idea presented in
[Scha 06, Prum 06] is to only manipulate the backprojection step from the conven-
tional FDK (cf. Eq. (3.33)). Its mapping from 3-D to 2-D coordinates is adjusted
by

u = Pk(α) x . (3.44)

Note, that the subsequent backprojection given by Eq. (3.33) remains equal. Only,
the static mapping Pk, that maps x to u has been replaced by the updated pro-
jection matrices Pk(α) according to Eq. (3.36). The algorithm is approximate as
no update of ramp filtering or cosine weighting is performed [Scha 06]. However,
this also ensures that the algorithm has no additional complexity compared to a
static FDK reconstruction, except the computationally cheap matrix multiplications
of Eq. (3.36).

3.5.2 Updated Backprojection for Nonrigid Motion
As for rigid motion only the mapping function needs to be replaced when using a
nonrigid deformation field dk(x,α) in reconstruction domain, i. e., for dimensionality
N = 3. The mapping of 3-D to 2-D coordinates now evaluates to

u = Pk

(
x + dk(x,α)

1

)
. (3.45)

Similarly for 2-D deformations, i. e., N = 2, we may rewrite the mapping function to

û = Pk x

u = û + û3

(
dk(h(û),α)

0

)
. (3.46)
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Note, that the remainder of the backprojection, including distance weighting and
summation, is identical for all motion compensated reconstructions and also for the
static FDK reconstruction. The main benefit of this type of motion compensation
is its simplicity but also its flexibility. The theoretic framework allows all possible
motion models and combinations thereof. However, the approximate nature of the
algorithm requires the deformations to be small to ensure sufficient image quality
[Tagu 08].

3.6 Conclusion
This chapter introduces image reconstruction algorithms and corresponding acquisi-
tion geometries. In addition, the mathematical foundation of the thesis is given by
introducing important concepts such as projection matrices, rigid and nonrigid motion
models and motion compensated reconstruction. In an extensive literature review, a
variety of different motion estimation methods is presented including a detailed intro-
duction of the state-of-the-art motion correction method for weight-bearing imaging
of the knee, based on fiducial markers.

Unfortunately, the majority of the presented approaches for motion estimation
are not directly applicable to weight-bearing imaging of the knee joint. For example,
an acquisition of a prior 4-D CT data, as often done in radiotherapy, is currently
not possible under weight-bearing conditions. Moreover, even if prior 4-D CT data
is available, the motion is not periodic and therefore likely not similar to the motion
from the prior scan. Many approaches for motion estimation in cardiac imaging rely
on an ECG signal. Such surrogate signals do also exploit periodicity which is rarely
given for knee motion. The focus for weight-bearing knee joint imaging lies on an
imaging protocol that adds little to none complexity to the acquisitions, compared to
static scans in supine position. Hence, surrogate signals like external tracking devices
or range imaging cameras are not a desired option.

However, easily accessible prior information exists also for weight-bearing imaging.
For example, all our clinical applications of weight-bearing CBCT of the knee include
a prior, motion-free acquisition in supine position (cf. Sec. 2.3). This data may
be used for motion estimation based on 2-D/3-D registration. Multiple work was
presented for motion estimation of the knee, yet, almost all of this work uses a
single or biplane imaging system. In this case the projection images can usually
be positioned such that no overlap with high-contrast background structures occurs.
In weight-bearing CBCT the knees are imaged using a horizontal trajectory and a
regular standing position, i.e., overlap of Tibia, Femur, Fibula or Patella from left
and right leg but also within each leg is inevitable. This occlusion makes registration
methods that require a segmentation in the projection image domain such as WEMS
[Tsai 10, Lin 13, Zhu 12a, Zhu 12b] hardly applicable and also increase the complexity
for regular, intensity-based algorithms.

Finally, the chapter discusses motion estimation approaches that work without
surrogate signals and prior images. Entropy or total variation have been shown
to be robust, image-based features used for iterative motion estimation. However,
the corresponding measures aim to increase image sharpness and are therefore more
sensitive to geometric blurring or smearing of structures, which is usually related to
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low-frequency motion. High-frequency motion causes streaking artifacts which do not
drastically influence entropy and total variation constraints as they may cause sharp
edges (cf. Fig. 2.6(c)). Sisniega et al. recently proposed an image-based method for
weight-bearing imaging of the knee, based on Entropy and total variation [Sisn 16].
Their results show clear reduction of motion blur, yet, sharp streaking artifacts due
to high-frequency motion could not be removed entirely.

A detailed literature review is provided for CC which are defined in the projection
domain. CC have also been used for motion estimation, where previous work showed
promising results for using ECC or extensions of HLCC for fan- and cone-beam
geometries. However, the majority of CC is still limited to 2-D parallel- or fan-beam
imaging.
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The baseline of this thesis was prior work from Choi et al. who proposed motion-
corrected reconstruction using externally attached fiducial markers [Choi 14a]. Before
acquisition in weight-bearing position, metallic markers are attached to the skin.
They can be tracked in the projection images allowing for motion estimation using a
point-based 2-D/3-D registration process. The method is introduced in more detail
in the literature review of surrogate-based motion estimation methods in Sec. 3.4.2.
Within the scope of this thesis, the proposed method has been steadily enhanced.
One goal was to develop a more robust but also fully automatic detection of markers,
which is shown in Sec. 4.1. The focus in Sec. 4.2 is on improved accuracy but also
robustness of the method. Therefore, an outlier detection method and an advanced
gradient-based optimization scheme is presented. Finally, in Sec. 4.3 we present
multiple methods that allow removal of markers from the reconstruction images, to
avoid high intensity streaking artifacts. The majority of presented approaches are
based on two conference [Berg 14a, Mull 15b] and a journal publication [Berg 16a].

4.1 Robust, Fully Automatic Marker Detection
One drawback of the previously introduced motion correction method [Choi 14c] is,
that it required an initial set of manual annotations for each marker. In a typical
weight-bearing imaging protocol up to 16 markers are distributed around both legs.
Assuming an average of four annotations per marker as reported in [Choi 14c] and
up to six weight-bearing scans, e. g., for the cartilage study (cf. Sec. 2.3.2), a total
of 6 × 4 × 16 = 384 manual annotations may be required for evaluation of a new
subject. Therefore, a fully automatic approach was developed with the goal to reduce
the manual interaction to a minimum, thus, minimizing the overall time needed to
perform motion-corrected reconstructions.

The complete pipeline is shown in Fig. 4.1. The acquired projection images are
given as input indicated by the red, dashed frame. First, the FRST is applied to
enhance the markers and subtract the background information, followed by a Gaus-
sian smoothing and a 3-D backprojection. The FRST filtered projections, but also
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Figure 4.1: Schematic representation of the marker detection and the automatic
detection of their average position in 3-D. As input we have the acquired projection
images denoted by the red, dashed frame. The outputs are 2-D locations uk, mean
marker positions xm in 3-D, and a list of correspondences between xm and uk.

the backprojection result, are then discretized followed by a center point extraction
in 2-D and 3-D, respectively. This yields detected positions uk in projection domain
and initial estimates for the mean marker positions in reconstruction domain xm. An
additional result are the correspondences between a 3-D position and its detections
in projection domain.

In the following sections the individual contributions for a robust, fully automatic
marker-based motion correction are shown. A more robust detection in projection
domain is presented in Sec. 4.1.1. The extraction process of mean marker positions
in reconstruction domain is outlined in Sec. 4.1.2, followed by an explanation of the
method used to determine point correspondences in Sec. 4.1.3.

4.1.1 2-D Detection Using Fast Radial Symmetry Transform

The initial marker detection presented in [Choi 14c] applies the circular Hough trans-
form [Gonz 08] to detect potential positions uk. The transform is based on an edge
extraction step, using the gradient magnitude. Given a specified radius, all pixels
belonging to an edge are assigned a confidence value, which indicates if the pixel
belongs to a circle.

Part of this thesis was a replacement of the circular Hough transform with the
FRST, which has been defined by Loy et al. [Loy 03] to detect radially symmetric
points of interest in images. In contrast to the Hough transform, the FRST does also
take the gradient directions into account.
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(a) Circular Hough transform (b) FRST

Figure 4.2: Comparison of circular Hough transform and FRST w. r. t. their perfor-
mance in separating markers from the background. The visualization windows were
set from zero to the threshold where all beads are visible.

As a first step the gradient images are calculated. Let ∇pk(u) : R2 → R2 be the
gradient of the k-th projection image w. r. t. detector u1 and u2 direction, defined by

∇pk(u) =

∂pk(u)
∂u1

∂pk(u)
∂u2

 . (4.1)

The result of the FRST is a pixel-wise weight for the presence of a symmetric
feature with certain radii, where negative values correspond to dark features and
positive values to bright features. In the following we introduce the main principle
using only a single radius rf , defined in pixel coordinates. First, two images inck(u) :
R2 → R and inck(u) : R2 → R, of same size as the input image are initialized with
zeros, where one holds the orientation information and the other one the gradient
magnitude information.

Let us first define positive and negative locations upos ∈ R2 and uneg ∈ R2 by

upos = u + round
(
∇pk(u)
‖∇pk(u)‖2

rf

)
(4.2)

uneg = u − round
(
∇pk(u)
‖∇pk(u)‖2

rf

)
, (4.3)

where round(·) rounds to the nearest integer at each vector element and ∇pk(u)
‖∇pk(u)‖2

rf
is the gradient direction scaled to length rf . For each pixel location u, orientation
and magnitude images are updated by

inck(upos) = inck(upos) + 1 (4.4)
inck(uneg) = inck(uneg)− 1 (4.5)

magk(upos) = magk(upos) + ‖∇pk(u)‖2 (4.6)
magk(uneg) = magk(uneg)− ‖∇pk(u)‖2 (4.7)

After all pixel locations are processed the final result is built by

f̂rstk(u) = magk(u)
sf

(
|înck(u)|

sf

)crad

, (4.8)
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where

înck(u) =
inck(u) if |inck(u)| < sf

sf otherwise
. (4.9)

Note that crad is a parameter that enforces radial strictness and sf is a scaling pa-
rameter.

Fig. 4.2 shows a comparison of the confidence value using the circular Hough
transform (cf. Fig. 4.2(a)) and the FRST (cf. Fig. 4.2(b)). For both algorithms the
visualization window was adjusted from zero to the minimum threshold such that all
beads are detected. Both algorithms use the same radius rf as input. It can be seen
that the Hough transform is more sensitive to edges of noncircular structures, e. g.,
the bone outlines. In contrast, the FRST could accurately separate the markers from
the background structures. Furthermore, the markers appear more localized in case
of FRST.

After application of the FRST to each projection image, negative and small con-
tributions are removed from f̂rstk(u) by

frstk(u) =
f̂rstk(u)− tproj if f̂rstk(u) > tproj

0 otherswise
, (4.10)

where tproj ∈ R is a manually selected thresholding value that separates the marker
contributions from residual background and noise. After thresholding the method
employs a 2-D connected components analysis [Gonz 08] to identify pixel clusters. A
set of potential marker locations Ûk is extracted from each projection image by

Ûk = {uk | uk = cluster centroid in k-th projection image} , (4.11)
where #Ûk equals the number of identified clusters. Note that #Ûk may deviate from
the actual number of markers, due to wrong detections or markers that are not in
the FOV.

4.1.2 Automatic Extraction of 3-D Reference Positions
A necessary step for marker-based motion correction is to determine initial marker
location xm in reconstruction domain. In [Berg 14a] we proposed an automatic ex-
traction step of these locations without the need of manual annotations.

As a first step the result of the FRST algorithm is convolved by
f̃rstk(u) = frstk(u) ∗ g2

σf
(u) (4.12)

where g2
σf

(u) : R2 → R is an isotropic 2-D Gaussian low-pass filter, σf denotes its
standard deviation, and [ ∗ ] is the 2-D convolution operator. After low-pass filtering
we can observe 2-D blob-like structures centered at marker locations.

Instead of performing an FDK reconstruction on the originally acquired projec-
tions, f̃rstk(u) is directly backprojected to obtain a volume representation. Using
Eq. (3.33) we can write the backprojection as

u = Pk x

ffrst(x) = 1
2

K∑
k=1

1
(u3)2 f̃rstk(h(u)) , (4.13)
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where ffrst(x) : R3 → R is the backprojection result. High-intensity contributions,
belonging to the same marker, should intersect in a single 3-D point during back-
projection, assuming accurate separation of markers and no object motion. If we
relax these constraints to moderate object motion and deviations in marker detection
accuracy, an ideal intersection is no longer given. However, with the application of
the Gaussian low-pass filter g2

σf
(u) we can artificially widen the marker detection to

enforce an overlapping of intensities during backprojection. Thus, ffrst(x) will contain
3-D blob structures. We assume that these blobs will cover the majority of the mov-
ing marker locations and that the centroid of the m-th blob represents the average
marker location xm.

Calculation of connected components requires a binarized image. The threshold
trec is determined automatically by using the maximum entropy method [Saho 88],
which aims to maximize the sum of entropies, given by the gray level distributions
of the segmented region and the residual region. The thresholding and binarization
operation is given by

f̂frst(x) =
1 if ffrst(x) > trec

0 otherswise
, (4.14)

where f̂frst(x) : R3 → {0, 1} is the binarized object function. A 3-D connected
component analysis is performed on f̂frst(x), yielding a centroid for each detected
blob. As an output we obtain a set of average marker locations

X = {xm | xm ∈ (detected centroids of M largest blobs)} . (4.15)

Because the total number M of markers is known, only the M largest blobs are
assigned to marker locations.

4.1.3 Determining 2-D/3-D Point Correspondences
Note that the entries in X are already indexed with the marker number m, whereas
the 2-D candidate points in Ûk are not yet labeled. The correspondences between
these sets are still to be defined. We adopted the method proposed in [Choi 14c] to
extract correspondences, it is summarized by Algorithm 4.1.

Labeling can be executed separately for each projection image. In each image all
3-D marker positions xm are forward projected to the projection domain, followed
by an exhaustive search for the closest Euclidean distance between projected and
detected points. Let us also define a maximum valid distance du in projection domain.
The label m, corresponding to the pair with the smallest distance, is assigned to
the 2-D measurements. If the distance is already larger than du, the assignment
is discarded. In any case, both values are removed from the search space before
repeating the search for the next closest pair. Finally, we obtain sets Uk containing
all assigned ukm for a specific projection image k.

Note that the number of detections #Uk is not necessarily equal to M , as some
markers may not have been detected. It is recommended to adjust detection param-
eters such that 6 ≤ #Uk ≤M for all projection images. Thus, it is ensured that the
subsequent optimization is not ill-posed, using a rigid motion model with six param-
eters per projection image. Adjustments to increase #Uk include an increase of the
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Algorithm 4.1: Algorithm to extract point correspondences between 3-D
marker locations and 2-D marker detections.

input : X, Ûk, Pk

output: Uk
for k ← 1 to K do

// Initialize output and temporal set for 3-D locations
Uk ← {};
X̂ ← X;
while #X̂ > 0 ∧ #Ûk > 0 do

// Min. distance of projected points in X̂ to points in Ûk
ũ, x̃m ← argmin

u,xm

‖u − h(Pk · xm)‖2 ∀u ∈ Ûk ∧ xm ∈ X̂

if ‖ũ − h(Pk · x̃m)‖2 < du then // Is distance small enough?
// Assign marker and proj. index to closest 2-D point
ukm ← ũ;
// Add labeled point to output set
Uk ← Uk ∪ {ukm};

end
// Points are assigned → Remove points from candidate sets
Ûk ← Ûk/{ũ};
X̂ ← X̂/{x̃m};

end
end

maximum allowed distance du, but also a decrease of the binarization threshold tproj
to obtain additional candidate points. Note that both adjustments may also lead to
an increase of wrong detections or false assignments of point correspondences.

4.2 Optimization and Outlier Detection
The rigid motion model, as well as most parts of the optimization are adopted from
[Choi 14c] and have been introduced in Sec. 3.4.2. Thus, a parameter vector α of
length L = 6K is optimized, given the 2-D points in sets Uk and the mean 3-D marker
positions in X. The cost function given in Eq. (3.39) can be adjusted accordingly to

argmin
α

e(α) = argmin
α

K∑
k=1

#Uk∑
m=1

(
1

2K (#Uk)
∥∥∥h(mkm

)
− ukm

∥∥∥2

2

)
, (4.16)

where mkm is the projection of the moved 3-D marker position, given by

mkm = Pk ·Tk(α) · xm .

Note that the motion is encoded in the rigid motion matrices Tk(α). In contrast
to the previously presented cost function in Eq. (3.39), only the variable number of
detections #Uk and two normalization terms have been incorporated.
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Motion compensated reconstruction after optimization is performed using the reg-
ular FDK algorithm described in Sec. 3.2.3 with an updated backprojection approach
given by Equations (3.33) and (3.44) as described in Sec. 3.5.

4.2.1 Gradient of Cost Function
Choi et al. used a Nelder-Mead simplex algorithm to optimize the motion parameters
separately for each projection image. It has been shown that if a gradient can be
obtained from the cost function, it is beneficial to use a gradient-based optimizer,
which is usually more accurate and converges faster [Noce 06]. As part of this thesis
the optimization method was enhanced to a gradient-based method in [Mull 15b]
where the gradient was numerically estimated by building forward-differences. This
was further enhanced to an analytic gradient computation in [Berg 16a]. The gradient
of Eq. (4.16) is given by ∇e(α) =

(
∂e(α)
∂α1

· · · ∂e(α)
∂α6K

)>
. With help of the chain rule

for multivariate functions we can compute the partial derivatives with respect to the
individual elements of the parameter vector by

∂e(α)
∂αl

=
K∑
k=1

#Uk∑
m=1

(
1

K (#Uk)
(
h
(
mkm

)
− ukm

)>
· Jh

(
mkm

)
·Pk

∂Tk(α)
∂αl

x
)

,

(4.17)
where Jh(a) : R3 → R2×3 denotes the Jacobian of function h(a) and is given by

Jh(a) =
( 1
a3

0 − a1
a32

0 1
a3
− a2
a32

)
. (4.18)

A detailed definition of the construction of Tk(α), including its derivatives ∂Tk(α)
∂αl

,
can be obtained from appendix A.1.

Optimization is done simultaneously for all projection images, using a noncon-
strained gradient-based minimization method. The gradient is computed analytically
and the Hessian is approximated using the BFGS method [Noce 06]. The step’s di-
rection is then computed by attempting a Newton step, based on the approximated
Hessian. The step-size is calculated by a line-search method. The rotational pa-
rameters are optimized in degrees instead of radians to ensure that rotation and
translation parameters are in a similar range. For more information it is referred to
the optimizer’s documentation [Maie 10].

4.2.2 Iterative Detection and Removal of Outliers
In addition to a gradient-based optimization, a method is proposed to remove outliers.
Outlier removal is necessary to handle false or missing detections in 2-D and wrong
point correspondences. Within the scope of this thesis we presented an outlier removal
technique based on 3-D spline fitting of the marker trajectory in projection space
[Mull 15a, Mull 15b]. However, the focus here is on the iterative outlier removal
presented by Berger et al. [Berg 16a].

The procedure is based on an iterative removal of the worst contributions, with
repeated optimizations of the cost function in Eq. (4.16). After each optimization,
those ukm are identified that belong to the δ% of pairs that show the largest Euclidean
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(a) (b) (c)

Figure 4.3: Example of streaking artifacts caused by metallic tantalum beads used
for marker-based motion correction. The streaks also propagate through the objects,
reducing image quality at diagnostically important regions (W: 2025 HU, C: 145 HU).

distances w. r. t. their forward projected reference point mkm. Subsequently, those
points ukm are removed from the corresponding measurement set Uk. However, each
time a maximum of one detection per projection image is removed, i. e., the one
showing the largest distance. In addition, the point is only removed if the number
of residual measurements for that projection image is higher than a threshold, i. e.,
#Uk > Mmin. The number of iterative repetitions of the optimization is fixed to Nopt.

4.3 Removal of Markers
One of the main drawbacks of a marker-based motion correction is, that the markers
have a direct influence on the projection images. The attached markers for weight-
bearing imaging are metallic tantalum beads with a diameter of 1 mm. The linear
attenuation coefficient for tantalum is substantially higher than that of regular tissue
or bone. On the one hand, this allows a relatively straightforward detection of marker
positions as described in Sec. 4.1.2.

On the other hand, such high attenuation coefficients can cause photon starvation,
i. e., none or only very little amount of energy is measured at pixel locations covered
by a marker. This causes high or even infinite values, after conversion to the line
integral domain using Eq. (3.3). The ramp filtering step of a reconstruction algorithm
yields a high response, due to the small size of the markers, their high absorption
values, and the filter’s high-pass characteristics. In combination with the limited
detector, but also angular resolution, these effects cause severe streaking artifacts
in the reconstruction domain. Examples of typical metal artifacts are presented in
Fig. 4.3, where we can clearly see the star-like appearance of the markers. Note
that the centers of the markers do not substantially influence the diagnosis, as most
of the interesting anatomies are located inside the knee. However, the streaks also
propagate through the internal structures of the knee, reducing the diagnostic value
of the images, as can be seen in Figures 4.3(b) and 4.3(c).

To avoid a reduction in image quality the metal artifacts need to be corrected.
Large regions are covered by the artifacts in the reconstruction domain, whereas the
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markers are well localized in the projection domain. Thus, the idea is to remove
them directly in the projection images. We can use the detected marker positions
ukm after outlier removal to localize the markers, however, due to missing detections
and outlier removal not all markers will be captured. Therefore, the missing locations
are filled with the forward projections of xm using the estimated motion parameters.
Let us define

Ũk = Uk ∪ {mkm | ukm /∈ Uk ∧ mkm = h(Pk ·Tk(α) · xk)} , (4.19)

to be sets which contain 2-D locations for all markers, thus, #Ũk = M . Removal of
markers is now modeled as a missing data problem. It is assumed that the absorption
values at marker locations, including a certain neighborhood, are defective and need
to be extrapolated. In the process of this thesis a comparison was conducted to
evaluate different extrapolation techniques for their ability to remove metal artifacts
caused by markers [Berg 14a].

The sets Ũk are used as an input to extract sets

Wkm =
{
u | (‖(u − ukm)‖2 < rw) ∧ ukm ∈ Ũk

}
(4.20)

Wk = {u | u ∈ Wkm ∧ m ∈ [1, · · · ,M ]} , (4.21)

where Wkm includes defective pixels for a single marker location and Wk all defects
inside the k-th projection image. Further, rw provides the invalid circular neigh-
borhood. The extrapolation is separately executed for each marker based on the
intensities inside a squared neighborhood, centered at the location of the marker.
These regions can be conveniently defined by a set

Ωkm =
{
u | (‖u − ukm‖∞ < Nw/2) ∧ ukm ∈ Ũk

}
, (4.22)

where the regions’ side length Nw is incorporated by the infinity norm ‖ · ‖∞.
The task of an extrapolation method is to estimated the defective values given

by (Ωkm ∩Wkm) based on the known intensities provided by (Ωkm \Wk). Note that
only missing values Wkm of one marker are extrapolated, based on all valid pixel
intensities in Ωkm. This is important in case multiple defects are located within a
squared neighborhood.

4.3.1 Comparison of Extrapolation Methods
Evaluation included six extrapolation methods for estimation of the missing data. As
an intuitive approach, bilinear interpolation (LinInt) was applied, which estimates
the missing pixel by summation of closest existing pixels, weighted according to their
distance. Another method, which was proposed by Mitrovic et al. [Mitr 13], is based
on the fitting of 1-D cubic B-splines (BSpl) through the known intensities over row
and column directions. Intensities at defect pixels are computed by the average of
the corresponding row and column spline. A natural extension to this concept are
thin plate smoothing splines (TPSS), which are similar to regular TPS introduced
in Sec. 3.4.1, but do not enforce that the spline fits the values at control points
exactly. Control points are the locations of valid pixels, with its values being the
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pixel intensities. Extrapolation is then simply a readout of the fitted spline model at
defect pixel locations.

Two methods are used that are extensions to a Gaussian low-pass filtering. First,
normalized convolution (NConv) is applied as previously proposed by Knutsson et al.
[Knut 93]. It represents a pixel-wise division of the low-pass filtered projection image
and the low-pass filtered defect mask

pcorr
k (u) = g2

σnc(u) ∗ (pk(u)wk(u))
g2
σnc(u) ∗ wk(u) (4.23)

wk(u) =
0 if u ∈ Wkm

1 otherwise
, (4.24)

where (pk(u)wk(u)) sets all defect pixels to 0 and g2
σnc(u) represents a 2-D Gaussian

low-pass filter with standard deviation σnc. In addition the subtract-and-shift (SAS)
approach proposed by Schwemmer et al. [Schw 10] is applied. It aims to remove high-
density objects such as catheters while preserving occluded edge information. First,
the projection images are filtered with a high-pass filter. The resulting intensities are
used to replace defect pixel regions. As a final step the mean of the defect regions is
shifted such that it aligns with the neighboring, valid pixels.

The last method is spectral interpolation (SpecInt) proposed by Aach et al.
[Aach 01]. It is an iterative deconvolution method defined in frequency domain that
estimates the entire corrected projection image based on the spectrum of pk(u) and
wk(u). It has been shown that SpecInt minimizes the SSD between corrected and
uncorrected image over all valid positions in (Ωkm \ Wk). Finally, only the defect
pixels are copied from the resulting corrected image.
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A marker-based motion correction method for weight-bearing CBCT imaging of
knees, has been presented in Sec. 3.4.2. As part of this thesis, several extensions
to the marker-based methods have been made which are explained in more detail in
Chap. 4. Even though this method showed promising results for motion correction,
several aspects reduce its practical applicability.

First, the time needed for attaching the markers is not to be underestimated.
Markers need to be attached carefully around the knee, such that as little as pos-
sible overlaps in projection domain occur. Also their arrangement should be well
distributed in 3-D to achieve a well conditioned cost function. This additional time
interferes directly with the acquisition protocol which may cause patient discomfort
and inconveniences in clinical routine. It also remains uncertain whether the motion
estimated by markers attached to the skin precisely reflects the internal motion at the
joint which may be nonrigid due to joint rotations. Finally, the markers modify the
projection images, causing streaking artifacts of high intensity which require removal
of the markers prior to reconstruction, as shown in Sec. 4.3.

As a consequence a motion correction approach that can be applied without al-
terations to the acquisition protocol is desirable. Thus, the total acquisition time can
be substantially reduced which is of great benefit for patients as well as clinics. A
multitude of motion estimation algorithms based on an additional artifact-free acqui-
sition are presented in Sec. 3.4.3, usually requiring some sort of image registration
techniques. All clinical studies performed in context of this thesis include a prior,
motion-free acquisition in supine position, as shown in Sec. 2.3. This chapter de-
scribes how this data may be used for nonrigid motion estimation based on 2-D/3-D
registration. It starts with an overview in Sec. 5.1 that provides an outline of the pro-
posed method and includes a short summary of 2-D/3-D registration. Methodologies
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Figure 5.1: Outline of the registration-based motion correction approach. Inputs
are segmented volumes of femur and tibia and the projection images acquired under
weight-bearing conditions.

for the generation of DRR images are presented in Sec. 5.2. Two different similarity
measures are used for image registration. They are introduced in Sec. 5.3, followed
by the details on cost function optimization and temporal regularization in Sec. 5.4.
The algorithm includes the extrapolation of nonrigid motion which is outlined in
Sec. 5.5. Finally, Sec. 5.6 discusses a method to improve registration accuracy in case
of real acquisitions. This chapter builds on a conference publication [Berg 15] where
the method was applied to simulated data and a journal publication [Berg 16a] that
provides evaluations on real data and several other advancements.

5.1 Method Overview
The important steps of the algorithm are outline in Fig. 5.1. The main idea is
to apply 2-D/3-D registration between each projection image and each segmented
bone volume. It can be assumed that bones move only rigidly over time, thus the
registration for each bone is limited to a rigid motion model. A total of eight bones
is present in two knees (i. e., femur, tibia, patella, and fibula). However, to reduce
complexity of the registration approach we focus only on femur and tibia, which build
the knee joint and are also the largest bones. Thus, the inputs to the method are the
acquired weight-bearing projection image stack, as well as segmented volumes of the
motion-free scan in supine position, showing tibia and femur from left and right leg.
For improved clarity the input data is emphasized by a dashed, red frame in Fig. 5.1.
As a first step the segmented volumes need to be roughly aligned to the weight-bearing
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Figure 5.2: Overview of a 2-D/3-D registration approach. DRR images are rendered
from the volume based on the current motion estimate. These are compared by a
similarity measure, which is iteratively optimized by adjusting the motion estimates.

scan, as they originate from an entirely different coordinate system, i. e., in supine
and standing position. This is achieved by an initial 3-D/3-D registration between
the segmented bones and a reconstruction of the weight-bearing acquisition without
motion correction. As the pose of the bones among one other may be different in
supine and standing position, this step is required for each of the segmentations.
It is worth noting that the 3-D/3-D registration does not correct for any patient
motion but merely aligns the coordinate systems of the segmentations and the weight-
bearing acquisition to provide a reasonable initialization for the subsequent 2-D/3-D
registration. Patient motion is now estimated by registration of each bone to each of
the acquired projection images, yielding the individual rigid motion parameters for
each bone over time. As a final step the nonrigid motion between the bones, e.g., at
muscle or skin tissue, is estimated by a TPS extrapolation as explained in Sec. 3.4.1,
resulting in individual 3-D deformation fields for each projection image.

2-D/3-D registration is the most essential part of the algorithm as its accuracy
has a direct impact on the image quality of the final reconstruction. The overview
of the proposed 2-D/3-D registration method is shown in Fig. 5.2 and refers to the
“projection strategy” as explained in [Mark 12]. Ray casting is used to build DRR
projection images of the segmented volumes, given the currently estimated motion
parameters. These images are then compared to the acquired projections using a
suitable similarity measure. A nonlinear optimizer aims to iteratively minimize (or
maximize) the similarity measure by adjustment of the motion parameters. To in-
corporate prior information on the parameters a regularizer may be provided to the
optimizer, e. g., to enforce smooth variations of motion parameters over time.

5.2 Digitally Rendered Radiographs
The task of creating a DRR, given motion parameters and the volume data, is often
done by ray casting [Goit 83]. For each detector pixel discrete line integrals through
the volume are computed on rays connecting the virtual X-ray source and the pixel
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location. Essentially, it is a modified version of the X-ray transform for CBCT ge-
ometries described in Eq. (3.13), where the source location ck(α) : RL → R3 and
the ray direction rk(u,α) : RL+2 → S3 can be extracted from the corresponding
projection matrix Pk(α) [Hart 04, pp. 161f.]. Rigid motion may be incorporated by
α according to Eq. (3.36). Using Eq. (3.13) we can define the motion dependent
DRR images dk(u,α) : RL+2 → R by

dk(u,α) =
∞∫
0

f
(

ck(α) + βrk(u,α)
)

dβ , (5.1)

where β is the differential of the line integral which usually has its upper limit when
the ray intersects with the detector. A majority of the similarity measures used
in skeletal 2-D/3-D registration are based on the gradient images. Similar to the
gradient of the acquired projections defined in Eq. (4.1), we can obtain the gradient
of dk(u,α) by

∇dk(u,α) =

∂dk(u,α)
∂u1

∂dk(u,α)
∂u2

 . (5.2)

An estimation of ∇dk(u,α) : RL+2 → R2 can be done by convolutions with the Sobel
filter kernels for horizontal and vertical direction. In addition to the computational
complexity, this may also cause artificial edges in DRRs in case the segmented volume
is truncated.

In the presented method, we avoid these effects by generating the gradient DRRs
directly, based on the precomputed gradient ∇f(x) : R3 → R3, defined in volume
domain. It was shown by Livyatan et al. and Wein et al. [Livy 03, Wein 05], that

∇dk(u,α) = Duv
k (α)

∞∫
0

β · ∇f
(

ck(α) + βrk(u,α)
)

dβ , (5.3)

where the volume gradient is weighted by the length of the line integral β during
integration. Further, the projection of the volume gradient to the detector domain is
done by building the inner product with directions of the detector u- and v-axis, in the
world coordinate system. They are represented by a function Duv

k (α) : RL → R2×3

that returns a matrix which has the directions of u- and v-axis on its rows. Note that
Duv
k (α) can be extracted from the projection matrices Pk(α).

5.3 Similarity Measures
A challenging part of 2-D/3-D registration is to find an appropriate similarity function
to compare DRRs with the acquired data. Two different measures are compared in
this work w. r. t. the final image quality of the reconstruction. The well known GC
[Penn 98] is used, which computes the normalized cross correlation between DRR and
vertical as well as horizontal gradient images. Additionally, the NGI is applied, that
has been reported to provide increased stability in presence of outlier intensities and
shall be a better choice in case of overlapping structures [Otak 13]. Both measures
compare projection images in the gradient domain and therefore have their focus on
aligning edges.
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5.3.1 Gradient Correlation
The most popular similarity measure for 2-D/3-D registration of high density struc-
tures is GC. It was initially proposed by Penney et al. in context of a comparison
of similarity measures [Penn 98]. In the following we present the formal definition
of the GC measure. The gradient of the DRR ∇dk(u,α) is directly rendered using
Eq. (5.3), whereas the gradient of the acquired projection images ∇pk(u) is computed
prior to optimization using convolution-based Sobel filtering. The GC is defined to be
the mean of normalized cross correlations between the individual partial derivatives
in ∇pk(u) and ∇dk(u,α). It may be formulated by

GC(p, d,α) = 1
2

K∑
k=1

∑
u∈Πk

(
(∇dk(u,α))> ·Y−1 · ∇pk(u)

)
. (5.4)

The set Πk defines ROIs on the projection images used for computation of the
GC measure. The regions may differ for different view angles which is indicated by
the subscript k. Normalization is important to account for intensity differences of
acquired and DRR images. The normalization part of the individual cross correlations
are implemented by a division with the standard deviations of gradient intensities in
regions Πk, which is incorporated by the weighting matrix Y . We define the set Πk

by
Πk = {u | ‖∇dk(u,α)‖2 > 0} , (5.5)

such that only those areas are included where the DRR images have nonzero values.
The weighting matrix is given by

Y =


√∑

u

(
∂dk(u,α)
∂u1

)2
√∑

u

(
∂pk(u)
∂u1

)2
0

0
√∑

u

(
∂dk(u,α)
∂u2

)2
√∑

u

(
∂pk(u)
∂u2

)2

 . (5.6)

Using cross correlations on the gradient images, rather than on the pixel intensities
leads to an increased robustness in presence of background materials such as tissue,
muscle or skin.

5.3.2 Normalized Gradient Information
NGI has been developed with the goal to achieve an increased robustness in presence
of overlapping structures that can cause misleading edges. Gradient directions are
compared by computing the dot product for each location in Πk. The result is then
weighted pixel-wise by the gradient magnitude. An improve robustness is achieved
by using only the minimum of the two gradient magnitudes as a weighting factor,
corresponding to either DRR or acquired image. It was shown that this weighting
scheme is more robust in presence of overlapping structures causing interfering edges
[Otak 13]. However, compared to the GC approach, no intensity normalization can
be applied. As a consequence we propose a manual scaling of the DRRs to roughly
adjust their gray levels to those of the acquired data. The equation for the NGI can
be given by



64 Image-Based Motion Correction Using 2-D/3-D Registration

NGI(p, d,α) = GI(p, d,α)
GI(p, p) , (5.7)

where the numerator is defined by

GI(p, d,α) =
K∑
k=1

∑
u∈Πk

(
1
2

(∇dk(u,α))> ∇pk(u)
‖∇dk(u,α)‖2 ‖∇pk(u)‖2

+ 1
2

)
(5.8)

×min (‖∇dk(u,α)‖2 , ‖∇pk(u)‖2)

and the constant denominator by

GI(p, p) =
K∑
k=1

∑
u∈Πk

‖∇pk(u)‖2 . (5.9)

In case of the NGI measure, the ROIs defined by Πk can be adjusted such that
they cover all pixel locations. This is because the gradient magnitude of ∇dk(u,α)
is zero at locations which are not covered by the projection of the volume. These
contributions have no influence on the cost function as they are canceled out by the
minimum operator in Eq. (5.8).

5.4 Temporal Regularization and Optimization
In contrast to the marker-based approach presented in Chap. 4, the parameter vector
α has a length of L = 6KB and consists of six rigid parameters for each of K
projections but also for each of the B segmented bone volumes. The arrangement of
parameters inside vector α is given by

α =
(
ζ>11, · · · , ζ>K1, ζ

>
12, · · · , ζ>KB

)>
, (5.10)

where ζkb ∈ R6 are vectors with rotation and translation parameters for the k-th
projection and the b-th segmented volume. They are defined by

ζkb =
(
φxkb φykb φzkb txkb tykb tzkb

)>
kb

(5.11)

=
(
αl̂+1 αl̂+2 αl̂+3 αl̂+4 αl̂+5 αl̂+6

)
l̂ = (6K(b− 1) + 6(k − 1)) ,

where l̂ determines the position in α, given k and b. The dimensionality of the
optimization problem can be very large, where the number of unknowns are computed
by 6KB, which equals up to 24 parameters per projection image in our case. Thus,
a regularization of the parameters may be beneficial to improve convergence speed
and robustness of the optimization. We assume that the variation between motion
states is physically limited by the anatomy of the knee joint. Therefore, a temporal
smoothness regularization is added to the original cost function. The goal is to limit
high temporal variations, computed by subtraction of the estimated parameters by



5.5 Nonrigid Motion Field Generation 65

their Gaussian filtered version. This represents a minimization of high temporal
frequencies contained in the motion parameters.

rtmp(α) =
K∑
k=1

B∑
b=1

∥∥∥ζkb − (ζ ∗ gσt(k)
)
kb

∥∥∥2

2
(5.12)

Eq. (5.12) shows the temporal regularizer rtmp(α) : RL → R, where gσt(k) is a 1-D
Gaussian filter kernel, where σt defines the standard deviation over the temporal
direction k. Further,

(
ζ ∗ gσt(k)

)
denotes the convolution that applies the filter in

direction of k.
The combined cost function is then built using the method of Lagrangian multi-

pliers
argmin

α
−GC(p, d,α) + η rtmp(α) , (5.13)

where GC(p, d,α) may be replaced by NGI(p, d,α) if desired. Note that GC but also
NGI need to be maximized. This is usually done by minimization of the negative
similarity measure as indicated in Eq. (5.13).

The same nonlinear optimizer as for the marker-based cost function is used (cf.
Sec. 4.2). All parameters are estimated simultaneously as the regularization pro-
hibits sequential optimization. The gradient is estimated by forward-differences and
the Hessian is approximated using the BFGS method [Noce 06]. The step’s direction
is then computed by attempting a Newton step based on the approximated Hessian.
The step-size is calculated by a line-search method. The rotational parameters are
optimized in degrees instead of radians to ensure that rotation and translation pa-
rameters are in a similar range. For more information it is referred to the optimizer’s
documentation [Maie 10].

5.5 Nonrigid Motion Field Generation
Before a motion compensated reconstruction can be performed the individual bone
motions estimated by the 2-D/3-D registration are combined to a global, nonrigid
motion. This is done by the TPS extrapolation introduced in Sec. 3.4.1. The goal is
to obtain a separate motion field dk(x,α) for each projection image. During segmen-
tation of the bones in the artifact-free, supine scan, not only volumes are obtained
but also the bones’ surfaces represented by meshes of triangles. The meshes consist of
surface normals and vertices, where the latter can be used directly as control points
for the TPS. Let T init

b ∈ R4×4 be the initial rigid motion that was determined by
manual 3-D/3-D registration of the segmented bones and a weight-bearing recon-
struction without motion correction. Also, T̂kb ∈ R4×4 are the results of the 2-D/3-D
registration for each bone and projection image. Note that the dependency of motion
matrices on parameter vector α is omitted for better visualization.

A common problem when performing motion correction is that no fixed coordinate
system exists due to the patient motion, where all motion states represent a valid
coordinate system. Therefore, a time point k̂ needs to be selected as a reference,
such that the common coordinate system may be presented by T̂ k̂b. It is recom-
mended to choose k̂ such that is corresponds to a view direction that guarantees a
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high registration accuracy, e. g., a projection image with good image quality and no
occlusions or overlapping structures. For knees, a posteroanterior viewing direction
is recommended to avoid overlapping bones. After selection of k̂, all estimated trans-
formations need to be adjusted to make sure that they also operate in the coordinate
system of the reference. The adjusted motion matrices Tkb can be obtained by

Tkb = T̂kb T̂
−1
k̂b . (5.14)

Let us now define ϑ̂ab ∈ R3 to be the a-th vertex located on the surface of the b-th
bone. Note that the index a is omitted in the following derivations to preserve clarity.
All vertices are defined in the supine coordinate system and are now transformed to
the reference coordinate system of the weight-bearing scan. We define ϑb ∈ R3 to be
the static vertex location for time point k̂. It can be computed by

ϑb =
(
T̂ k̂b T init

b

)
ϑ̂b , (5.15)

where the corresponding moving vertices are given by

ϑkb = Tkb ϑb . (5.16)

We can now compute known translations for each vertex and time point by (ϑkb−
ϑb) ∈ R3. These translations can be plugged into the TPS equation presented in
Eq. (3.37), which yields a system of linear equations that can be solved for the splines’
coefficients by a closed form solution [Davi 97]. To constrain the TPS model at the
periphery of the FOV the corners of the reconstructed volume are added as control
points. The translations at corner locations are computed using the rigid motion of
the geometrically closest bone, e.g., for the left-superior corners the motion of the
left femur is used.

The resulting deformation function dk(x,α) can now be incorporated into a mo-
tion compensated reconstruction. The regular FDK algorithm is used as described
in Sec. 3.2.3, yet, the updated backprojection approach given by Equations (3.33)
and (3.45) is needed (cf. Sec. 3.5). Note, that dk(x,α) needs to be evaluated during
backprojection for each voxel location x and each projection image, which increases
computational complexity.

5.6 Noise Reduction in DRR Images
When applied to real data, we could observed a high noise level in the gradient of
the DRRs which influenced the accuracy of the 2-D/3-D registration method. The
noise originates from the segmented bones in the supine scan. The following steps are
suggested to reduce the effect of noise. First, edge-preserving noise filtering [Maie 11b]
can be applied in the supine reconstruction, where we suggest to apply a 3-D bilateral
filter [Lorc 15, Maie 15a] prior to the calculation of the volume gradient. Further
noise reduction can be achieved by a manipulation of the segmentation masks. As
the trabecular bone as well as the bone marrow are rather homogeneous they contain
only few structures useful for the 2-D/3-D registration when using gradient-based
similarity measures. Hence, major parts of these regions can be removed during
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(a) Original masks (b) Adjusted masks for DRR generation

Figure 5.3: Variation to 3-D segmentations to reduce the amount of noise in DRRs.

segmentation such that only cortical bone is left which corresponds to the outline of
the bones.

This removal step is done with 3-D morphological operators. First, an erosion
applied to the original segmentation masks is applied and in another step a dilation.
Subtracting eroded from the dilated mask gives a segmentation that has its focus on
the bone outline. The mask adjustment is illustrated in Fig. 5.3.
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It was shown that motion correction for weight-bearing CBCT of knees may be
achieved by a marker-based approach. However, markers cause several problems dur-
ing acquisition, but also for the image reconstruction process, as outlined in Chap. 4.
As part of this thesis a surrogate-free motion correction method is proposed that
aims to alleviate the drawbacks caused by a marker-based approach. It is based on
2-D/3-D registration of a prior, artifact-free reconstruction to the projection images
of a weight-bearing scan and is presented in Chap. 5. Current research protocols
for weight-bearing imaging of the knee joint involve this type of prior acquisition to
obtain a non weight-bearing reference volume, required for associated clinical studies.
However, in a potential clinical application this prior scan may not always be vital
for diagnosis, therefore, causing unnecessary dose for the patient. In case no mark-
ers are used and also no additional motion-free scan is available, motion correction
needs to be done using only the acquired projection images. Methods that fall in this
group are introduced in Sec. 3.4.4 and are either based on assumptions of the image’s
intensities in reconstruction domain or on CC defined in the projection domain. A
benefit of using CC is, that they do not require a reconstruction to evaluate the cost
function and are therefore computationally efficient.

Part of this thesis is a method based on FCC defined in the projection domain,
as introduced in Sec. 3.4.4. FCC have been extended to the cone-beam geometry to
find ideal sampling conditions for CBCT [Desb 04, Brok 06]. Up to now they have
not been used for artifact correction. This chapter is structured as follows: First,
a practical extension of FCC from fan- to cone-beam geometry is given in Sec. 6.1,
based on findings of Brokish et al. [Brok 06]. Using the derived FCC, a cost function
for motion estimation based on arbitrary motion models is defined in Sec. 6.2. An
extension to a particularly efficient implementation of the cost function is given in
Sec. 6.3. It is based on a motion model that estimates horizontal but also vertical

69
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Figure 6.1: Example of a sinogram and the triangular regions of the FCC.

detector shifts with the goal of correcting for 3-D translational object motion. In
Sec. 6.3.2 it is shown that the cost function is invariant to constant detector offsets.
A regularizer to cope with this invariance is proposed in Sec. 6.4, together with details
on optimization and motion compensated reconstruction. Finally, the discretization
issues as well as implementation details are discussed in Sec. 6.5. The concepts
presented in this chapter are based on a conference contribution proposed for the
fan-beam geometry [Berg 14b] and a journal publication dedicated to an application
to CBCT [Berg 16b].

6.1 FCC and their Extension to CBCT
The basic concept of FCC have been introduced in Sec. 3.4.4, where a detailed re-
view of various CC is given. In Fig. 6.1 an illustration of the property is provided.
Fig. 6.1(a) shows a fan-beam sinogram of a head phantom and Fig. 6.1(b) depicts the
logarithmic representation of the absolute value of the sinogram’s spectrum, where
we can clearly see the triangular regions defined by the FCC. As shown in Sec. 3.4.4,
the FCC for fan-beam CT can be defined by the inequality given in Eq. (3.43) which
is an approximate definition proposed by [Mazi 10]. Thus, the shape and orientation
of the triangles in Fig. 6.1(b) may be defined by∣∣∣∣∣ ω

ω − ξ(S +D)

∣∣∣∣∣ > rp
S

, (6.1)

where ω is the frequency axis corresponding to the rotation angle λ and ξ is the
frequency axis associated with the detector u-axis. Their units are given by rad−1

and mm−1, respectively. As explained in Sections 3.2.2 and 3.2.3 the variables S and
D describe the acquisition geometry and correspond to SID and DID, respectively.
Further, rp defines the maximum extent of the object w. r. t. the rotation center
of the acquisition system. In general, CC describe mathematical properties of the
projection data, that need to be fulfilled by an ideal acquisition. The FCC is valid for
continuous projection images, using a full rotation of the X-ray source on a perfect
circular geometry. The projection images are also assumed to have an infinite extent,
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i. e., no truncation is possible and the physical model is restricted to monochromatic
absorption as described in Sec. 3.2. If these assumptions are not met, this can lead
to an increase of energy in the triangular regions, which was exploited several times
for artifact correction in fan-beam CT [Karp 88, Xia 95, Abel 09, Pohl 14].

In a publication associated with this thesis, Berger et al. [Berg 14b] showed that
also unusual motion of the scanner or patient can violate the requirements of FCC.
The total energy inside the triangular region increases when periodical translating the
object during a scan. This observation allows us to use FCC as a cost function, such
that the energy is minimized by optimization of a motion model defined in projection
domain. Initial work for motion compensation in fan-beam CT has been presented
in [Berg 14b].

For an extension to the cone-beam geometry we first introduce the frequency
variable ψ for the vertical detector directions v. The idea is to apply the 2-D fan-
beam properties of Eq. (6.1) directly in the 3-D Fourier domain of the projection
images. Brokish et al. and Desbat et al. investigated the essential support of this
Fourier domain, where they derived sampling conditions to find maximum sampling
distances in detector and angular directions to allow for a reconstruction without
aliasing artifacts [Brok 06, Desb 04]. The essential support can be interpreted as the
opposite of the triangular regions, describing spectral areas that possibly contain
information about the object. An important finding of Brokish et al. was, that for
the majority of practical cone-beam devices, it is sufficient to determine the support of
ω for a fixed value of ψ = 0, which is equal to the 2-D fan-beam case. The variations
of the support region along ψ-axis are especially small in presence of a small cone-
angle [Brok 06]. This is the case for most C-arm CBCT devices, where the systems
described in Chap. 2 have a cone-angle of (2κ′) ≈ 14° and a fan-angle of (2γ′) ≈ 18°.
Based on a numerical simulation they show that the support’s variation along ψ
direction is negligible. Thus, we propose a straightforward extension of the fan-beam
properties presented in Eq. (6.1) such that the triangular regions are simply extended
in direction of ψ. This means that the zero regions in the 3-D Fourier transform of
the projection stack are assumed to be independent of ψ. Thus, Eq. (6.1) also holds
for the cone-beam geometry without further modification.

6.2 FCC With Arbitrary Motion Models
In the following, we present a cost function formulated for sampled data. Thus it can
be applied directly to discretized projection images. The formulation is based on K
projection images containing I and J pixels in u and v direction, respectively. This
results in a total of C = I × J ×K values that are measured during an acquisition.
The cost function for CBCT may be defined by

e(α) = 1
2

∥∥∥∥W (F p(α))
∥∥∥∥2

2
, (6.2)

where F ∈ CC×C is a symmetric discrete Fourier transform (DFT) matrix that per-
forms the Fourier transform in all three dimensions and p(α) : RL → RC computes
a vector that contains all pixel intensities of the measured projection images. It is
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based on a motion model defined in the projection domain given the motion param-
eters in α. The discretized mask which determines the triangular region is given by
W = diag(w) ∈ RC×C , which is the diagonal matrix of vector w ∈ RC that holds
the zero regions. The function diag(·) creates a diagonal matrix where the diagonal
elements are taken from the input vector.

Let us also define discrete values ξi, ψj and ωk for the axes in Fourier domain
corresponding to the detector directions u and v as well as to the rotation angles λ,
respectively. Using the sampling intervals ∆u, ∆v, and ∆λ, defined in Sec. 3.2.5,
they can be computed by

ξi = freq(i,∆u, I)
ψj = freq(j,∆v, J) (6.3)
ωk = freq(k,∆λ,K) ,

where function freq is defined by

freq(idx,∆, Z) =
idx− 1− bZ2 c

Z∆ .

freq computes the discrete values of the frequency axis for a signal of length Z, a
discrete index idx ∈ [1, · · · , Z], and a sampling interval of ∆. The mask vector w
can be defined by

w =
(
w1,1,1, · · · , wi,j,k, · · · , wI,J,K

)>
, (6.4)

where the indices refer to the pixel location and the projection index. As determined
at the end of Sec. 6.1 we can use Eq. (6.1) without any alterations, to compute the
entries of w by

wi,j,k =
1, if

∣∣∣ ωk

ωk−ξi(L+D)

∣∣∣ > rp

L

0, otherwise
. (6.5)

6.3 Efficient Implementation for Detector Translations
In the following we restrict our motion model to 2-D translations of the detector. In
contrast, many applications seek to compensate for 3-D movement of a patient. Still,
translation parallel to the detector can be explained very well by detector shifts. The
image coordinate system is aligned with the plane of rotation for CBCT acquisition.
In that case, shifts in v direction directly account for translations along the z-axis
in the world coordinate system, except that cone-beam artifacts may be slightly
amplified. Accordingly, 3-D motion parallel to detector u-axis can be covered by shifts
in detector u. Finally, a 3-D translation towards and away from the detector makes
the object or patient appear bigger and smaller, which could be modeled by image
scaling. The distance an object has to be moved towards the detector to introduce an
error of about one pixel depends on fan and cone angles. In conventional C-arm CBCT
data it is considerably larger than the amount of motion parallel to the detector,
required to introduce an error of similar magnitude. In consequence, for practical
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applications detector shifts can recover 3-D movements in very good approximation.
In addition, translations of the detector can be applied in the 2-D Fourier domain of
the individual projection images with help of the shift theorem. Thus computational
complexity is reduced as the 2-D Fourier transform of the projection images may be
precomputed. The parameter vector α has a length of L = 2K and is given by

α =
(
s1, t1, s2, t2, · · · , sK , tK

)>
, (6.6)

where sk and tk are translations in u and v direction for projection index k. As the
2-D fast Fourier transform (FFT) of the projection images can be precomputed, an
evaluation of the cost function uses only the 1-D Fourier transforms over λ. The 3-D
FFT has a complexity of O(C logC), which is now reduced to O(C logK). The cost
function in Eq. (6.2) can be reformulated to

e(α) = 1
2

∥∥∥∥o(α)
∥∥∥∥2

2
= 1

2

∥∥∥∥W (Fλ (H (α) Fuvp))
∥∥∥∥2

2
, (6.7)

where the function o(α) : RL → CC×C represents the inner part of the cost function,
i. e., the argument of the squared L2 norm. Further, Fλ ∈ CC×C and Fuv ∈ CC×C

are the DFTs over the angles and the projection images, respectively, and can also be
denoted by matrix multiplications. Further, p ∈ RC contains the acquired projection
data without application of any motion motion model. The motion is now incorpo-
rated by a function H (α) : RL → CC×C , which builds a diagonal matrix of phase
factors, encoding the translations provided by α. We define that first the rows u,
then the columns v, and then the angles λ are mapped to the linear vector p. Hence,
the structure of H (α) is given by

H (α) = diag
((

e−i2π(ξ1s1+ψ1t1), · · · , e−i2π(ξIs1+ψJ t1),

e−i2π(ξ1s2+ψ1t2), · · · , e−i2π(ξIsK+ψJ tK)
)>)

.

(6.8)

6.3.1 Gradient of Cost Function

Gradient-based optimizers can potentially yield faster convergence and more accurate
results than non-gradient-based optimizers [Noce 06]. The duration of the optimiza-
tion can be substantially faster if the gradient or Hessian can be provided analytically
and if their computation can be implemented efficiently. The gradient of the cost
function in Eq. (6.7) is defined by

∇e(α) =
(
∂e(α)
∂s1

, ∂e(α)
∂t1

, · · · , ∂e(α)
∂sK

, ∂e(α)
∂tK

)>
, (6.9)
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where the individual partial derivatives w. r. t. the detector shifts are computed by
∂e(α)
∂αl

= ∂

∂αl

1
2

∥∥∥∥o(α)
∥∥∥∥2

2

= ∂

∂αl

1
2
(
o(α)Ho(α)

)
(6.10)

= o(α)H
(
∂

∂αl
o(α)

)
(6.11)

=
(
pHFuv

H H (α)HFλ
HW H

)
W Fλ

(
∂

∂αl
H (α)

)
Fuvp (6.12)

= pHFuv
H H (α)HFλ

HW Fλ

(
∂

∂αl
H (α)

)
Fuvp . (6.13)

(·)H denotes the Hermitian of a vector or matrix, i. e., the transposed, complex con-
jugate of the matrix. Further, we define αl to be the l-th element of α, which can
correspond to either sk or tk. That means it is a translation in either u or v direction
associated with the k-th projection image. Given the structure of α introduced in
Eq. (6.6), the indices are connected by k = dl/2e, such that

αl =
sk if mod(l, 2) 6= 0
tk, otherwise

. (6.14)

In Eq. (6.10) the squared L2 norm for complex numbers is decomposed into a dot
product, which can be easily derived as shown in Eq. (6.11). In Eq. (6.12) o(α) was
replaced by its components according to Eq. (6.7). It can be shown that W H = W
and W HW = W , due to the diagonal and also binary structure of W . Thus, we
obtain Eq. (6.13) where W appears only once.

In Eq. (6.15) we introduce ψ ∈ CC , containing the partial derivatives of the
arguments given in the exponential functions of H (α) (cf. Eq. (6.8)).

ψ =
 (0, · · · , 0, −i2πξ1, · · · , −i2πξI , 0, · · · , 0)> if αl = sk

(0, · · · , 0, −i2πψ1, · · · , −i2πψJ , 0, · · · , 0)> if αl = tk
(6.15)

To conclude gradient computation, we obtain the partial derivatives of the motion
matrix H (α) by

∂

∂αl
H (α) = diag (ψ) H (α) . (6.16)

It is worth noting, that sk or tk causes only variations to the 2-D DFT of the k-th
projection image. As a consequence, ψ is sparse and has only I × J nonzero entries
in the range of [(k − 1)IJ + 1, (k)IJ ]. It is well known that the multiplication by
diag (ψ) in Fourier domain, is associated to a spatial derivative of the k-th projection
image in either u or v direction.

6.3.2 Invariance to Static Detector Offsets
In the following we show that the FCC are invariant to temporally constant shifts,
e. g., a fixed detector offset. Let us define ϕi,j,n ∈ C to be a coefficient of the 2-D DFT
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of the n-th projection image. Also, c1 ∈ R and c2 ∈ R are two constants representing
a static detector offset in u and v direction, respectively. Further, oi,j,k(α) : RL → C
is a function that computes the coefficient of the 3-D DFT, located at frequency bin
(i, j, k). It may be computed by

oi,j,k(α) = wi,j,k
K∑
n=1

ϕi,j,n e−i2π(ξisn+ψjtn) e−i2πkn/K . (6.17)

Let us now set all shift values to the introduced constants, i. e., sn = c1 and tn = c2
for all n ∈ [1, · · · , K], such that oi,j,k is independent of α. Then the phase factor
may be factorized out of the DFT’s summation by

oi,j,k = wi,j,k e−i2π(ξic1+ψjc2)
K∑
n=1

ϕi,j,n e−i2πkn/K (6.18)

oi,j,k = wi,j,k e−i2π(ξic1+ψjc2) Φi,j,k , (6.19)

where Φi,j,k ∈ C is a coefficient of the 3-D DFT of projection data p, at frequency
bin (i, j, k). FCC considers only the magnitude of the Fourier coefficients, which we
realized by the complex form of the squared L2 norm. Eq. (6.7) may be reformulated
by

e(α) = 1
2

I∑
i=1

J∑
j=1

K∑
k=1

wi,j,k oi,j,k oi,j,k . (6.20)

Applying Eq. (6.19) to Eq. (6.20) yields

e(α) = 1
2

I∑
i=1

J∑
j=1

K∑
k=1

wi,j,k Φi,j,k Φi,j,k ei2π(ξic1+ψjc2) e−i2π(ξic1+ψjc2)︸ ︷︷ ︸
=1

, (6.21)

which shows that the cost function is indeed invariant to any constant translations
c1 or c2.

6.4 Regularization, Optimization and Motion Com-
pensation

The implications of the cost function’s invariance to static detector shifts are twofold.
Given an alignment of detector v-axis with the rotation axis, a constant offset in v
direction is similar to an offset of the object in z direction. However, a detector offset
orthogonal to the CBCT’s rotation axis, e. g., in u direction, causes distortions in the
reconstructed image. A possible solution to this limitation is to enforce fixed values
for the shifts in a selected projection image. In our method we fixed the motion
parameters of the first projection image to s1 = s̃ and t1 = t̃.

The fixed parameters can either be incorporated directly, reducing the parameter
space by two elements. Alternatively, s̃ and t̃ may be incorporated as regularizer. In
this case, the final cost function is obtained by

ẽ(α) = e(α) + η̃
1
2

∥∥∥∥∥
(
s1 − s̃
t1 − t̃

)∥∥∥∥∥
2

2
, (6.22)
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where we enforce that s1 and t1 are close to the provided constants using the squared
L2 norm of their difference, weighted with the Lagrangian multiplier η̃. The gradient
w. r. t. the motion parameters may now be obtained by

∇ẽ(α) = ∇e(α) + η̃
(
(s1 − s̃) (t1 − t̃) 0 · · · 0

)>
. (6.23)

The same gradient-based nonlinear optimizer is used as presented for the marker-
based and the registration-based methods in Chapters 4 and 5. The optimizer is
unconstrained, thus η̃ needs to be defined before optimization to allow optimization
of Eq. (6.22). The gradient of the cost function w. r. t. the motion parameters is
computed analytically following Eq. (6.23), whereas the Hessian is approximated
during optimization using the BFGS method based on the computed gradient. An
attempted Newton step solves for the step direction given the approximated Hessian.
The step size is computed using a line-search approach. Additional information on
the optimizer may be obtained from [Maie 10].

After optimization, the parameters in α are directly incorporated into the pro-
jection matrices to update the mapping of 3-D to 2-D coordinates using Eq. (3.44).
This can be achieved using Equations (3.35) and (3.36). However, the formulations
in this chapter lead to estimated translations in mm. They, need to be converted to
pixel coordinates before integration into the projection matrices Pk. The updated
projection matrices may be obtained by

Pk(α) =

1 0 − sk

∆u
0 1 − tk

∆v
0 0 1

 Pk . (6.24)

Note that Eq. (6.24) essentially updates the principle point of Pk. If the detector is
shifted by sk and tk, then the principle point moves in the opposite direction which
causes the negative signs in the equations. Standard FDK can be applied for image
reconstruction as described in Sec. 3.2.3, however, using the updated, instead of the
original projection matrices.

6.5 Practical Considerations

6.5.1 Discretization and Adjustment of the Mask
Using Eq. (6.5) to implement the mask that encodes the triangular regions can be
interpreted as a discretization of Eq. (6.1). Essentially, Eq. (6.1) can be interpreted as
a description of two continuous straight lines that build the triangular regions. Dis-
cretization now requires a representation of these lines using the discretized grid in
Fourier domain which makes correct identification of the mask’s boundaries challeng-
ing. The process of discretization is illustrated in Fig. 6.2(a). It shows the sampling
grid, determined by Eq. (6.3), but also the discretized mask and the continuous rep-
resentation of the mask given by Eq. (6.1). It can be seen that in some cases the
discretized mask extends over the continuous boundary whereas other regions have
almost no connection to the continuous lines.
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(b) Adjusted mask

Figure 6.2: Unmodified discretization in (a) and discretization after heuristic ad-
justment of regions to cover all motion related energies in (b).

This may cause several problems in a practical application. In case the discretized
mask is too large, energies that are shifted to the triangular regions due to motion
are not allowed to redistribute close to the support region. We assume implicitly that
these energies are zero which may not be the case, even in an acquisition without
motion. In contrast, if the discretized mask is too small, energy can be distributed
to frequency bins close to the ideal boundary, but not fully covered by the mask. In
consequence, these frequency bins will have only little effect on the cost function and
are also not important for the consistency measure. Based on heuristic experiments,
a mask that is too small appeared less robust for motion estimation as it often lead
to an interference of the estimated motion with a sinusoidal signal of low-frequency
but with high amplitude.

To account for these discretization effects a heuristic adjustment of Eq. (6.5) is
proposed, which extends the mask regions similarly in all directions. The adjusted
mask and its discretization can be seen in Fig. 6.2(b), where the discretization result is
visualized as a solid gray area. First, the original continuous boundaries (dashed, red
lines) are shifted outwards in a direction orthogonal to themselves, for each triangle
boundary. Thus, four new lines (solid, red lines) are created which form two over-
lapping triangles, that contain the adjusted mask regions. However, the frequencies
covered by both of the triangles are excluded from the mask to ensure that the center
and very low frequencies are not contained. An advantage of this approach is that it
only requires a single parameter ε, which defines the distance of ideal boundaries to
the shifted, parallel lines.
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Figure 6.3: (a) Example of a static Blackman-Harris apodization window for the
detector axis in fan-beam geometry. (b) Shape of window after application of artificial
translational motion. (c) Example for a truncated sinogram. (d) Reappearance of
sinogram content at opposite boundary after applying shifts in Fourier domain. For
both cases, i. e., for (b) and (d), the erroneously introduced intensity variations over
λ have a negative effect on FCC.

6.5.2 Axial Truncation: Problems and Solutions
Truncation refers to the problem of missing data, located outside the FOV covered
by the detector. In case of the presented approach based on FCC, the missing data
becomes apparent after application of detector translations. In Sec. 6.3 we describe
how detector translations may be implemented in the Fourier domain. The Fourier
transform assumes a periodic extension of the signal. Thus, a translation in u or
v direction, using phase factors, causes content at the boundary of the detector to
reappear at the opposite side. This process is visualized in Figures 6.3(c) and 6.3(d),
where we show an example of a truncated fan-beam sinogram and its shifted version
using an artificial motion pattern. Even if we would apply the translation in spatial
domain, we do not know which values originate from the periphery. In case no
truncation is present, values at the boundary will be close to zero as they correspond
to the absorption of air. If the “empty” boundary in projection images is larger than
the maximum translation, no reappearance of the object at image boundaries will
occur. Even, if the object fits the detector exactly we could use zero-padding in u
or v direction, prior to the 2-D Fourier transform, to accurately solve the truncation
problem.

In addition to the missing information, the derivations of FCC are based on a lim-
ited object extent in axial, lateral, and also longitudinal direction [Mazi 10, Brok 06].
Within this section we focus on axial truncation problems as it would appear in
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Figure 6.4: Adjusted apodization window to allow for translations of length
tk ∈ [−tmax, tmax]. Yellow, dashed line: Original Blackman-Harris window extend-
ing from j ∈ [1, J ]. Blue, solid line: Adjusted Blackman-Harris window extending
from j ∈

[
d tmax

∆v e+ 1, J − d tmax

∆v e
]
.

knee imaging, assuming the detector is wide enough to cover both legs. To ensure
that the object is of limited extent, we propose to multiply each projection image
with an apodization function that smoothly fades out to zero at the vertical detector
boundaries. Apodization emulates a maximum object size which corresponds to the
detector height. It is only used for motion estimation and neglected during recon-
struction. Yet, apodization needs to be applied dynamically, after the application of
estimated translations, to avoid additional influence of intensity variations due to the
apodization window. Initial experiments using a static apodization applied to axially
truncated data prior to optimization, causes the estimated translations tk to be lim-
ited to [−∆v

2 ,
∆v
2 ], i. e., within the size of a single pixel. The reason for this is twofold.

As described above, any further shift in v direction causes the data to reappear the
opposite boundary. Because translations can be different for each projection, this
reappearance causes irregular intensity variations in angular direction, increasing the
energy in the triangular regions. Similar artificial intensity variations are obtained
from a static apodization after application of different translations. For a better
understanding we visualize a static apodization window and the effect of motion in
Figures 6.3(a) and 6.3(b), using a fan-beam example with detector truncation.

Proposed Solution

We propose to use an adjusted Blackman-Harris window for apodization as shown
in Fig. 6.4. The window is multiplied with each column of all projection images,
after the translations have been applied. Instead of using a regular Blackman-Harris
window with a full extent over detector v direction, we limit its range and clamp it
to zero. The start and end point of the window are determined as shown in Fig. 6.4,
where tmax is the zero margin added at the boundaries. In consequence, any vertical
translation tk ∈ [−tmax, tmax] will not lead to a periodic reappearance at bottom or
top of the detector.
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Figure 6.5: Approximation of adjusted Blackman-Harris window by retaining spec-
tral coefficients. Solid, blue line: Theoretically computed window function. Dashed,
purple line: Approximation retaining only four coefficients. Dotted, orange line:
Accurate approximation retaining eight coefficients.

Integration of apodization into the cost functions in Equations (6.2) and (6.7)
is straightforward. Let A = diag(a) ∈ RC×C be a diagonal matrix that holds the
weights of the apodization window defined by vector a ∈ RC . Following Harris
[Harr 78], we can formalize this vector by

ai,j,k =
0 if j /∈

[
d tmax

∆v e+ 1, J − d tmax

∆v e
]

c0 − c1 cos(2πj′
J ′

) + c2 cos(4πj′
J ′

)− c3 cos(6πj′
J ′

) otherwise
(6.25)

c0 = 0.35875, c1 = 0.48829, c2 = 0.14128, c3 = 0.01168 ,

where j′ = j − d tmax

∆v e − 1 and J ′ = J − 2d tmax

∆v e represent the adjusted index and
window width.

The cost function for arbitrary motion in Eq. (6.2) can now be adjusted to

e(α) = 1
2

∥∥∥∥W (F A p(α))
∥∥∥∥2

2
. (6.26)

However, incorporating the apodization into the efficient description of the cost func-
tion given by Eq. (6.7), requires an additional inverse (i. e., FH

uv) and forward (i. e.,
Fuv) 2-D FFT. The equation is then given by

e(α) = 1
2

∥∥∥∥W
Fλ (FuvAFH

uv)︸ ︷︷ ︸
apodization

(H (α) Fuvp)

∥∥∥∥2

2
. (6.27)

As a consequence the computational advantage of the efficient description vanishes.
Fortunately, it is known that a multiplication by apodization windows in spatial do-
main equals a convolution with the Fourier transformed window in spectral domain.
In fact, applying apodization in the spectral domain is particularly easy when us-
ing generalized cosine windows, like the Blackman-Harris window, as they have only
a small number of unique, nonzero Fourier coefficients [Harr 78]. For example, for
tmax = 0 it holds that the window described in Eq. (6.25) has only four unique spec-
tral coefficients, requiring seven multiplications and six summations at each Fourier
coefficient to perform apodization.
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Yet, for tmax > 0 this is no longer true and in theory the convolution would be
global, requiring J multiplications and J −1 summations for each Fourier coefficient.
However, in practice using only a certain number of most significant coefficients,
reduces complexity and still leads to good approximations of the window. In Fig. 6.5
we show two approximations when retaining four (dashed, purple line) and eight
(dotted, orange line) coefficients alongside the ground-truth window function (solid,
blue line). Only very little difference can be seen between real and approximated
function when using eight spectral coefficients.

Note that the computation of the cost function’s gradient described in Eq. (6.13) is
still valid, but now includes (FuvAFH

uv) as introduced in Eq. (6.27). Thus, obtaining
partial derivatives now also requires described convolution in spectral domain.

L2 regularizer

A side effect of dynamic apodization is that the total energy of the spectrum is no
longer constant. Thus, the energy in the triangular regions may also be minimized
by translations that shift high intensity objects, e. g., bones, upwards or downwards
such that they observe a lower weight during apodization. To prevent this behavior,
we propose to regularize the amplitude of the estimated motion, using its L2 norm.
The updated cost function, including the previously defined regularizer of Eq. (6.22),
may be formalized by

e′(α) = ẽ(α) + η′
( 1

2Lα
>α

)
. (6.28)

Consequently, the overall gradient of the cost function may be computed by

∇e′(α) = ∇ẽ(α) + η′
( 1
L
α
)
. (6.29)

Similar to the derivation in Sec. 6.4, we have introduced a Lagrangian multiplier η′
to create a single combined cost function used for optimization.

6.5.3 Implementation Details
In this section several optimization steps for an improved, computationally efficient
implementation are proposed. The overall runtime of an optimization is important
for its practical relevance. It often depends on the runtime of an individual evaluation
of the cost function and its gradient. Based on an initial, single-threaded CPU imple-
mentation a calculation time of several minutes for one evaluation of the cost function
was measured. The reason was repeated access to the whole projection data p and
its 3-D Fourier transform. As a first optimization step, we incorporated the detector
shifts by phase multiplications according to Eq. (6.7). This allows a precomputation
of Fuvp, such that it needs to be computed only once during optimization. The 1-D
FFT over the rotation angles is executed I × J times for each cost function evalu-
ation. An additional speed up of this FFT was achieved by a rearrangement of the
data layout, such that the projection angles are stored sequentially in memory, facil-
itating faster memory access by caching. In addition, most of the operations needed
to evaluate the cost function are highly parallelizable such that we implemented them
on the GPU using the OpenCL programming language.
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Algorithm 6.1: Outline of a cost function evaluation for the nit-th iteration.
input : αnit , αnit−1,(H (αnit−1)Fuvp)
output: e(αnit), (H (αnit)Fuvp)
// Compute relative parameter vector
∆αnit ← αnit −αnit−1;
// Apply shifts by multiplication with the phase factors

H (∆αnit). Two vectors holding all ψ and ξ values are
precomputed. Only ∆αnit needs to be transferred to the GPU.

(H (αnit)Fuvp)← H (∆αnit) · (H (αnit−1)Fuvp);
// Angular 1-D FFT. A GPU-based library was used for the FFT. The

implementation does not support in-place transforms, which
required an additional storage of the 3-D FFT result.

Fλ · (H (αnit)Fuvp);
// L2 norm and mask: Sum of squared magnitudes, contained in the

mask, by a GPU-based parallel reduction. The mask is
precomputed before optimization, thus, only the summation
result needs to be transferred back to the host.

e(αnit)← 1
2 (o(αnit))H W o(αnit);

Evaluation of the Cost Function

A typical data size for a complex representation of p in our studies could be 1240×
960× 248× 2× 4Byte/(1024)2 ≈ 2250MB. Thus, storing multiple copies of this data
on the GPU’s memory might not be feasible as they are still limited to only few GB’s
of data. In consequence, an implementation needed to be found that requires as few
as possible copies of the projection data. One solution is to maintain only the shifted
projection data in GPU memory. Let nit be the iteration count andαnit the associated
parameters. As a first step in each iteration the differential parameter vector is built
given by ∆αnit = αnit − αnit−1, with αnit−1 being the parameter vector from the
previous iteration. The trick is now to apply the phase factors of the relative shifts
∆αnit , to the Fourier transform of the already translated projection data, instead
of applying αnit to the original data. Hence, p is not required to evaluate the cost
function nor its gradient. The process of a single evaluation of the cost function can
be summarized by Algorithm 6.1.

Gradient Computation

Equations (6.9) and (6.11) show that the gradient computation requires evaluation of
the partial derivatives o(α) ∂

∂αl
o(α) w. r. t. each of L parameters. Certain conditions

need to be fulfilled to make an optimization algorithm based on an analytic gradient
faster than a numerical, forward differences gradient estimation. First, the average
computation time of a single partial derivative needs to be lower than the average
computation time of a cost function evaluation. Second, a potentially faster conver-
gence of the analytic gradient approach could cause a faster optimization even if the
first condition is not met. In this method, a fast gradient computation is achieved by
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the following principles. o(α) is already computed during cost function evaluation
and can be reused as is. Further, ∂

∂αl
o(α) can be decomposed into a multiplication of

the precomputed 2-D DFT Fuv p, with the derivative of the shifting matrix ∂
∂αl

H (α)
and finally by the angular DFT Fλ. Hence, a straightforward implementation needs
to compute Fλ by 1-D FFTs for each partial derivative. However, using well known
properties of the Fourier transform we can avoid computation of the angular FFTs
completely.

First, we use the fact that ∂
∂αl

H (α) is only nonzero for a single projection image
with index m = dl/2e. Consequently, ∂

∂αl
H (α) Fuv p has the same property. If we

adopt the notation from Sec. 6.4 the angular DFT may be computed by

∂

∂αl
oi,j,k(α) = wi,j,k

K∑
n=1

ϕi,j,n

(
∂

∂αl
e−i2π(ξisn+ψjtn)

)
︸ ︷︷ ︸

=0 ∀n6=m

e−i2πkn/K , (6.30)

where the derivative of the phase factors is only nonzero for n = m. Thus, the
summation of the DFT degenerates to

∂

∂αl
oi,j,k(α) = wi,j,k ϕi,j,l

(
∂

∂αl
e−i2π(ξism+ψjtm)

)
e−i2πkm/K . (6.31)

As a result, only a simple multiplication by e−i2πkm/K is required to compute the
angular Fourier transform, substantially reducing the computational complexity. As
a last step, it is ensured that partial derivatives ∂

∂sm
e(α) and ∂

∂tm
e(α) are computed

in a single execution on the GPU. Thus, the overall runtime can be almost halved,
as the data transfer causes the majority of computation time.





P A R T III

Experiments and Results

85





C H A P T E R 7

Data Acquisition and
Common Metrics

7.1 Simulated Phantom Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Real CBCT Acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Common Image Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

The evaluation part of this thesis is based on a variety of real as well as simulated
CT datasets. This chapter contains information on the individual acquisition and
simulation parameters, provided in Sec. 7.1 and Sec. 7.2. Aside from the acquisition
protocols in case of real data, we provide the geometric parameters used for data gen-
eration, such as image resolution or SDD. Essential parameters will be summarized in
a dedicated table for each dataset. Note that sizes and spacing of the reconstruction
volumes are not part of the acquired data as they can be freely adjusted during back-
projection. Thus, reconstruction related parameters and settings will be introduced
in the corresponding sections of the evaluation chapters. An overview of all acquired
datasets is provided in Tab. 7.1 , which also introduces abbreviations used to refer
to an individual dataset.

The chapter ends with an introduction of common image metrics, used in several
of the following experiments to obtain quantitative measures of image quality. In
detail, Sec. 7.3 shows descriptions of the mean squared error (MSE), root mean
squared error (RMSE), relative root mean squared error (rRMSE), universal quality
index (UQI), and structural similarity index (SSIM).

7.1 Simulated Phantom Data
Numerically simulated data has been used during a comparison of different extrapo-
lation techniques used for marker removal and for the evaluation of the FCC-based
motion correction method. Additionally, realistic simulations of the knee anatomy are
generated for a qualitative assessment of the FCC method, using the dynamic XCAT
phantom [Sega 10]. In the following we introduce geometric and physical parameters
of the individual datasets.

Note, that all numerically simulated phantoms consist of analytically described
shapes, e. g., spheres, ellipsoids, or spline surfaces. Simulation consists of a simulated
X-ray transform, as described in Eq. (3.13), where line integrals are built by comput-
ing intersection lengths with individual geometric shapes that represent the phantom.

87
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Numerical phantoms and simulations

Phantom Description Dataset Abbreviation
Bead
removal
phantom

Metallic markers attached
to artificial knee model

Ground truth MR GT

With eight markers MR 8M
FORBILD
head
phantom

Static and dynamic
fan-beam FORBILD head
phantom

Fan-beam ground truth FFB GT HQ

Fan-beam Oscil motion FFB OSC HQ

FORBILD
head
phantom

Static and dynamic
cone-beam FORBILD head
phantom

Cone-beam ground truth FCB GT HQ

Cone-beam Oscil motion FCB OSC HQ

Cone-beam Chirp motion FCB CHP HQ

Cone-beam Rect motion FCB RCT HQ

Cone-beam LF-1 motion FCB LF1 HQ

Cone-beam LF-2 motion FCB LF2 HQ

XCAT knee
phantom

Realistic numeric phantom
of knees, including a real
motion pattern

Ground truth XCAT GT

Severe motion XCAT MOT

Real acquisitions

Subject Description Dataset Abbreviation

Subject 1 Left leg for marker removal
evaluation Supine scan with eight markers S1 SUP

Subject 2

Supine and three
weight-bearing scans of
both legs at different
flexion angles

Supine scan S2 SUP

Weight-bearing, 0° flexion S2 WB0

Weight-bearing, 35° flexion S2 WB35

Weight-bearing, 60° flexion S2 WB60

Subject 3

Supine and six
weight-bearing scans of left
leg with injected contrast
agent (cartilage study)

Supine scan S3 SUP

Weight-bearing, 0 s S3 WB1

Weight-bearing, 10 s S3 WB2

Weight-bearing, 20 s S3 WB3

Weight-bearing, 3 min S3 WB4

Weight-bearing, 10 min S3 WB5

Weight-bearing, 25 min S3 WB6

Table 7.1: Overview of acquired data and abbreviations used for individual datasets.
HQ for FORBILD head phantom refers to high-quality, noise-free simulations and
may be replaced by LQ for noisy data, which are not shown here.
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Parameter Symbol Unit Value
SID S mm 600
DID D mm 600
Detector size I × J - 1240× 960
Pixel size ∆u×∆v mm2 0.308× 0.308
#Projections K - 494
Angular spacing ∆λ deg 0.4049

Table 7.2: Simulation parameters for bead removal phantom.

Each shape is assigned to a physical material, e. g., water or bone. Computed inter-
section lengths are weighted with the materials attenuation coefficient, according to
a selected physical model (cf. Sec. 3.2.1). In case geometric shapes overlap, the sim-
ulation uses a priority scheme to ensure that only a single material is evaluated at a
specific position along the X-ray path. Physical properties of the individual materials
are obtained from the well known National Institute of Standards and Technology
(NIST) database [Hubb 95]. All simulations are done with the software framework
CONe-beam in RADiology (CONRAD) [Maie 13]. Further details on the numerical
simulation of projection images may be obtained from [Maie 12a]. If not stated oth-
erwise, the simulated X-ray trajectory describes an ideal circle with the rotation axis
being identical to the z-axis, thus, all source positions lie in the plane spanned by
the x- and y-axis. Furthermore, the principle ray intersects the detector in its center.
This setting is identical to the description of CBCT in Sec. 3.2.3.

7.1.1 Bead Removal Phantom
A phantom was developed which consists of three nested cylinder shapes, representing
a simplified model of the knee. The cylinders represent leg tissue as well as cortical
bone and bone marrow of a femur. Their materials are set to water, cortical bone, and
bone marrow, respectively. Their radii are adjusted to 80 mm, 35 mm and 31.5 mm
and their axis of rotation is aligned with the z-axis. Additionally, a total of eight
metallic beads (stainless steal type 304) with a diameter of 1 mm are attached to the
periphery of the largest cylinder. They are distributed on a helix and overlap with
surface of the cylinder by 0.1 mm. For simplicity, we avoided a physical model based
on the energy of X-ray photons and used the materials’ density as linear attenuation
coefficient. This equals a mass attenuation coefficient of 1 cm2 g−1 for all materials.

Two sets of projection images are generated, one without the metallic markers,
representing the ground-truth data, and one including the markers, which is then
used for extrapolation. All necessary parameters can be obtained from Tab. 7.2.

7.1.2 FORBILD Head Phantom
We use the FORBILD head phantom [Laur 01] to evaluate the FCC-based motion
correction. The phantom represents a head and consists of bone, several low-contrast
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structures, a resolution pattern, and a challenging ear part with fast transitions be-
tween bone and air. A total of nine physical materials are assigned to a large number
of geometrical shapes, eventually building up the phantom.

Definition of Translational Motion

To use the phantom for an evaluation of motion correction capabilities, simulated
motion patterns need to be incorporated into the rendering process of projection im-
ages. In the following, we introduce all simulated motion patterns of the object. The
motion was limited to 3-D object translations, where three high-frequency and two
low-frequency motion functions where simulated. Selection of these functions has
been done w. r. t. their visual effect on the triangular zero regions, used for optimiza-
tion in the FCC method. This way we could provoke different amounts of energy
shifting into the zero regions.

As the algorithm for rendering projection images is based on projection matrices,
the motion patterns can be easily incorporated using Equations (3.34) and (3.36),
where α ∈ R6K contains all simulated translations and the rotation parameters are
set to zero. Please, see appendix A.1 for further information on the structuring of α
and its relation to rigid motion parameters. The updated projection matrices used
for rendering of projection images are given by

Pk(α) = Pk


1 0 0 txk
0 1 0 tyk
0 0 1 tzk
0 0 0 1

 . (7.1)

We now introduce the individual motion functions. Note, that Equations (7.2) to (7.6)
are presented with a normalized temporal parameter given by τk = k−1

K−1 ∈ [0, 1].

Oscillating Motion (Oscil) The first motion is an accelerated, oscillating trans-
lation along the x-, y- and z-axis. It has a zero mean and consists of a cosine
oscillation with only little low-frequency contributions, due to a limited acceleration
setting. The translation function is computed by

txk = tyk = tzk = moscil(a, b, f) = a
( 2

1 + exp(b cos(2πfτk))
− 1

)
, (7.2)

where the amplitude, acceleration and frequency are given by a, b and f , respectively.
The parameters were set to a = 3 mm, b = 4 and f = 16 Hz.

Frequency Increases Linearly (Chirp) This motion pattern is also an oscillating
cosine motion with zero mean. Yet, the frequency increases linearly over time in the
limits of [0, fmax]. We expect that the Chirp motion can be used to identify the
behavior of motion correction algorithms for a combined low- and high-frequency
motion. It can be defined by

txk = tyk = tzk = a cos(2πfkτk) , (7.3)

where the frequency is given by fk = (fmax τk) with a frequency pitch of fmax = 64 s−2

and a moderate amplitude of a = 1.5 mm.
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Rectangular Steps (Rect) Sharp transitions of motion states are modeled by this
motion, where we used two interfering rectangular functions with different amplitude
and frequency. The rectangular function is created with help of Eq. (7.2), by simply
setting a very high value for the acceleration factor, thus

txk = tyk = tzk = moscil(a1, b, f1) +moscil(a2, b, f2) , (7.4)

where amplitudes and frequencies are defined by a1 and a2 as well as f1 and f2,
respectively. The parameters were set to b = 128, a1 = 1.5 mm, a2 = 1.0 mm,
f1 = 16 Hz, and f2 = 4 Hz.

Low-Frequency Motion 1 (LF-1 ) This motion originates from [Yu 06] who used
the txk and tyk translations for their simulations when evaluating a motion correction
method based on fan-beam CC. It is simply a linear object motion using three different
slopes. The motion can be considered low frequent and has a mean not equal to zero.
The starting and end position of the object are not identical. In consequence the
periodic extension of the projection data in direction of λ, assumed by the Fourier
transform, is no longer given. We can define the motion by

txk = q1τk, t
y
k = q2τk, t

z
k = q3τk , (7.5)

where q1, q2 and q3 are the individual slopes. They have been fixed to q1 = 6 mm s−1,
q2 = 4 mm s−1 and q3 = 3 mm s−1.

Low-Frequency Motion 2 (LF-2 ) The second type of low-frequency motion
does have the same start and end position and executes a low-frequent forth-and-
back transition. Artifacts caused by this motion are limited to motion blur and
slowly varying intensity gradients. The motion may be formalized by

txk = tyk = tzk = a

(
exp(−cos(2πfτk) + 1)− 1

exp(2)− 1

)
, (7.6)

where the frequency was set to f = 1 Hz and the amplitude to a =
√

25
2 mm.

Projection Image Generation

Experiments included data for fan- and cone-beam CT. Let us first introduce the
simulation parameters for the fan-beam geometry, presented in [Berg 14b], which uses
only the central axial plane of the phantom. In fact, we used the 3-D description of
the phantom and incorporated motion according to Eq. (7.1), however, the detector
height is limited to J = 1. Simulations are conducted for a monochromatic absorption
model with a certain X-ray energy Ep, as presented in Sec. 3.2.1. Generated sinograms
include noise-free but also noisy data. Poisson distributed noise was incorporated,
specified by an initial number of X-ray photons N0, emitted for each simulated ray
path. We first introduced the Oscil motion for the fan-beam case [Berg 14b], where
the translation in z direction was set to tzk = 0. Thus, fan-beam evaluations are
based on a total of four generated sinograms, i. e., the motion-free, ground-truth and
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Parameter Symbol Unit Ideal Noisy
SID S mm 600 600
DID D mm 0 0
Detector size I - 1240 620
Pixel size ∆u mm 0.25 0.5
#Projections K - 892 240
Angular spacing ∆λ deg 0.404 1.5
Absorption model - - monochromatic monochromatic
Photon energy Ep keV 80 50
#Photons per pixel N0 - - 30 000

Table 7.3: Fan-beam simulation parameters for FORBILD phantom.

Parameter Symbol Unit Ideal / Noisy
SID S mm 600
DID D mm 600
Detector size I × J - 640× 480
Pixel size ∆u×∆v mm2 1.2× 1.2
#Projections K - 512
Angular spacing ∆λ deg 0.703
Absorption model - - monochromatic
Photon energy Ep keV 80
#Photons per pixel N0 - 0 / 5000

Table 7.4: Cone-beam simulation parameters for FORBILD phantom.

motion-corrupted data using the modified Oscil motion. Both were simulated with
high-quality, noise-free and low-quality, noisy settings. Simulation parameters are
summarized in Tab. 7.3. The detector was simulated to be in the rotation center for
convenience.

CBCT simulations are performed very similar to those in the fan-beam case. We
also use a monochromatic model, and render noise-free and noisy data. However, a
total of six motion types where simulated, including five motion patterns presented
in Equations (7.2) to (7.6) and a ground-truth, motion-free rendering. All motion
patterns were rendered with noise-free and noisy settings yielding 12 sets of projection
images. Simulation parameters for the cone-beam geometry are given in Tab. 7.4.

7.1.3 XCAT Dynamic Squat Phantom
The 4-D XCAT phantom is based on segmentations of real anatomies of a full-body
CT scan [Sega 10]. A large number of anatomies was segmented using surfaces, rep-
resented by B-splines. Rigid and nonrigid motion can be incorporated, modeled by a
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Parameter Symbol Unit Ideal
SID S mm 780
DID D mm 418
Detector size I × J - 620× 480
Pixel size ∆u×∆v mm2 1.2× 1.2
#Projections K - 256
Angular spacing ∆λ deg 1.406
Absorption model - - monochromatic
Photon energy Ep keV 80

Table 7.5: Simulation parameters for XCAT dynamic squat phantom.

deformation of the spline surfaces over time. Choi et al. developed an XCAT-based
numerical phantom of knees for weight-bearing conditions [Choi 13]. Motion of nine
healthy subjects, holding a squat at 60° flexion angle for 20 s, was recorded using an
optical tracking system. These motion parameters were subsequently transferred to
the XCAT phantom, creating a numerical knee phantom based on realistic motion
patterns. In this thesis we made use of this knee phantom using the most severe
motion pattern acquired during the study, showing an average translational variation
of 3.43 mm and an average flexion angle variation of 0.63°. The simulated scene in-
cludes leg tissue as well as cortical bone and bone marrow of femur, tibia, patella,
and fibula. The transition of tracking system coordinates to XCAT parameters is
detailed in [Choi 13].

Within this thesis, the XCAT dynamic squat phantom was used for a qualitative
evaluation of a motion correction based on FCC. Simulation parameters differed to
[Choi 13], as the FCC method is limited to full 360° rotation angles and projection
images without lateral truncation. The phantom was rendered with an increased
pixel spacing, such that no lateral truncation was present. We chose to use the same
monochromatic physical model as for the cone-beam simulations of the FORBILD
phantom. The parameters are presented in Tab. 7.5. Projection images were gener-
ated with and without motion, yielding two sets of projection images.

7.2 Real CBCT Acquisitions

Our evaluation also involves real weight-bearing acquisitions of healthy volunteers. At
this point we refer to Sec. 2.2.2 where we have introduced the weight-bearing CBCT
scanners in more detail. We had access to data from three volunteers, consisting of
multiple acquisitions based on the prototype system, but also on the robotic C-arm
device. Overall 12 real scans have been used for evaluation. In the following we
describe the acquisition protocols and parameters for each of the three volunteers.
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Parameter Symbol Unit Supine
SID S mm 780
DID D mm 418
Detector size I × J - 1240× 960
Pixel size ∆u×∆v mm2 0.308× 0.308
#Projections K - 494
Angular spacing ∆λ deg ∼0.403
Acquisition time - s ∼20
Tube voltage - kVp 70
Dose at detector (per projection) - µGy 1.2

Table 7.6: Acquisition parameters for the supine scan of Subject 1.

7.2.1 Subject 1
Subject 1 refers to a female volunteer with a weight of 102 kg and a height of 165 cm.
The subject was part of the cartilage study described in Sec. 2.3.2, however, in this
thesis only a single supine scan is used to validate the correction method for marker-
induced metallic artifacts. The FOV of the supine scan was centered to the knee
joint of the left leg, while the right leg was not part of the FOV. Scanning was
performed with the prototype system (Axiom Artis dTA, Siemens AG, Forchheim,
Germany) in a supine position after injection of contrast agent, used for improved
cartilage visibility. Projection matrices for each projection image were obtained from
the system’s calibration database. The system used an AEC which regulates tube
voltage and tube current, to ensure a certain dose level at the detector. To correct for
AEC-based detector saturation artifacts, explained in Sec. 2.4.2, a layer of plasticine
was used to cover the leg at its periphery. Eight tantalum markers with a diameter
of 1 mm are attached at the skin in proximity to the knee joint. Further acquisition
parameters can be obtained from Tab. 7.6. After acquisition, the projection images
underwent preprocessing to convert their intensities to the line integral domain, which
included an AEC compensation [Schw 10] and low contrast water correction [Zell 05].

7.2.2 Subject 2
Subject 2 is a male volunteer who was part of the feasibility study based on the
prototype system (Axiom Artis dTA, Siemens AG, Forchheim, Germany). We use
a supine and three weight-bearing scans for a joint evaluation of the marker- and
registration-based approach. The legs have been adjacent to each other and were
wrapped with a plasticine layer to avoid saturation artifacts (cf. Sec. 2.4.2). 16
metallic tantalum markers with 1 mm diameter were attached to both legs for motion
correction purposes.

Acquisition began with a high-resolution supine scan, followed by three weight-
bearing acquisitions. For all acquisitions the FOV was adjusted to the center of the
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Parameter Symbol Unit Supine Weight-bearing
SID S mm 780 780
DID D mm 418 418
Detector size I × J - 1240× 960 1240× 960
Pixel size ∆u×∆v mm2 0.308× 0.308 0.308× 0.308
#Projections K - 495 248
Angular spacing ∆λ deg ∼0.403 ∼0.806
Acquisition time - s ∼20 ∼8
Tube voltage - kVp 70 70
Dose at detector
(per projection) - µGy 1.2 1.2

Table 7.7: Parameters used for acquisitions of Subject 2.

two knee joints. Only a small amount of lateral truncation occurred at the periphery
of the legs. Bones and the joint were not affected from lateral truncation. The weight-
bearing scans were acquired in a straight standing (0° flexion angle) and in squatting
positions, for flexion angles of 35° and 60°. The amount of motion increased with
the flexion angle, where the 35° and 60° scans showed the highest amount of motion
throughout all subjects acquired for the feasibility study. As for Subject 1, an AEC
compensation [Schw 10] and low contrast water correction [Zell 05] was applied, to
convert projection images to the line integral domain. The acquisition parameters
are provided by Tab. 7.7.

The weight-bearing trajectory required a system calibration to obtain projection
matrices suitable for image reconstruction. Calibration was performed prior to acqui-
sition of the subject, by scanning a calibration phantom which provided ground-truth
locations, allowing the estimation of projection matrices by solving a linear system
of equations. For more details we refer to Hoppe [Hopp 09, pp. 36ff.] and Choi et al.
[Choi 14c].

7.2.3 Subject 3

Subject 3 corresponds to a female volunteer with a weight of 70 kg, a height of
163 cm, and an age of 58. The subject participated in the cartilage study described in
Sec. 2.3.2. Acquisitions were conducted using the robotic C-arm device (Artis Zeego,
Siemens Healthcare GmbH, Forchheim, Germany). The subject represents the most
recently scanned weight-bearing data used within this thesis (Exam date: June 2015).
The acquisition protocol for the cartilage study is well defined and was previously
explained in Sec. 2.3.2. Aside from a high-resolution supine scan, six weight-bearing
scans have been acquired over a period of 25 min. Supine and weight-bearing acquisi-
tions had an FOV that focused on the left leg. The subject was asked to pull up the
right leg during supine scanning, thus only a single leg is visible in the motion-free
reconstructions. Contrast agent was injected into the joint prior to the acquisitions
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Parameter Symbol Unit Supine Weight-bearing
SID S mm 780 780
DID D mm 418 418
Detector size I × J - 1240× 960 1240× 960
Pixel size ∆u×∆v mm2 0.308× 0.308 0.308× 0.308
#Projections K - 496 248
Angular spacing ∆λ deg ∼0.404 ∼0.806
Acquisition time - s ∼20 ∼8
Tube voltage - kVp 81 81
Dose at detector
(per projection) - µGy 1.2 1.2

Table 7.8: Parameters used for acquisitions of Subject 3.

and is visible in all acquisitions. Six metallic tantalum markers of 1 mm diameter
were attached to the leg of interest and four to the right leg.

A multi-sweep trajectory, performing three sequential acquisitions, was used at
the beginning of weight-bearing scanning to improve the temporal resolution at the
initial weight-bearing phase. Calibration of the trajectory was performed as explained
for Subject 2, but with an additional calibration scan for the multi-sweep trajectory.
In consequence, the first three weight-bearing scans are performed within the first 30 s
after application of load, whereas the remaining scans are acquired after 3 min, 10 min
and 25 min, respectively. In contrast to Subject 1 and Subject 2, preprocessing of
projection images, i. e., conversion to line integrals, was performed using the vendor’s
software.

The subject was selected for use within this thesis, because the weight-bearing
scans have a large spectrum w. r. t. the amount of motion. The first and second
acquisition contain severe motion artifacts, the third acquisition suffers from moderate
motion and acquisitions 4 to 6 contain only little motion artifacts. For more detailed
acquisition parameters we refer to Tab. 7.8.

7.3 Common Image Quality Metrics

A quantitative measure of image quality is important to allow for an objective com-
parison of methods and validate the performance of an algorithm. Within the scope
of this thesis we use a set of quantitative measures which are explained in the follow-
ing. All of the presented measures are able to compare two image functions and can
be used for functions of arbitrary dimension, e. g., 2-D fan-beam or 3-D cone-beam
reconstructions. Without loss of generality, we define the measures to compare simi-
larity of an object function f(x) : RN → R with a reference function v(x) : RN → R.
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7.3.1 MSE, RMSE and rRMSE
A well known measure for image similarity of two functions is the RMSE, which is
the square root of the MSE. Let us define the MSE between f(x) and v(x) by

MSE(f, v) = 1
(#V )

∑
x∈V

(f(x)− v(x))2 , (7.7)

which is simply the average of the squared differences between the two functions.
Further, V is the set that holds all locations x which are used for evaluation. Con-
sequently, we can define the RMSE but also the rRMSE by

RMSE(f, v) =
√

MSE(f, v) (7.8)

rRMSE(f, v) = RMSE(f, v)
Iv(v) , (7.9)

where Iv(v) is the intensity range of the reference function v and may be defined by

Iv(v) = max
x∈V

(v(x))−min
x∈V

(v(x)) . (7.10)

A benefit of using rRMSE is its invariance to intensity scaling and that it can be
presented as percentage, relative to the reference image.

7.3.2 SSIM and UQI
Wang et al. showed that the RMSE might not reflect the visual perception of differ-
ences between two images [Wang 04]. In contrast, SSIM and UQI are both measures
that have been designed to incorporate perceptive information. They combine infor-
mation on intensity, contrast and structural differences of two images into a single
measure. The SSIM is defined by

SSIM(f, v) = (2µfµv + C1)(2σfv + C2)
(µ2

f + µ2
v + C1)(σ2

f + σ2
v + C2) , (7.11)

where µf and µv are the mean intensities of object and reference function over all
positions x ∈ V . Similarly, σf and σv are the standard deviations and σfr is the
correlation coefficient. The SSIM contains two constants, C1 and C2, which assure
stability of the measure in case the evaluated functions have a zero mean (µ2

f+µ2
v ≈ 0)

or are without significant variation (σ2
f + σ2

v ≈ 0).
The UQI measure [Wang 02] can be interpreted as the predecessor of SSIM. They

are identical when setting the constants associated with the SSIM to zero. Thus, when
we refer to the UQI, we computed the SSIM for C1 = C2 = 0. For all experiments
based on the SSIM, the constants are adjusted as proposed in the original formulation
by Wang et al. [Wang 04]: C1 = (0.01 Iv(v))2 and C2 = (0.03 Iv(v))2.

Evaluation Strategies for SSIM and UQI

We differentiate between three different types of evaluating SSIM and UQI.
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1. The set V may be adjusted to a manually selected ROI that is to be compared.

2. Complete images are compared element-wise, where for each element an SSIM
or UQI value over a certain neighborhood is obtained. The final value is the
mean of all local SSIM or UQI measurements. Note that this method repre-
sents the original formulation for comparing 2-D images [Wang 04]. For 3-D
reconstructions we used a cubical neighborhood of 9× 9× 9.

3. Variant 2 can be further adjusted by limiting the voxel or pixel locations to a
certain ROI, e. g., a segmented bone.
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The main goal of this evaluation is to verify if the results of the marker-based
method can be achieved by a registration-based method and which of the methods
yields the best image quality at the knee joint. Specifically, we investigate if the bone
outline is accurately restored. Also, the quality of the contrast boundary for data of
Subject 3 is analyzed, which is an important factor for the cartilage study introduced
in Sec. 2.3.2. Additionally, we want to identify if the marker-based method is able
to restore the shape of structures close to the knee joint. In contrast, the accuracy
of the registration-based method is evaluated w. r. t. the legs periphery, where the
deformation fields are based on TPS extrapolations of internal bone motion.

Comparative qualitative and quantitative evaluations of the 2-D/3-D registration
approach and the marker-based correction are shown in this chapter. The majority
of evaluations have been done for both marker-based and 2-D/3-D registration, pro-
viding a good overview of advantages and disadvantages for each of the methods. In
Sec. 8.1 we summarize all evaluation approaches and describe parameter settings used
for image reconstruction as well as the individual methods. A qualitative and quan-
titative comparison of image quality is shown in Sections 8.2 and 8.3. In Sec. 8.4 we
analyze the result of the marker-based method w. r. t. the internal bone structures and
the performance of registration approach w. r. t. the periphery. This is followed by a
comparison of different correction methods used for removal of marker-induced metal
artifacts in Sec. 8.5. The chapter ends with a discussion and conclusion presented in
Sec. 8.6.

99
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8.1 Materials and Methods
Motion-corrected reconstructions contain inaccuracies based on all individual steps
of a motion correction method, e. g., parameter settings, registration accuracy, or
wrong point correspondences. Therefore, the focus of our assessment is image quality
in reconstruction domain, which allows for a fair and complete comparison of methods
and provides an initial validation of clinical applicability. An important field for future
applications of weight-bearing imaging is the improved diagnosis of cartilage diseases.
For example, in the cartilage study introduced in Sec. 2.3.2, we are interested in
deformation and strain properties measured between tibia and femur to the contrast
agent’s surface. Other recently introduced measures are also based on segmentations
of tibia and femur [Cao 15], thus, requiring a suitable image quality of these bones.
As a consequence, the evaluation pipeline used within this chapter is tailored to focus
on image quality of bone structures.

Evaluations include the marker-based approach (cf. Chap. 4), two variants of the
motion correction method based on 2-D/3-D registrations (cf. Chap. 5), but also
reconstructions without motion correction. We separate between registrations using
GC and NGI as similarity measure. Within this chapter we refer to the individual
methods by abbreviations MB, GC, NGI, and NoCorr. The evaluations are based on
real weight-bearing acquisitions, i. e., the data of Subject 1 to Subject 3 as introduced
in Sec. 7.2. We use the labels defined in Tab. 7.1 to refer to individual datasets. One
part of the evaluation is a comparison between 2-D/3-D registration using GC and
NGI. Results based on data from Subject 2 revealed a superior performance of NGI,
hence, evaluation for Subject 3 is limited to NGI, MB, and NoCorr.

8.1.1 Parameter Selection And Image Reconstruction
Let us first introduce the software tools and parameter settings for the individual
methods and datasets, as well as the reconstruction pipeline used during motion
compensated reconstruction. The registration-based method and some of our eval-
uation methods require segmentations of tibia and femur. Segmentation masks and
surface meshes were obtained semi-automatically using ITK-Snap [Yush 06], based on
reconstructions of supine datasets S2 SUP and S3 SUP. Note, that S2 SUP included
left and right leg, whereas S3 SUP showed only the left leg, allowing segmentation
of four and two bones, respectively. Subsequent dilation and erosion of segmentation
masks, as described in Sec. 5.6, was done with the software 3-D Slicer [Piep 04]. The
same software was used for an initial, rigid 3-D/3-D registration of segmented bone
volumes to motion-corrupted reconstructions. The rigid transform parameters were
manually adjusted within 3-D Slicer, based on a superimposed visualization of supine
and initial weight-bearing reconstructions.

Parameters for MB

Subject 2 had 16 and Subject 3 had 10 markers attached, which were distributed over
both legs. Not necessarily all markers were in the FOV during the weight-bearing
scans. We counted the number of visible markers in the FRST result and adjusted
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S2 WB0 S2 WB35 S2 WB60 Subject 3
(all scans)

M 16 15 14 10
tproj 0.1 0.17 0.17 0.3

Table 8.1: Parameter settings for marker-based motion correction.

the number of markers M accordingly. The binarization threshold tproj of the FRST
is manually adjusted. An MIP of the FRST result is used to adjust tproj as it allows
a clear separation of noise and marker intensities. Further, we set intensities at the
boundary of projection images to zero in the FRST result, as the systems’ collimator
edge led to wrong detections. We used a detection radius of rf = 3.0 px and a radial
strictness of crad = 3 for all datasets and fixed the scaling parameter sf according to
[Loy 03]. The maximum search distance for point correspondences is set to du = 70 px
and du = 150 px for Subject 2 and Subject 3, respectively. Selected values for the
number of beads M and the binarization threshold tproj are provided in Tab. 8.1 for
each dataset. Outlier removal was applied iteratively for Nopt = 6 times, detecting
δ = 0.5 % of worst contributions for each iteration, where the minimum number of
detections to retain per projection image was given by Mmin = 6.

Parameters for GC and NGI

A multiresolution approach was used for the 2-D/3-D registration, where the resolu-
tion of the projection images and the ray tracing step size for DRR generation was
adjusted accordingly. The first optimization was done with a downsampled projec-
tion image size of 310 × 240. For Subject 3 we used a quadrupled step size for ray
tracing while blurring the gradient volume using a 3-D Gaussian with σ = 1. This
was mainly done to reduce the total runtime of the registration as twice as many
datasets were present compared to Subject 2. In a second optimization the param-
eters were initialized with results from the first optimization and an image size of
620 × 480 was used. The Lagrangian for the temporal smoothness regularizer was
adjusted to η = 5 and η = 0.5 for Subject 2 and Subject 3, respectively. It was fur-
ther reduced to η = 0.1 for S3 WB1 to account for the severe and rapidly changing
type of motion. The standard deviation of the Gaussian was set to σt = 2 for all
cases. If not mentioned otherwise, parameters were manually determined on a single
dataset and kept constant for all optimizations within a subject. We made sure that
the initial values of GC and NGI had a similar range, using a normalization factor.
This is important to ensure a similar influence of the smoothness regularizer for both
GC and NGI. The reference frame needed for generation of TPS motion fields was
set to k̂ = 122, as this corresponded to an posteroanterior view in all datasets with
little overlap of bones, ensuring an accurate 2-D/3-D registration.

Reconstruction of Real Data

Reconstructions were obtained on a grid of 512× 512× 256 voxels with an isotropic
resolution of 0.5 mm for all datasets and methods. The reconstruction of S3 SUP was
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(a) S2 SUP - axial (b) S2 SUP - coronal

(c) S3 SUP left leg - axial (d) S3 SUP left leg - coronal

Figure 8.1: Reconstructions of supine data S2 SUP and S3 SUP. Only the left leg
was scanned for S3 SUP. (a) and (c): Axial slices inferior and superior of the knee
joint. (b) and (d): coronal slices showing tibia and femur. The ROIs depicted by the
solid, green line are used for qualitative evaluation.

done on a voxel grid of size 512× 512× 512 to improve visibility of the tibia. Inter-
mediate backprojections of the FRST, used to detect 3-D marker locations, required
a larger reconstruction volume to allow detection of laterally truncated markers. The
volume size was adjusted to 512× 512× 512 with an isotropic voxel size of 0.7 mm.

The following steps are included for all reconstructions: 1) a simplified beam-
scatter-kernel scatter estimation [Ruhr 11] assuming that the object consists only of
water and that the water-equivalent-thickness is uniform, 2) cosine weighting, 3)
Parker redundancy weighting [Park 82], 4) a simple truncation correction [Ohne 00],
5) ramp filtering with a smooth Shepp-Logan kernel [Kak 01] and 7) a motion-
compensated GPU backprojector [Sche 07].

Rigid motion for MB and NoCorr is directly incorporated into projection matri-
ces followed by a regular GPU-based backprojector, whereas, GC and NGI used a
backprojector that evaluates the generated nonrigid TPS deformations. Please see
Sec. 4.2 and Sec. 5.5 for more information.

8.2 Reconstruction Results
Let us first present reconstructions of the supine, motion-free data shown in Fig. 8.1.
Figures 8.1(a) and 8.1(b) and Figures 8.1(c) and 8.1(d) show axial and coronal slices
for reconstructions of S2 SUP and S3 SUP, respectively. For both reconstructions we
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Figure 8.2: Axial slices through femur and tibia of weight-bearing reconstructions
from Subject 2. From (a) to (d): Without correction, the MB method, registration-
based methods using NGI and GC. The rows correspond to S2 WB0 (0° flexion),
S2 WB35 (35° flexion), and S2 WB60 (60° flexion). (W: 2025 HU, C: 145 HU).

added an overlay depicting the ROIs used for quantitative analysis of image quality
presented in Sec. 8.3. Note the plasticine surrounding the legs in S2 SUP, which was
used to prevent detector saturation explained in Sec. 2.4.2. Saturation was avoided
in S3 SUP by imaging only the left leg. The injected contrast agent for cartilage
visualization can be clearly seen between femur and patella in Fig. 8.1(c) and between
femur and tibia in Fig. 8.1(d). Due to the supine position, no motion related artifacts
are visible. In general, the double amount of angular resolution led to a better image
quality, compared to the weight-bearing reconstructions.

Axial slices of three weight-bearing reconstructions from Subject 2 are visualized
in Figures 8.2 and 8.3, where the first shows superior slices through femur and patella
and the latter inferior slices through tibia and fibula. Only little motion artifacts are
present for S2 WB0, with slight streaking at the bones’ outlines in case of NoCorr. All
methods restored the bone structures and show similar image quality as can be seen in
the top row of Figures 8.2 and 8.3. However, the MB method shows a slightly sharper
appearance of the fibula indicated by a red arrow. We have embedded zoomed views
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Figure 8.3: Axial slices through tibia and fibula of weight-bearing reconstructions
from Subject 2. Arrangement is identical to Fig. 8.2. (W: 2025 HU, C: 145 HU).

to the reconstructed marker in the inferior images of S2 WB0 (cf. top row Fig. 8.3).
The zooms reveal an accurate reconstruction of the marker for MB and NGI, whereas
GC shows a slight increase of streaking artifacts.

NoCorr reconstructions of S2 WB35 and S2 WB60 show severe motion artifacts.
All motion correction methods reduced streaking artifacts and improved image qual-
ity drastically. Within the correction methods only minor differences are seen at
bone outlines of femur and patella in Fig. 8.2. As expected, a better restoration
of the transition between skin and plasticine was achieved by MB, whereas slight
streaking artifacts originate from the misaligned plasticine in NGI and GC. For the
inferior slices in Fig. 8.3, MB and NGI show similar image quality with slightly more
residual streaking of NGI, especially for S2 WB35. The GC method was not able
to accurately restore the left tibia and shows increased streaking artifacts, particu-
larly for the left tibia. This is in line with misregistrations that occurred for the GC
similarity measure. Fig. 8.4 depicts registration results for S2 WB60 in projection
domain, using an overlay of gradient magnitudes derived from the registered DRR
images (positive intensities) and the acquired projection images (negative intensities).
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(a) NGI - Proj. 122 (b) GC - Proj. 122 (c) NGI - Proj. 1 (d) GC - Proj. 1

Figure 8.4: Difference image of gradient magnitudes extracted from registered DRRs
and the acquired projection images from dataset S2 WB60. Left: Projection images
corresponding to the reference coordinate system. Right: Lateral projections with
multiple occlusions, which led to a wrong registration of the left tibia for GC.

Accurate alignments are shown for a posteroanterior view direction for NGI and GC
in Figures 8.4(a) and 8.4(b). Note that this view was also selected for extraction of
the reference coordinate system. Registration was more problematic for lateral views,
as shown in Figures 8.4(c) and 8.4(d). Individual bones are overlapping and skin- as
well as plasticine boundaries create additional distractions for gradient-based similar-
ity measures. Despite these effects, NGI was able to align tibia and femur accurately,
whereas the left tibia was registered to the plasticine in case of GC, causing streaking
artifacts in reconstruction domain.

Reconstructed images for Subject 3, i. e., for the cartilage study, are shown in
Fig. 8.5 for all six acquired weight-bearing scans. To reduce overall complexity,
we excluded GC from the evaluation of Subject 3, because NGI showed a superior
performance for all cases of Subject 2. The individual datasets are shown on the
rows, where S3 WB1 to S3 WB3 originate from a single acquisition with three sweeps
acquired at the time load is applied to the leg. S3 WB4 to S3 WB6 are single sweep
scans, acquired 3 min, 10 min and 25 min after application of load. The columns
correspond to reconstruction results for NoCorr, MB, and NGI, respectively. Each
image is a concatenation of an inferior axial slice through tibia and proximal fibula
(left) as well as a superior axial slice through the femur (right). Visual observations of
the projection images revealed very severe motion for S3 WB1 and S3 WB2, moderate
motion for S3 WB3 and only little motion for S3 WB4 to S3 WB6. This is supported
by the reconstruction results of NoCorr in Fig. 8.5(a), showing a high amount of
streaking and clear structural loss of the bones, soft tissue and contrast agent for
S3 WB1 and S3 WB2. Mild streaking artifacts are also present at tibia, fibula, femur,
and contrast agent of S3 WB3. Motion artifacts for S3 WB4 to S3 WB6 are small
and manifest mostly as blurring, which can be seen well at the proximal fibula and
at the small extension of the femur’s medial surface. The artifacts can be corrected
well for the last four acquisitions by both NGI and MB, yielding a sharper outline of
fibula and femur. Note the metallic marker in the last three rows of Fig. 8.5. Both
correction methods could improve the marker’s locality after motion correction, yet,
with superior performance of MB. In contrast, NGI yielded a sharper reconstruction
of the fibula for S3 WB3.

Even though both methods can drastically improve image quality in case of severe
motion (S3 WB1 and S3 WB2), a fair amount of streaking artifacts remain after
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Figure 8.5: Each image shows an axial slice through tibia (left) and femur (right) of
weight-bearing reconstructions from Subject 3. From (a) to (c): Without correction,
the MB method, and NGI. The rows correspond to individual weight-bearing acqui-
sitions, scanned at beginning of load application (first three rows) and after 3 min,
10 min and 25 min (last three rows). (W: 2025 HU, C: 145 HU).
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Figure 8.6: Registered sagittal reconstructions of medial condyles from Subject 3.
Note the contrast agent’s surface which separates femoral and tibial cartilage. Con-
trast visibility is crucial for further biomechanical analysis, e. g., of cartilage strain.
The arrangement of images is identical to Fig. 8.5. (W: 2385 HU, C: 670 HU).

correction. NGI generally outperforms MB for S3 WB1 and also shows more accurate
tibial reconstructions for S3 WB2. In contrast, MB yields a better restoration of soft
tissue surrounding the femur, whereas NGI could not accurately correct the surface of
the leg, showing a high amount of residual artifacts. However, most of these artifacts
originate from soft tissue. In fact, the femur itself has less artifacts for NGI, which
we emphasized by a zoom of the medial femoral surface.

For further analysis of the cartilage, it is particularly important to correct motion
artifacts within the knee joint. Contrast agent injected into the joint is used to
distinguish between tibial and femoral cartilage, which are not visible in conventional
X-ray imaging. A clear visibility of the contrast agent’s surface w. r. t. tibial and
femoral condyles is the basis for biomechanical analysis of the cartilage, e. g., cartilage
strain [Choi 14a].

In addition to axial reconstructions inferior and superior to the knee joint (cf.
Fig. 8.5), we also show sagittal reconstructions at medial condyles of tibia and femur
in Fig. 8.6. To allow for an accurate comparison, all reconstructions are aligned to the
supine coordinate system w. r. t. the femur. The procedure used for alignment builds
the main part of quantitative analysis of image quality and is detailed in Sec. 8.3.1.
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Algorithm 8.1: Pipeline for quantitative comparison of image quality at bones.
Create bone-wise evaluation ROIs by 2-D dilation of segmentation masks;
for b̂← 1 to B do // Loop over all bones or ROIs

1) Reconstruction of weight-bearing scan in supine coordinate system;
2) Refine alignment by 3-D/3-D registration of b̂-th bone to supine volume;
3) Updated reconstruction based on registration result;
4) Compute UQI within current ROI;

end
Extract the final UQI as mean value of bone-wise UQIs;

Reconstructions without correction show severe motion artifacts for S3 WB1 and
S3 WB2, such that bone surfaces and the contrast agent cannot be localized. Minor
motion artifacts were obtained for S3 WB3 to S3 WB6 for the axial reconstructions
in Fig. 8.5(a). In contrast, motion-induced blurring of the bone and contrast agent
surfaces is clearly visible in the sagittal reconstructions, which make accurate quan-
titative measurements of cartilage properties impossible. Hence, motion correction is
essential even if only little motion is present. In case of severe motion, MB could not
sufficiently restore the surface of the contrast agent, whereas a much sharper local-
ization is possible when applying NGI. Both methods were able to correct for motion
blur for little to moderate motion, showing comparable image quality for S3 WB3 to
S3 WB6.

Overall the NGI method yielded the best results and allows for a subsequent anal-
ysis of cartilage deformation after application of load. In addition, the contrast agent
also allows visualization of menisci. They can be seen in the motion-corrected recon-
structions (cf. Fig. 8.6(c)) by the break down of contrast agent at the anterior and
posterior of the joint. The acquisitions also depict the wash out of contrast agent over
time, where the lowest intensity is obtained for S3 WB6. Also, the contrast surface
in S3 WB6 appears wider than in previous acquisitions which indicates diffusion of
contrast agent into cartilage tissue.

8.3 Quantitative Assessment of Image Quality
We use the UQI (cf. Sec. 7.3) to measure the similarity of the weight-bearing re-
constructions to that of the motion-free, high-quality, supine scan. Computation of
the UQI is limited to ROIs that contain femur and tibia and soft tissue surrounding
these bones. The third evaluation method presented in Sec. 7.3.2 is used, computing
the average of block-wise UQI results, restricted to bone ROIs.

8.3.1 Quantitative Evaluation Pipeline
An overview of the approach used to obtain UQI values for each method and dataset
is shown in Algorithm 8.1. In general, accurate quantitative evaluation of image qual-
ity in in-vivo data is challenging. The UQI requires a precise geometric alignment of
anatomies to allow for such a comparison. The reconstruction of weight-bearing scans
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within the supine coordinate system is easily established after successful registration
using NGI or GC. Therefore, the bone transformations T init

b , estimated during ini-
tial 3-D/3-D registration, are simply incorporated into the reference transform T̂ k̂b,
such that the supine scan represents the new reference coordinate system. How-
ever, updated reconstructions need to be performed separately for each bone due to
several reasons. First, the deformation fields estimated by TPS would differ from
deformations estimated in the standing reference coordinate system, as they would
incorporate nonrigid joint motion between supine and standing scans. Second, MB
and NoCorr methods are not able to perform a nonrigid reconstruction, thus, only a
single rigid transform can be incorporated at a time.

To perform alignment for a selected bone b̂, its initial transform T init
b̂

needs to be
incorporated into the reconstruction process. For the MB and NoCorr method this
can be achieved in a straightforward manner by right multiplication of the motion-
corrected (MB) or the original (NoCorr) projection matrices with T̂ k̂b̂T

init
b̂

. Thus, MB
and NoCorr reconstructions are aligned with the supine scan, according to the initial
and reference transform of the b̂-th bone, obtained from a registration approach. We
chose to use transformations estimated with NGI, as the method proved to yield
more stable registration results than GC. The nonrigid methods GC and NGI require
only a simple update of Eq. (5.14) to align the reconstructed bone with the supine
coordinate system. The updated equation now reads

Tkb = T̂kb

(
T̂ k̂bT

init
b̂

)−1
. (8.1)

As a result, we obtain reconstructions of weight-bearing scans where a selected
bone is aligned with that of a supine reconstruction. Their alignment should match,
given that MB and the registration methods were able to estimate the motion per-
fectly. However, deviations and errors of the 2-D/3-D registration or the MB approach
will lead to a misalignment which would be the dominant factor when evaluating the
UQI. To focus the UQI on image quality we incorporate an additional automatic
3-D/3-D registration of the selected bone from weight-bearing to the supine recon-
structions, using 3-D Slicer. To make sure that the image quality has minor influence
on the 3-D/3-D registration we use an MI similarity measure, which yielded accurate
alignments even in presence of a high level of motion artifacts, e. g., for reconstruc-
tions without motion correction. All registration results have been verified visually
to ensure meaningful UQI measures. The final registration results are once more
incorporated into the reconstruction to avoid an additional interpolation in volume
domain. These reconstructions are then used to obtain a bone-wise value for the
UQI.

In Fig. 8.1 we show axial slices through tibia as well as femur and a coronal slice
of the supine reconstructions. The solid, green outline represents the final ROIs used
for the MI-based 3-D/3-D registration but also for evaluation of a bone-wise UQI. It
can be seen that the ROIs contain a margin that covers soft tissue close to the bones,
which was incorporated by dilation of the segmentation masks applying a circular
structuring element of radius 2.5 mm in the axial planes.
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UQI (×102)
Dataset NoCorr MB NGI GC NGI- MB
S2 WB0 34.9 57.2 63.5 62.6 + 6.3
S2 WB35 11.2 51.0 53.1 47.2 + 2.1
S2 WB60 9.0 52.9 51.7 49.9 - 1.2
S3 WB1 14.4 31.0 61.0 - + 30.0
S3 WB2 18.6 44.2 63.3 - + 19.1
S3 WB3 40.7 65.8 69.9 - + 4.1
S3 WB4 42.2 66.0 68.4 - + 2.4
S3 WB5 51.7 69.4 67.5 - - 1.9
S3 WB6 44.4 69.0 68.5 - - 0.5

Total 29.7±16.3 56.3±13.0 63.0±6.7 - + 6.7±10.8

Table 8.2: UQI values over evaluated bone ROIs. The last row shows the mean
UQI and its standard deviation over all datasets. All correction methods improved
image quality when compared to reconstructions without correction. Bold numbers
emphasize the methods that obtained the highest UQI for each dataset.

8.3.2 UQI Results
Qualitative evaluation resulted in a UQI for each bone, correction method, and
dataset. A total of nine weight-bearing datasets were evaluated, three from Sub-
ject 2 including different flexion angles and six of Subject 3 as part of the cartilage
study. Tab. 8.2 shows the mean UQI values over all evaluated bone ROIs, i. e., left
and right femur and tibia for Subject 2 and only left femur and tibia for Subject 3.
For the purpose of visualization we scaled the presented values by a factor of 100,
such that its theoretical range lies in [−100, 100], with 100 corresponding to identical
test and reference images.

The weight-bearing scans had minor variations of intensities due to saturation,
truncation, or other artifacts. Also, the supine scans had a higher image quality and
potentially different exposure rates due to the AEC which has a certain influence
on UQIs determined between weight-bearing and supine data. In fact, for in-vivo
data it is not possible to obtain an exact maximum UQI, for the case of a motion-
free weight-bearing scan. Previously, cadaver legs have been used to obtain this
bound [Choi 14c], yet, this cannot be integrated regularly into weight-bearing acqui-
sition protocols. However, the UQI has shown to be robust to intensity differences
[Wang 02], allowing for a distinguished evaluation of motion-correction methods but
also individual datasets within a subject.

Comparison of datasets

Reconstruction results without motion correction in Figures 8.2(a), 8.3(a), 8.5(a)
and 8.6(a), but also a visual inspection of acquired projection images, revealed a
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good approximation of motion levels within individual acquisitions. We determined
that S2 WB35, S2 WB60, S3 WB1, and S3 WB2 contain a substantial amount of
motion artifacts, whereas the other datasets show only moderate to little degradation
of image quality. This is supported by UQI values obtained without application of
motion correction, showing substantially smaller UQIs in case a high level of motion
artifacts was present. In addition, the maximum achieved UQIs after correction are
obtained in case the initial image quality was higher, e. g., 63.5 for S2 WB0 vs. ≈ 53
for S2 WB35 and S2 WB60.

Method Comparison

A large improvement in UQI could be observed for all applied motion correction
methods w. r. t. no correction. In general, improvements due to motion correction
methods are in line with the visual observations obtained in Figures 8.2, 8.3, 8.5
and 8.6.

GC has only been validated for Subject 2 and had a consistently smaller UQI
than NGI, which originates from an increased rate of misregistrations (cf. Fig. 8.4)
causing streaking artifacts particularly at the tibia (cf. Fig. 8.3(d)).

Let us compare the performance of MB and NGI methods. The last column of
Tab. 8.2 shows the difference in UQI between MB and NGI, where a positive value
indicates a better image quality for NGI. Reconstructions of S3 WB3 to S3 WB6 re-
vealed only little differences between MB and NGI with a slightly better performance
of NGI in case of S3 WB3 (see zooms to tibia in Fig. 8.5). However, clearly less
artifacts were present when using NGI on S3 WB1 and S3 WB2. Both observations
are in agreement with the UQI values obtained for Subject 3, where NGI yields a
UQI which is 19.1 and 30.0 higher than MB for S3 WB2 and S3 WB1, respectively.

For Subject 2 the MB method yielded a better visual quality in the reconstruc-
tions, with less streaking and a better restoration the skin and attached plasticine.
Nevertheless, NGI yielded higher UQI values for S2 WB0 and S2 WB35. Many of
the residual streaking artifacts for NGI originate from the boundary of skin and plas-
ticine and do not contribute much to the image quality at the bones. Additionally,
we have noticed a slight deformation of bones in case of S2 WB0 which could support
this discrepancy. It is analyzed in detail in Sec. 8.4.

8.4 Cross-Evaluation at Markers and Bone Surfaces

MB builds on location measurements of markers attached to the skin. Thus, inter-
nal motion of tissue and bones which deviates from the skin’s motion may not be
covered. In contrast, NGI and GC are based on bone motion estimated by 2-D/3-D
registration, where motion at the periphery of the leg is extrapolated based on a TPS
deformation model. The goal of this evaluation is to determine the accuracy of the
registration-based approaches at a certain distance to the bones. Additionally, we
investigate if MB leads a loss of image quality at internal structures, e. g., at tibia or
femur.
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8.4.1 Bone Surface Profiles
For some datasets quantitative evaluation revealed a higher UQI value for NGI com-
pared to MB, which was in contradiction to the visual reconstruction results. How-
ever, we noticed a slight deformation of the bone’s outline for MB when compared to
the supine reconstruction, which is likely to reduce UQI measurements. For further
analysis of this deformation, line profiles were extracted orthogonal to the outline of
the femur for NGI, MB, and the supine data, in aligned reconstructions extracted
during UQI measurement (cf. Sec. 8.3.1). The surface of the existing bone segmenta-
tions typically extended the visible outline of the bones by a small amount. Thus, we
applied a manual refinement of the segmentations for representative axial and coro-
nal slices using ITK-Snap [Yush 06]. This guaranteed that the line profiles should
intersect the bone surface at the same position. Subsequently, 2-D spline curves were
fitted to the intersection of the selected axial and coronal slices with the segmentation
surface. An analytic computation of lines perpendicular to the spline can be easily
obtained by its derivative, allowing for an arbitrary density of the sampling pattern.
We sampled line profiles equidistantly along the spline curves and concatenated them
to an image representation.

The sampling procedure and the selected slices are visualized in Fig. 8.7(a) for
S2 SUP. We have selected S2 WB0 for the evaluation as it had the highest difference
of UQI between MB and NGI, while showing slightly better visual results for MB.

Fig. 8.7(b) shows the line profiles for a selected axial and coronal slice, for S2 SUP
and motion-corrected reconstructions of S2 WB0 using MB and NGI. The y-axis of
the profiles points from bone marrow to the surrounding tissue. Starting points and
direction of x-axes are visualized within Fig. 8.7(a). The line profiles are super-
imposed with a dashed, green line corresponding to a distance of −0.5 mm to the
spline surface. The distance was heuristically adjusted such that the line coincides
with to the center of the cortical bone edge for the supine scan. Assuming an ideal
segmentation, motion correction and registration, the images should show an ideal
edge, parallel to the superimposed line. Line profiles of supine scan and NGI method
appear very similar in both axial and coronal slice, showing a linear edge. In con-
trast, profiles of the MB method appear to shift upwards at several locations along
the spline. This translation corresponds to a deformation, orthogonal to the bone
surface. If it appears consistently along the x-axis, it may be interpreted as scaling
or distortion effect rather than a misalignment.

8.4.2 Fiducial Registration Error (FRE)
Even though NGI and GC are independent of markers, we can make use of them
to evaluate their performance in estimating deformations at marker locations on the
skin. This can be done by measuring the FRE, i. e., the reprojection error of 3-D
marker locations detected in reconstructions based on NGI or GC, w. r. t. actually
detected marker locations in 2-D. Thus, as a first step we need to detect 3-D marker
locations in the final reconstructions of the registration-based approaches. We apply
the same automatic marker detection introduced for MB in Sec. 4.1.2. However,
the mapping from 3-D points to detector coordinates now includes the nonrigid TPS
deformations and is formalized by Eq. (3.45). All other parameters, e. g., for FRST
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(a) Sampling procedure for line profile measurement.
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(b) Edge profiles along femur surface in coronal (bottom) and axial (top) slices.

Figure 8.7: Edge profiles along the surface of the right femur in S2 WB0 and
S2 SUP, for MB, NGI, and the supine reconstruction (SUP). The sampling proce-
dure is shown in (a), where the starting point of the sampling is marked by yellow
arrows. The y-axis points from bone marrow towards surrounding tissue. MB causes
a translation of the edge outwards w. r. t. SUP and NGI, which indicates a slight
scaling or distortion.
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FRE [mm]
Dataset MB NGI GC
S2 WB0 0.15 0.37 0.45
S2 WB35 0.35 0.92 1.45
S2 WB60 0.29 0.75 1.55
S3 WB1 1.59 2.08 -
S3 WB2 0.63 1.07 -
S3 WB3 0.23 0.43 -
S3 WB4 0.15 0.35 -
S3 WB5 0.14 0.48 -
S3 WB6 0.16 0.52 -

Total 0.41±0.47 0.77±0.55 -

Table 8.3: FRE measured with reprojected marker locations in 2-D projection do-
main. 3-D marker locations were detected in motion-corrected reconstructions for
GC and NGI, using the automatic marker detection approach of MB.

or thresholding, are identical to those used for the MB approach. We ensure that the
FREs obtained for the MB and registration methods are based on the same marker
detections by using the point correspondences of MB, as determined after the outlier
detection.

We define the FRE as mean Euclidean distance of forward projected 3-D points
and their corresponding 2-D detections

FRE(α) = 1∑K
k=1(#Uk)

K∑
k=1

#Uk∑
m=1

∥∥∥∥ diag
((

∆u ∆v
)>)
·
(
h
(
mkm

)
− ukm

)∥∥∥∥
2
, (8.2)

where diag
((

∆u ∆v
)>)

performs a scaling from pixel to mm distances. The FRE
is evaluated for NGI, GC (for data from Subject 2), but also MB. Note that re-
ported FREs for MB are rather optimistic, as Eq. (8.2) is almost identical to the
cost function minimized during the MB approach (cf. Eq. (4.16)). Further, the point
correspondences are obtained after outlier removal, thus, the worst contributions of
MB are not part of the FRE measurement.

The result of FRE measurements are shown in Tab. 8.3 for MB, NGI, and GC. Due
to several misregistrations, GC yielded generally higher FREs than NGI for Subject
2 datasets. The maximum FRE of the GC method amounts to 1.55 mm, whereas all
FRE values for the NGI method were no larger than 0.92 mm. Compared to the MB
approach the standard deviations for NGI and GC increased substantially. Yet, for
the NGI method the highest standard deviation (i. e., 1.07 mm) is still considerably
smaller than for the GC case (i. e., 2.46 mm). As anticipated, MB shows the best
results for all datasets, with a mean FRE of 0.41 mm and a maximum of 1.59 mm
for S3 WB1. NGI shows an average FRE of 0.77 mm and a maximum of 2.08 mm
for S3 WB1. The general trend of FRE measurements also reflects the amount of
motion present in the individual datasets, with the worst FRE results obtained for
datasets with severe motion, i. e., S2 WB35, S2 WB60, S3 WB1, and S3 WB2.
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8.5 Removal of Marker-Induced Metal Artifacts
In Sec. 4.3 we have shown that metallic markers can cause severe streaking artifacts
that may also propagate into diagnostically meaningful regions, e. g., the knee joint.
Similar effects can also be seen in reconstructions of Figures 8.3 and 8.5. An approach
to reduce such metal artifacts is often a removal of markers in the projection domain.
A collection of methods was introduced in Sec. 4.3, allowing extrapolation of data
within a certain region around marker locations.

In the following, we present a comparative evaluation of individual extrapolation
methods w. r. t. the final reconstruction quality. Investigations are based on a specif-
ically designed numerical phantom introduced in Sec. 7.1. The phantom allows for
a qualitative and quantitative evaluation as reconstructions can be obtained, with
(MR 8M) and without (MR GT) metallic markers. In addition we present qualita-
tive reconstruction results for marker removal based on a supine scan of Subject 1
(S1 SUP).

The reconstruction for both numerical phantom and S1 SUP deviates from that
of the weight-bearing scans presented in Sec. 8.1.1. It consists of 1) cosine weighting,
2) Parker redundancy weighting [Park 82], 3) ramp filtering with RamLak kernel
[Kak 01], and 4) a GPU backprojector [Sche 07]. We chose to use a standard RamLak
filter to make sure that marker-induced streaking is not influenced by the filtering
step.

Both phantom and real data contained eight markers. All removal methods, i. e.,
LinInt, BSpl, TPSS, SAS, NConv, and SpecInt, are applied to each marker location
in 496 projection images. Thus, a total of 3968 extrapolations are performed for
each method and dataset. We reconstructed volumes for each marker, centered at
its 3-D location. The volumes’ size was 256× 256× 256 with an isotropic voxel size
of 0.125 mm. In addition, we reconstructed MR 8M, S1 SUP, and MR GT without
removal of markers, to obtain-corrupted as well as ground-truth reference volumes.
The RMSE was evaluated between ground-truth and corrected reconstructions. All
necessary parameters of the individual methods, e. g., the size of the neighborhood
Nw used for extrapolation, were adjusted heuristically using simulated data from
MR 8M. Parameters were then fixed for application to real data S1 SUP.

8.5.1 Results Based on Numeric Phantom
Fig. 8.8 shows squared axial slices of a representative marker showing an ROI with
16 mm side length, centered at each marker location. For convenience, we superim-
posed the ground-truth surface of the water cylinder by a dashed, yellow line. The
best results are obtained for SpecInt which could restore the edge without noticeable
difference to the ground truth. Spline-based approaches, i. e., BSpl and TPSS, show
a similar performance with slight blurring of the cylinder’s edge. Higher amount of
of blurring is obtained for SAS and LinInt. NConv could not remove the marker and
introduced new streaking artifacts.

RMSE values for the individual methods are shown in Tab. 8.4. The first row
shows the RMSE over all eight marker volumes and the second row shows the stan-
dard deviation of marker specific RMSE values. In agreement with the visual recon-
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(a) Ground truth (b) LinInt (c) BSpl (d) TPSS

(e) None (f) NConv (g) SAS (h) SpecInt

Figure 8.8: Reconstruction results of different marker removal methods. Images
depict a squared ROI with 16 mm side length centered at a selected marker.
(W: 973 HU, C: -436 HU).

None LinInt BSpl TPSS NConv SAS SpecInt
RMSE (HU) 30.1 13.8 9.3 9.9 19.5 14.6 8.1
σrmse (HU) 4.4 4.8 4.3 4.4 6.5 4.3 3.3

Table 8.4: RMSE for extrapolation methods applied to the numeric dataset MR 8M.
The edge builds the transition between soft tissue (0 HU) and air (−1000 HU).
Reconstructions without marker removal are abbreviated by (None).

struction results, SpecInt performed best with an RMSE of 8.1 HU and the lowest
standard deviation of 3.3 HU. BSpl and TPSS performed only slightly worse, followed
by LinInt and SAS. NConv performed substantially worse which is in line with the
reconstruction results.

8.5.2 Results for Real Data
To allow localization of the marker, we show an axial slice of the left femur in
Fig. 8.9(a). The squared ROI with side length 16 mm is superimposed as a solid,
green box around the clearly visible marker. Even though the effect of the marker
appears quite local in Fig. 8.9(a), it causes streaks that propagate through the entire
leg in adjoining axial slices.

Results for marker removal on real acquisitions are shown in Figures 8.9(b) to 8.9(h).
In contrast to the numerically simulated data, a substantial amount of noise was
present in the reconstructions. Ideally, noise would also be restored at marker loca-
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(a) Full view (b) LinInt (c) BSpl (d) TPSS

(e) None (f) NConv (g) SAS (h) SpecInt

Figure 8.9: Results for marker removal based on data from S1 SUP. We show slices
through one of eight markers removed by the extrapolation methods. The location
of the ROI can be obtained from (a), showing the full reconstruction of the left leg.
Fig. (a): (W: 1000 HU, C: 0 HU). Figures (b) to (h): (W: 973 HU, C: -436 HU).

tions to avoid a blurred appearance after extrapolation. All methods were able to
increase image quality compared to a reconstruction without marker removal. SpecInt
showed the best performance and could successfully remove the marker with proper
restoration of edge information and noise properties. In contrast to the numeric
simulations, BSpl introduced new streaking artifacts, which could originate from the
increased noise level. On the other hand, TPSS showed increased blurring, such that
the result is similar to that of LinInt. SAS could not fully remove the marker, yet,
the skin surface is well restored while retaining the noise level. As for the numerically
simulated data, NConv showed increased amount of artifacts and performed worst.

8.6 Discussion and Conclusion

Improved Marker-Based Motion Correction Imaging of knees under weight-
bearing conditions poses several problems for image reconstruction in CBCT, first and
foremost motion correction is necessary to improve image quality to a level suitable
for diagnosis. The baseline of this thesis was a marker-based motion estimation
approach [Choi 14c]. In this work a variety of extensions are proposed to the marker-
based approach. In contrast to the initial method we eliminated the need for manual
annotation of markers and present a fully automatic motion correction approach
presented in Chap. 4. Additionally, we present a several methods for improving
robustness of MB, including an extension to FRST used for marker detection, an
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automatic removal of outliers, and a numerical optimization, based on the analytic
gradient of the cost function.

Our evaluations revealed that MB is able to accurately correct motion artifacts
in most cases. However, for datasets S3 WB1 and S3 WB2, which contained severe
motion, MB could not accurately restore image quality (cf. Fig. 8.5), such that the
contrast agent used for visualization of the cartilage is merely visible (cf. Fig. 8.6(b)).
Yet, MB performed best for correcting severe motion in S2 WB35 and S2 WB60. By
definition MB is limited to a global rigid motion. We believe that this requirement
is better complied by scans of Subject 2 as the plasticine wrap enforced similar rigid
motion of both legs. At the same time the placement of markers in Subject 3 may
have not been ideal, as only six markers covered the leg of interest whereas four were
attached to the right leg at the periphery of the FOV. MB aims to preserve both
legs with a single rigid transform even if a higher variance of motion between legs is
present, eventually leading to artifacts at both legs.

Extending the motion model of the markers to a nonrigid transform, similar to
that used for registration-based motion estimation, would be difficult. First, the
markers need to be assigned to anatomies, e. g., bones. Second, the number of pa-
rameters for a nonrigid problem is much higher than the number of markers, leading
to an ill-posed optimization problem. Increasing the number of markers also in-
creases metallic artifacts and makes marker detection more difficult. In addition, MB
requires the radiologist to carefully attach the markers to the knee to avoid overlaps
in the projection images, which will be bothersome in clinical routine. On top of
that, markers can only be attached to the skin, yet, the relationship between motion
of bones and skin remains unclear.

Novel Registration-Based Motion Correction A motion correction method
based on only image features could alleviate most of these drawbacks. In an initial
investigation of image-based motion correction we used 2-D/2-D registration of ac-
quired projections and MIPs of reconstructions without correction [Unbe 15]. The
method is independent of additional acquisitions or surrogate signals, however, im-
provement in image quality was insufficient due to the high amount of motion artifacts
in the initial reconstruction.

As part of this thesis we propose a novel nonrigid motion correction method based
on 2-D/3-D registrations between segmented bones of a motion-free prior scan and
the acquired projection images of the weight-bearing acquisitions. Rigid 2-D/3-D
registration is applied between each bone and each projection image. The resulting
bone motions are then used to extract nonrigid motion fields based on TPS. Supine
acquisitions prior to examination are part of all presented weight-bearing studies and
are often used to obtain a reference, e. g., to measure cartilage size before application
of load.

Relation to Existing Literature A multitude of work exists related to 2-D/3-D
registration, especially in the field of motion management for radiotherapy applica-
tions [Rit 13]. However, most of the approaches are based on the assumption that the
motion is periodic and also repeatable within some time frame. Often, a prior 4-D
CT acquisition is used to identify a “ground-truth” motion, which is then incorpo-
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rated into the 2-D/3-D registration pipeline. In our application we scan knee joints
under weight-bearing conditions, where a prior 4-D CT scan is not available in the
clinical routine and would require the development of dedicated systems. Further-
more, we cannot rely on a straightforward periodicity or repeatability assumption.
The only assumption we incorporate in our approach is that the motion parameters
vary smoothly, i.e., the motion has a limited frequency.

Only little work has investigated the registration to a large number of projection
images. Ouadah et al. [Ouad 15, Ouad 16] solve for nine parameters per projection
to estimate the system’s calibration. With our method we show that an even higher
complexity is possible, solving an articulated registration that optimizes six rigid
motion parameters per femur and tibia, yielding up to 24 unknowns per projection
image. Thus, a total of 6 × B ×K parameters are estimated, i. e., 5952 for Subject
2 and 2976 for Subject 3.

Joint Evaluation Compared to reconstructions without motion correction, all
methods were able to improve image quality. Our comparison of similarity mea-
sures revealed a consistently better performance for NGI, whereas GC showed in-
creased amount of streaking artifacts. This was due to misregistrations in lateral
view directions where overlapping of left and right leg made registration challenging
(cf. Fig. 8.4). This finding supports results from Otake et al. [Otak 13], stating
that NGI is more robust to occlusions and overlapping edges. We were able to show
that NGI performs similarly well than MB with only little differences for most of
the datasets investigated. In fact, NGI even outperformed MB corrections for severe
motion artifacts in Subject 3, i. e., for S3 WB1 and S3 WB2. We believe that the
registration-based methods are more flexible when applied to nonrigid joint motion,
which is likely to increase according to the severity of patient motion. Of particular
interest are the reconstructions of the contrast agent shown in Fig. 8.6, where NGI
yielded accurate restorations of bone and contrast surface for all datasets. Robust
2-D/3-D registrations of bones are possible even in presence of contrast agent, which
introduced edges similar to those of the femur and tibia. Overall, NGI yielded the
best quantitative results with an average UQI of 63.0 compared to 56.3 for MB. NGI
had superior UQI values in six out of nine datasets, showing only minor differences
to MB in the remaining three datasets.

As expected, MB showed a higher accuracy in correcting the outline of the leg
and associated markers. In contrast, NGI and GC introduced slight streaking arti-
facts at the transition of skin and plasticine of Subject 2. For S2 WB0 we obtained
similar visual results of MB and NGI, yet, the latter yielded a noticeably higher UQI.
Extracted intensity profiles at axial and coronal surfaces of the femur showed a small
deformation for MB when compared to the supine scan (cf. Fig. 8.7), causing a re-
duction in UQI. We believe that the deformation originates from the combination
of a rigid motion model with nonrigid skin motion. Assuming all but one marker
move perfectly rigid, described by a specific translation and rotation and the one
marker moves nonrigidly, possibly even slightly opposed to the others. Nevertheless,
all markers are assigned the same weight in the cost function introducing bias, as the
optimization estimates rigid motion parameters only. The error introduced in this
way might manifest in increased distances for all the other rigid markers that could
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normally be estimated perfectly. These increased distances can lead to a distortion in
the reconstruction, which will be connected to the nonrigid motion of a single marker.

Fiducial markers are frequently used to provide ground-truth motion estimates
in the field of 2-D/3-D registration [Pawi 11]. We follow this principle for evaluation
of how well the TPS are able to estimate motion at the boundary of the legs. An
analysis of the FRE showed the smallest reprojection error for MB. This was not
surprising, as its cost function minimizes exactly this error, whereas GC and NGI
are independent of marker locations. However, an average FRE of 0.77 mm for NGI
is still acceptable. Considering that the measure is defined in the projection image
plane its effect on the reconstruction reduced approximately by the magnification
factor of the CBCT system, i. e., by S

F
. For Subject 2 and Subject 3, this would lead

to an effective reconstruction error of 0.50 mm.
A limitation of our quantitative evaluation is its dependency on subsequent 3-D/3-D

registrations of individual bones, which introduces an additional source of error.
Yet, avoiding the intermediate registration steps would require knowledge about the
ground-truth motion of bones, which is hardly possible in in-vivo acquisitions. We
use the UQI as measure for image quality of bones. Even though a small margin of
soft tissue is included, the evaluation shall not be interpreted as an accurate mea-
sure for motion correction of soft tissue. However, considering that the majority of
diagnostically meaningful anatomies are located close to the bones, e. g., tibial and
femoral cartilage, the UQI presents reasonable means for comparing motion correc-
tion approaches.

We introduced a method to reduce noise in generated DRR images, based on
bilateral filtering and an adjustment of bone segmentations to focus only on cortical
bone. In essence, this is very similar to a direct registration of 3-D surface meshes to
the projection images, also known as feature-based 2-D/3-D registration [Mark 12].
Even though, feature-based methods may reduce computational complexity of the
registration approach, we expect a superior performance of the presented method as
it is more robust to deviations in the bone segmentations. This is because it does not
only rely on geometric, but also on actual intensities of the supine reconstructions. In
addition, mesh-based registration requires detection of features in projection domain,
which will be difficult for lateral view directions.

Currently, registration-based approaches require a great amount of manual input,
i. e., semi-manual segmentations of bones and manual 3-D/3-D registrations. Also,
computation times of the multiresolution 2-D/3-D registration are rather high. For
B = 4 bones, K = 248 projection images (cf. Subject 2) and a high number of
maximum iterations for registration (300), registration can take up to several hours on
a consumer grade computer, which is still beyond clinical applicability. Yet, we believe
that further improvements to the hardware as well as a code optimization could reduce
runtime by orders of magnitude. In contrast, due to extensions and modifications
presented in this thesis, MB reconstruction is ready for a clinical application. No
manual interaction is required and the typical runtime for the entire motion-corrected
reconstruction lies in the range of several minutes.

Metal Artifact Reduction A method for reducing metallic artifacts caused by
fiducial markers is proposed in Sec. 4.3. After extraction of a full set of detected
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marker locations in projection domain, the markers are blanked out with a certain
radius rw and missing data is extrapolated based on the surrounding intensities. Our
comparison of different extrapolation methods shows the best results for SpecInt,
restoring the edge information but also the noise level. Important for SpecInt is
the neighborhood’s size Nw and its location. In case of fiducial markers, defective
pixels are well localized and all of similar size, which facilitates SpecInt. Spline-
based methods showed a good performance on data from a noise-free, numerical
phantom. Yet, when applied to real data BSpl led to residual streaking artifacts.
BSpl extrapolates missing values based on 1-D vertical and horizontal splines, thus,
neighboring defect pixels may rely on entirely different intensities, leading to higher
extrapolation errors in presence of noise. In contrast, TPSS estimates a regularization
parameter which increased in presence of noise, thus, causing a blurred reconstruction
at the skin. Straightforward LinInt removes the markers reliably, yet, shows rather
smooth results in reconstructions of the skin surface. The goal of SAS is to retain
high-frequency edge information covered by the object that is to be removed. It
was initially applied to remove catheter tips from projection images [Schw 10]. The
approach could not remove markers entirely which may be due to the high frequencies
incorporated by the markers itself. The worst results were obtained for NConv which
seems not appropriate for marker removal.

In case an accurate restoration of the skin surface is important and the noise level
of the neighborhood should also be restored, we recommend to use SpecInt. Yet, if
only streaking artifacts should be removed we deem LinInt as sufficient, which has
the benefit of a substantially lower runtime.

Conclusion

Within the scope of this thesis we introduce several extensions and improvements
to marker-based motion correction. As a result, a fully automatic motion correc-
tion method for acquisitions of knees under weight-bearing conditions is presented.
Moreover, the method is readily applicable to other anatomies, which we showed for
correction of head motion [Mull 15a]. Results show that the method is able to restore
structural information, e. g., bone or cartilage surfaces, for most of the evaluated
datasets. However, deficiencies were observed in case of nonrigid or severe motion as
the method is currently limited to rigid motion and hardly extendable to nonrigid
motion correction. A key problem is that the markers require a thorough attachment
prior to examination, which hinders clinical routine and increases patient discomfort.
On top of that, we found that MB can cause small distortions of the bone, indicating
that internal motion may not be estimated accurately.

To alleviate these issues, we present a novel method for motion correction using
2-D/3-D registration of bones, segmented from prior supine scanning, to each projec-
tion image acquired during weight-bearing acquisitions. A comparison between MB
and registration-based motion correction revealed the highest improvements in image
quality for 2-D/3-D registrations using NGI as similarity measure, where robust reg-
istration results are obtained despite overlapping of bones. Evaluations on Subject 3,
obtained in context of the cartilage study (cf. Sec. 2.3.2), showed that NGI is robust
to the presence of contrast agent. Reconstructions of sagittal slices show a superior
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quality of the contrast agent’s surface for NGI, allowing a subsequent analysis of the
cartilage.

Given that acquisition time and patient comfort is of less importance and rigid
motion can be ensured, we recommend the proposed marker-based correction method
in combination with a subsequent marker removal using SpecInt. In contrast to a
registration-based correction, MB is fully automatic and readily applicable in clinical
routine. However, many clinical applications do not allow for an additional inter-
ference with the acquisition protocol. Also, enforcing only rigid motion, e. g., using
a fixation of legs, is hardly feasible and may be in contradiction to the clinical mo-
tivation. In that case, we have shown that the registration-based method offers a
promising and in some cases even more accurate alternative to MB correction. Fur-
ther optimization reducing the runtime and required manual interaction for 2-D/3-D
registrations, could allow a complete replacement of marker-based motion correction
in future applications.
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Applications of CC in the field of CBCT are still a very active field of research and
often limited to theoretic concepts. The state-of-the-art of FCC-based artifact correc-
tion was based on fan-beam CT, without truncation and using full-scan acquisitions.
In addition, FCC have not yet been applied in the field of motion estimation. As
part of this thesis we present a novel approach for motion correction based on FCC.
It requires only the acquired, motion-corrupted projection images. In this chapter we
show initial evaluation results of the proposed methods. First, a detailed explanation
of performed evaluations and selected parameters is given in Sec. 9.1. We initially
introduced the method for fan-beam CT and extended it to CBCT in the progress
of this thesis. Similarly, results are first presented for fan-beam CT in Sec. 9.2. The
extended method for CBCT is evaluated in Sec. 9.3. In both cases, evaluations are
based on a challenging numerically simulated head phantom, yielding truncation-free
projections over a full-scan range, containing rigid translational motion. To fill the
gap to weight-bearing imaging of the knee, results of a numerical knee phantom, in-
cluding vertical truncation and realistic motion, are shown in Sec. 9.4. Finally, the
chapter ends with a discussion and conclusion in Sec. 9.5.

9.1 Materials and Methods

Evaluations on fan- and cone-beam geometries are performed in a similar way. The
goal is to validate the method’s performance w. r. t. improvements in image quality.
Both methods use generated phantom data, thus, ground-truth reconstructions are
easily obtained. Datasets and simulated translational motion have been explained
in Sec. 7.1.2. All simulations were performed with help of the open source software
CONRAD [Maie 13].

123
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9.1.1 Fan-Beam Study
For the fan-beam case we have used four datasets, i. e., FFB GT HQ, FFB OSC HQ,
FFB GT LQ, and FFB OSC LQ. They consisted of high- and low-quality data, where
the latter showed severe Poisson distributed noise, a lower X-ray energy, half of the
detector resolution, and about a quarter of the angular resolution. Only the Oscil
motion was used for fan-beam simulations. A reference in reconstruction domain was
obtained by direct rendering of the phantom, allowing an evaluation of the maxi-
mum achievable image quality in case no motion is present. The motion model was
restricted to 1-D translations of individual detector lines.

Optimization of the cost function involved a multiresolution scheme. The fan-
beam sinograms were downsized by a scaling factor of 0.25, 0.5 and 1, where the
resulting motion was upsampled by linear interpolation such that it can be provided
as initialization to the next higher resolution level. To obtain a quantitative measure
of image quality, we computed the rRMSE on the full reconstructed 2-D image, given
motion-corrupted, corrected and motion-free reconstructions.

9.1.2 Cone-Beam Study
For the cone-beam evaluation we have used a total of 12 datasets of the same 3-D
FORBILD phantom. Six datasets were of low- and six of high-quality, including five
different motion patterns. The difference between high- and low-quality is the simu-
lation of Poisson noise, while all other geometric and physical parameters remained
constant (cf. Sec. 7.1.2). Reconstruction of motion-free projection images are used
as ground truth.

Our evaluations are based on 3-D translations of the object. However, the eval-
uation focuses on the efficient implementation using 2-D detector shifts as motion
model (cf. Sec. 6.3). Thus, the motion model cannot perfectly reflect object motion
towards and away from the detector, reducing image quality even if the motion is es-
timated perfectly. To allow for a separation of artifacts induced by limitations of the
motion model and residual motion artifacts, we perform three types of reconstruc-
tions. A lower bound in image quality is reflected by reconstructions without motion
correction. The upper bound of the translational motion model can be evaluated by
using the ground-truth detector motion for image reconstruction. Extraction of the
ground-truth translations in projection domain is described by Eq. (9.2).

For a quantitative evaluation of reconstruction volumes we compute the rRMSE
and SSIM introduced in Sec. 7.3. The measures are computed on the entire volumes,
where a reconstruction of motion-free projection images is used as reference. The
SSIM has been evaluated block-wise as described by the second evaluation method
in Sec. 7.3.2.

Evaluation of Motion Parameters

As our study is based on numerically simulated data we had access to the ground-
truth motion, thus, we conducted a quantitative analysis of estimated motion param-
eters. The mean absolute distance (MAD) and the standard deviation of absolute
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estimation errors (SD) is computed between ground-truth and estimated translations.
They can be expressed by

MAD(α) = 1
K

K∑
k=1

|sk − ŝk|∣∣∣tk − t̂k∣∣∣


SD(α) = 1
K−1

K∑
k=1

(sk −MAD(α)1)2

(tk −MAD(α)2)2

 .

(9.1)

where ŝk and t̂k are the extracted ground-truth translations in projection domain.
They are built by subtracting the projection of simulated 3-D translations tk =(
txk tyk tzk

)>
(cf. Sec. 7.1.2) by the projection of the coordinate center. The projected

2-D points are easily obtained using the motion-free projection matrices Pk. Thus,
ground-truth detector translations may be obtained by(

ŝk
t̂k

)
=
(

∆u 0
0 ∆u

)(
h(Pk · 0 )− h(Pk · tk)

)
, (9.2)

where 0 ∈ R3 is a zero vector and 0 =
(
0> 1

)>
its homogeneous form. Further,

∆u and ∆v are used for a conversion from pixel to mm units. Note that translations
of the detector are more suitable for a correction of motion that occurs parallel to
the detector. However, 3-D translations may also have a component which moves
the object orthogonal to the detector, i. e., in depth direction. This leads to scaling
of the object in the projection images and deviations in the line integral values. By
restricting our motion model to detector shifts we neglect the change of object size.
Nevertheless, scaling will have certain effects on estimated translations s and t but
also on the cost function value. In consequence, scaling may introduce an additional
source of error which is not directly related to FCC but to limitations of the motion
model.

9.1.3 Parameter Selection And Image Reconstruction
For both fan- and cone-beam geometry we require an estimate for the maximum
object extent rp to compute the zero regions. We propose a method to extract rp
from the acquired motion-corrupted projection data. Only one motion was simulated
for fan-beam evaluations, whereas, five motion patterns were included for the cone-
beam study. Thus, we decided to use the dataset showing the largest translational
motion in detector u direction, which is present in both fan- and cone-beam CT.
First, the projection data is summed over rotation angles λ and over the detector
v-axis, yielding a vector of dimension I. We can now use a plot of the resulting
vector to measure the spatial distance of left and right boundary w. r. t. the center
in mm, denoted by uleft and uright, respectively. The maximum of both values is now
scaled by the magnification factor of the system such that it refers to the maximum
FOV radius of the uncorrected reconstruction. Thus, the estimated object extent
can be obtained by rp = max(uleft, uright) S

S+D . This yielded an estimated extend of
rp = 122.5 and rp = 127.8 for fan- and cone-beam evaluations, respectively.

We show that the cost function is invariant to constant translations, and propose
a regularizer to fix the translations of the first projection image to a certain value
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(cf. Sec. 6.4). To allow accurate quantitative comparison we adjusted them with the
ground-truth motion, i. e., s̃ = ŝk and t̃ = t̂k. This approach was not applied for
fan-beam results, yet, we did not notice unusual global shifts.

After the first evaluation of e(α), the cost function value was normalized to 100.
Further, the Lagrangian parameter was heuristically determined to η̃ = 1. Optimiza-
tion was either terminated by the optimizer’s default settings for a minimum step
size and change of cost function values, or after a maximum of 200 iterations.

For the fan-beam experiments we manipulated the mask of the zero regions by
1-D erosion along frequency axis ξ. This procedure has been replaced for applications
to CBCT using the mask adjustment described in Sec. 6.5.1. The parameter for
the distance of ideal discretization lines and actually used triangle boundaries was
heuristically determined and set to ε = 3× 10−3 for all experiments.

Reconstruction Pipeline

We had access to four different types of reconstructions for each motion type. First,
the ground-truth datasets (FCB GT HQ, FCB GT LQ, FFB GT HQ, FFB GT LQ)
have been reconstructed, followed by two reconstructions with and without motion
correction, but also using motion correction based on the ground-truth motion data.
We also applied motion correction to the ground-truth data to verify stability of
the estimation approach. The fan-beam study did not involve ground-truth motion
estimates, instead the phantom was directly rendered in volume domain, without an
intermediate reconstruction. Estimated motion was incorporated into the projection
matrices prior to reconstruction, using Eq. (6.24).

For all reconstructions the following pipeline was used: (1) cosine weighting, (2)
ramp-filtering with a smooth Shepp-Logan filter with roll-off [Kak 01], (3) a GPU-
based backprojection [Sche 07], and (4) negative intensities are clamped to zero. Note
that Parker weighting was not necessary as we simulated full-scans.

Reconstructed volume sizes were adjusted as follows. For the fan-beam case we
reconstructed 2-D images of size 2048×2048 with an isotropic pixel size of 0.125 mm.
Detailed views of resolution pattern and ear regions are based on the same size and
resolution. Cone-beam reconstructions were generated on a voxel grid of size 512 ×
512× 512 with an isotropic voxel size of 0.5 mm.

9.2 Initial Evaluation for Fan-Beam CT
In Figures 9.1(a) and 9.1(e) we show a direct rendering of the FORBILD phantom
for low- and high-quality datasets. Note that intensity levels may differ due to dif-
ferent monochromatic X-ray energies. Reconstructions for datasets FFB OSC HQ
and FFB OSC LQ are shown with and without motion correction in Figures 9.1(b)
and 9.1(c) and Figures 9.1(f) and 9.1(g), respectively. Further, Figures 9.1(d) and 9.1(h)
show the corresponding reconstruction of ground-truth datasets FFB GT HQ and
FFB GT LQ. For both low- and high-quality datasets, the proposed method could
substantially improve image quality. Compared to the ground-truth and reference
reconstructions, residual streaking can be noticed at locations with high intensity
variations, e. g., for bones. However, for the low-quality data the high noise level
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.1: Reconstructed images for high- (top row) and low-quality (bottom row)
fan-beam data. From left to right: Ground-truth rendering of phantom, reconstruc-
tion without correction, the proposed method and reconstructions of motion-free
data. Top: (W: 697 HU, C: 105 HU). Bottom: (W: 2090 HU, C: 105 HU).

dominates image quality, thus, the reference and corrected reconstruction in Fig-
ures 9.1(g) and 9.1(h) appear almost identical.

A detailed view of the resolution pattern is shown in the top row of Fig. 9.2 for
the high-quality datasets. Fig. 9.2(b) shows that the pattern is no longer visible
without motion correction, whereas the shape of the pattern was well restored after
correction (cf. Fig. 9.2(c)). Yet, when compared to the ground truth in Figures 9.2(a)
and 9.2(d), the corrected reconstruction shows residual streaking and slight blurring,
which does not allow proper separation of individual beads.

The bottom row of Fig. 9.2 depicts zoomed reconstruction of the phantom’s ear
model. The images are taken from reconstructions of the low-quality simulations,
which is clearly visible by the high amount of noise. Note that the noise is also present
in the reference reconstruction shown in Fig. 9.2(h). The sharp transitions between air
bubbles and bone material are well restored after correction (cf. Fig. 9.2(g)), yielding
comparable results than the reference reconstruction depicted in Fig. 9.2(h). Both,
show a substantial amount of noise, when compared to the ground-truth rendering
in Fig. 9.2(e).

Fig. 9.3 shows sinograms and the logarithmically scaled absolute value of their
Fourier domain, for high-quality data. For convenience we have superimposed the
boundaries of the triangular regions in the spectra. Estimated translations could
clearly improve the sinogram as shown in Fig. 9.3(b). The corresponding triangular
zero regions in Fig. 9.3(e) are well restored. Besides some residual ripples, visible at
the periphery of the corrected sinogram, it appears very similar to the motion-free
sinogram shown in Fig. 9.3(c). The deviations originate from object motion in depth
direction and are a limitation of the motion model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.2: Top row: Detailed reconstructions of the phantom’s resolution pattern
for high-quality data. Bottom row: Reconstructions of the ear for low-quality data.
Both regions are indicated in Figures 9.1(a) and 9.1(e). The arrangement of columns
is identical to Fig. 9.1. (W: 697 HU, C: 105 HU).

(a) (b) (c)

(d) (e) (f)

Figure 9.3: Sinograms (top row) and their logarithmically scaled spectra (bottom
row) before and after correction, and without motion. We can see a clear improvement
of the sinogram after correction (cf. (b)), supported by a well restored zero energy
regions in frequency domain (cf. (e)). Visualization windows of sinograms and spectra
were [0.15, 0.5] and [2.0, 5.0], respectively.
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rRMSE % NoCorr Corrected Reference
High-quality 20.4 7.1 2.5
Low-quality 25.1 14.0 12.6

Table 9.1: rRMSE for high- and low-quality reconstructions w. r. t. the rendered
ground-truth phantom.

Improvements in image quality are well reflected by our quantitative analysis of
rRMSE shown in Tab. 9.1. We notice a reduction in rRMSE of 13.3 % and 11.1 %
for the high- and low-quality datasets, when compared to reconstructions without
motion correction. The rRMSE after correction is at 7.1 %, with a distance of 4.6 %
to a motion-free reconstruction. For the low-quality data, our correction yielded an
rRMSE of 14 %, twice as much as for the high-quality data. However, the distance
to the motion-free reference is only 1.4 %, indicating that the high residual rRMSE
value is almost entirely caused by the noise level of the low-quality dataset.

9.3 FCC-based Motion Correction for CBCT

9.3.1 Reconstruction Results
In the following we present axial reconstructions of the individual datasets. To guar-
antee a reasonable size of individual images we separate between high- and low-
frequency motion types. Further, only one representative example is shown for the
low-quality dataset as results were generally similar to those obtained with noise-free
data. To show applicability to CBCT an axial slice is selected, superior to the central
slice, positioned at a distance of 7.25 mm to the coordinate center.

Fig. 9.4 contains reconstructions for the high-frequency motion types, i. e., Oscil,
Chirp, and Rect, from the second to the fourth row, respectively. In addition, results
for the motion-free ground-truth data are shown in the first row, abbreviated in the
following with None. The columns correspond to reconstructions without correction
(NoCorr), after correction using FCC and after correction using the ground-truth
translations (CorrGT). Further, the fourth and fifth column depict details of the
phantom’s anterior and ear, corresponding to reconstructions based on NoCorr, FCC,
and CorrGT, arranged from top to bottom. The detailed regions are superimposed
on uncorrected reconstructions in Figures 9.4(a), 9.4(f), 9.4(k) and 9.4(p), using
dashed, green and dotted, yellow boxes. The anterior region was adjusted to show
high contrast bones but also two circular low-contrast structures representing the
eyeballs. The ear is particularly challenging having multiple high intensity variations
between air and bone.

Note that Figures 9.4(a) and 9.4(c) and their corresponding detailed slices are
identical, both representing the ground-truth reference reconstruction later used for
quantitative analysis. In case of Oscil and Rect motion a high amount of motion
artifacts are present including streaking and blurring (cf. Figures 9.4(f) and 9.4(p)).
For the Chirp motion we observe mainly streaking artifacts, as it contained high-
frequency variations but only a small motion amplitude (cf. Fig. 9.4(k)). FCC could
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(a) NoCorr (b) FCC (c) CorrGT (d) Anterior (e) Ear

(f) NoCorr (g) FCC (h) CorrGT (i) Anterior (j) Ear

(k) NoCorr (l) FCC (m) CorrGT (n) Anterior (o) Ear

(p) NoCorr (q) FCC (r) CorrGT (s) Anterior (t) Ear

Figure 9.4: Axial slices superior to the coordinate center for high-frequency motion
types and motion-free data. The rows show motion-free (None) and high-frequency
motions (Oscil, Chirp, and Rect). From left to right we show slices without motion
correction (NoCorr), after correction using FCC and corrected using the ground-truth
translations (CorrGT). The last columns depict details of reconstructions located at
an anterior and ear region. (W: 697 HU, C: 105 HU).
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(a) NoCorr (b) FCC (c) CorrGT (d) Anterior (e) Ear

(f) NoCorr (g) FCC (h) CorrGT (i) Anterior (j) Ear

Figure 9.5: Off-center axial slices for low-frequency motion types (LF-1 and LF-2 ).
Arrangement identical to Fig. 9.4. (W: 697 HU, C: 105 HU).

improve image quality for all motion types, substantially reducing streaking artifacts
and showing a good restoration of bone structures w. r. t. NoCorr. Whereas the air
bubbles of the ear were hardly visible in the motion-corrupted reconstructions, they
can be identified after correction with FCC. Nevertheless, we still notice a slightly
higher image quality for CorrGT, indicating that a more accurate motion estimation
could further reduce motion artifacts. To evaluate stability and convergence behavior
of the algorithm, FCC was also applied to the ideal, motion-free data FCB GT HQ.
Reconstructions in Fig. 9.4(b) show that the method introduced minor blurring at
bone structures which reduced image quality and indicates a misestimation of motion
parameters.

Fig. 9.5 shows the reconstruction results for low-frequency motions LF-1 and
LF-2 . The arrangement of individual images is identical to Fig. 9.4. Reconstruc-
tion results without motion correction are dominated by blurring. Streaking is only
present for LF-1 , due to the difference in starting and end position, which leads to
a discontinuity between first and last projection image (cf. Fig. 9.5(a)). In con-
trast, Fig. 9.5(f) shows a low-frequent intensity bias mainly visible in the periphery
of the ear. Streaking artifacts could be well removed for LF-1 after application of
our method and are comparable to those visible in CorrGT. Similarly, the intensity
bias could be corrected for LF-2 and also the displacement of the lateral anterior
bone is well restored. Yet, for corrections of both LF-1 and LF-2 , we notice a clear
difference to the ground-truth reference reconstructions, especially in reconstruction
quality of the ear in Figures 9.5(e) and 9.5(j).

The left columns of Fig. 9.6 show the sinogram domain for a vertical detector line
at v = 18.6 mm. In addition, the absolute value of the Fourier domain’s central slice,
i. e., for a vertical frequency of ψ = 0 mm−1, is shown on the right columns. We use a
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(a) NoCorr (b) FCC (c) Edge (d) NoCorr (e) FCC (f) LF

(g) NoCorr (h) FCC (i) Edge (j) NoCorr (k) FCC (l) LF

(m) NoCorr (n) FCC (o) Edge (p) NoCorr (q) FCC (r) LF

(s) NoCorr (t) FCC (u) Edge (v) NoCorr (w) FCC (x) LF

Figure 9.6: Left: Sinogram representation for a detector line at v = 18.6 mm.
Right: Logarithmically scaled spectrum for a vertical frequency of ψ = 0 mm−1. Ar-
rangement of rows is identical to Fig. 9.4. Left columns: Sinograms before correction
(NoCorr) and corrected by FCC, followed by details of the sinograms’ outline (Edge).
Right columns: Fourier domain of sinograms before and after correction and a zoom
to the low-frequency part of the triangular region (LF). Visualization windows of
sinograms and spectra were [0.15, 0.5] and [5, 10], respectively.
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(a) NoCorr (b) FCC (c) Edge (d) NoCorr (e) FCC (f) LF

(g) NoCorr (h) FCC (i) Edge (j) NoCorr (k) FCC (l) LF

Figure 9.7: Sinograms and their logarithmically scaled Fourier domain for low-
frequency motion. Arrangement and visualization windows are identical to Fig. 9.6.

logarithmic scale for the spectra to allow visualization of the triangular zero regions.
The motion artifacts imposed by Oscil, Chirp, and Rect are clearly visible as small
ripples of the sinograms’ outline in Figures 9.6(g), 9.6(m) and 9.6(s). Triangular
regions show a large spread of energy into the zero region in case no correction is
applied. It is interesting to note that the Chirp motion pattern causes the largest
spread of spectral energies into the zero regions, even though its translations had the
smallest amplitude within the group of high-frequency motions. This indicates that
FCC are particular sensitive to motion types that show a high temporal frequency.

After application of FCC-based motion correction, the sinograms’ outline and
trajectories of small high intensity objects appear well restored, which can be seen
best in Figures 9.6(i), 9.6(o) and 9.6(u). This is also reflected in the corresponding
spectra, which show a clear reduction of energy within the triangular regions, com-
pared to no correction (cf. Figures 9.6(l), 9.6(r) and 9.6(x)). In fact, large amount
of energies are redistributed to the support region of the object, causing a restora-
tion of the zero regions, which could not be identified before correction. Applying
FCC to ground-truth projection images has only very little influence on the sinogram
(cf. Figures 9.6(a) and 9.6(b)) as well as the triangular regions (cf. Figures 9.6(d)
and 9.6(e)).

From Fig. 9.7 we notice only minor differences between motion-free and motion-
corrupted sinograms for low-frequency motion patterns. The motion is hardly visible
and may be best noted by a slight translation and deformation between corrected
and uncorrected sinogram boundaries as shown in Figures 9.7(c) and 9.7(i). The
high-frequency motion types in Fig. 9.6 revealed that a higher frequency of the mo-
tion pattern has a stronger effect on the spectral zero regions. Consequently, the
low-frequency motion LF-1 and LF-2 reveal only small variations to the triangular
regions. For LF-1 we observe spectral energies distributing as a vertical bar through
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(a) NoCorr (b) FCC (c) CorrGT (d) Anterior (e) Ear

(f) NoCorr (g) FCC (h) Edge (i) NoCorr (j) FCC (k) LF

Figure 9.8: Reconstructions, sinograms and spectra for low-quality data based on
the Oscil motion. The high noise level did not have substantial influence on the
motion estimation approach and showed almost identical results as obtained for the
noise-free cases. Visualization windows are identical to Fig. 9.4 and Fig. 9.6.

the center of the Fourier domain (cf. Fig. 9.7(d)). This originates from described
discontinuities over the angular direction, based on different start and end position of
the motion. The corrected spectrum in Fig. 9.7(e) reduces these contributions sub-
stantially, yet, cannot restore the triangle completely. In contrast, the motion cannot
be noted in the uncorrected spectrum for LF-2 and only very small differences exist
after correction. In fact, the spread of spectral energies into the zero regions seems
to increase slightly as can be seen in Fig. 9.7(l).

So far all presented results were based on high-quality, noise-free projection im-
ages. The motion correction performed equally well in presence of severe noise for
all datasets. A representative example for noisy data is shown for the Oscil motion
in Fig. 9.8. Apart from the reduced image quality, caused by the high amount of
noise, no difference is observed when compared to the noise-free case. The noise is
well visible in the entire spectral domain, yet, it did not influence the redistribution
of energies from triangular to the object’s support region. These results generalize
to all tested motion patterns, which is well supported by the quantitative evaluation
shown in Sec. 9.3.2.

9.3.2 Quantitative Assessment of Image Quality
Quantitative evaluations of image quality include SSIM and rRMSE, both calculated
on the entire reconstruction volume (see Sec. 7.3 for details). Their results are re-
ported in Tab. 9.2. The SSIM and rRMSE results are given in Tab. 9.2a and Tab. 9.2b,
respectively. Each row corresponds to a correction method, whereas columns show
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None Oscil Chirp Rect LF-1 LF-2

Id
ea

l NoCorr 100.0 61.7 85.1 92.7 73.6 69.2
FCC 98.6 87.6 96.4 97.5 84.2 88.5

CorrGT 100.0 90.7 97.6 99.1 95.4 94.2

N
oi

sy
NoCorr 85.3 53.8 72.4 78.5 64.2 60.6

FCC 83.8 75.0 82.1 83.0 72.4 75.7
CorrGT 85.3 77.5 83.2 84.6 81.2 80.3

(a) Results of SSIM (×100)

None Oscil Chirp Rect LF-1 LF-2

Id
ea

l NoCorr 0.0 10.4 4.4 7.3 12.5 7.5
FCC 2.1 3.2 2.9 3.0 3.0 3.1

CorrGT 0.0 1.9 0.8 1.5 2.4 1.8

N
oi

sy

NoCorr 1.3 10.5 4.6 7.4 12.6 7.6
FCC 2.5 3.4 3.2 3.2 3.2 3.3

CorrGT 1.3 2.3 1.5 2.0 2.7 2.2
(b) Results of rRMSE in %

Table 9.2: Quantitative evaluation of image quality for all motion cases based
on low- and high-quality data. We show SSIM and rRMSE results in (a) and (b),
respectively. Results are shown for corrected reconstructions, using FCC as well as
ground-truth motion, but also for uncorrected reconstructions.

the individual motion type including no motion (None). Values are presented for
the noise-free and noisy data. Both SSIM and rRMSE are scaled by a factor of 100,
where the latter is reported in %. It is worth noting that the measures determined for
CorrGT represent an upper bound when using a purely translational motion model,
hence, we do not expect a higher image quality after using FCC.

The presented method was able to increase SSIM values for all motion-corrupted
datasets, while decreasing rRMSE substantially, compared to reconstructions without
correction. After correction all rRMSE values are within a comparable range for both
ideal and noisy data. However, improvements of SSIM are less consistent. Whereas
the SSIM for high-frequency motion patterns is close to those of CorrGT, a wider
gap can be noticed for LF-1 and LF-2 . The SSIM results for CorrGT show that the
Oscil motion is most difficult to reconstruct when using only translations, followed
by LF-2 and LF-1 . This is in line with the high amplitude of those motion patterns
as shown in Sec. 7.1.2.

Application of FCC to the ground-truth projection images leads to a decrease
of SSIM by 1.4 and 1.5 for ideal and noisy data respectively. This is in agreement
with the rRMSE, which increased by 2.1 % for noise-free and 1.2 % for noisy data.
A higher sensitivity to noise is shown by SSIM which reduced from 100 to 85.3 for
the ground-truth data, i. e., without interference of motion. In contrast, the rRMSE
did not substantially vary when adding a high amount of noise. Even though SSIM
values are generally lower for noisy data, their relative changes for motion correction
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None Oscil Chirp Rect LF1 LF2
Id

ea
l s 788 (395) 946 (457) 889 (422) 1014 (444) 1159 (628) 960 (502)

t 10 (0) 427 (128) 136 (5) 175 (4) 708 (295) 340 (215)

N
oi

sy s 771 (379) 925 (447) 798 (483) 1001 (427) 1145 (617) 944 (490)
t 11 (0) 425 (127) 244 (5) 174 (4) 708 (295) 340 (215)

Table 9.3: MAD and SD (in brackets) based on estimated and ground-truth motion
parameters. Values are provided in µm.

methods are similar to those obtained from noise-free data. This underlines the
methods robustness to noise.

9.3.3 Accuracy of Motion Estimation
Using a numerical phantom allows access to the ground-truth motion, which was
already used for motion-corrected reference reconstruction CorrGT. In Fig. 9.9 we
show the estimated motion parameters sk and tk by a solid, blue curve. Additionally,
the extracted ground-truth translations ŝk and t̂k are depicted by a solid, pink curve.
Plots are shown for noise-free data only, yet, we noticed only little variation when
evaluated on noisy projection data. In addition to the qualitative plots, we present
the MAD and the associated SD in Tab. 9.3 for all evaluated datasets. Note that the
values in Tab. 9.3 are defined in projection domain. Their effect for the reconstruction
domain can be approximated by scaling with the systems magnification factor, i. e.,
S

S+D which evaluates to 1
2 for all presented cases.

Fig. 9.9 reveals that the motion in detector v direction is estimated very well for
all motion types. Even sharp transitions and fast variations are covered accurately
yielding an almost ideal overlay of estimated and ground-truth motion parameters.
Similarly, motion estimated for the motion-free data, as shown in Fig. 9.9(a), is
negligible for detector v direction. The results for MAD and SD further support
this observation in case of motion parameters tk as shown in Tab. 9.3. The highest
MAD values are obtained with 708 µm, 427 µm and 340 µm, for LF-1 , Oscil, and
LF-2 , respectively. Considering the magnification factor of 1

2 the average effect on
the reconstruction domain is less than 354 µm and therefore rather small.

In contrast, larger deviations to the ground truth are visible in case of detector
u direction, as can be seen for all motion cases in Fig. 9.9. However, the general
trend of motion patterns is well covered especially in case of high-frequency motion
as shown in Figures 9.9(b) to 9.9(d). The reduction of estimation accuracy is in line
with the visual reconstruction results and manifests also in increased quantitative
measures, with an MAD ranging between 788 µm to 1159 µm, where the highest value
was obtained for LF-1 . Similarly, the variations of the error, reflected by SD, are
generally higher for detector u direction and have the largest values for low-frequency
motion.

We investigated the difference of estimated and ground-truth motion for detector u
direction in more detail. Fig. 9.10 depicts superimposed plots of parameter differences
for all motion cases. We can clearly see that the deviation is dominated by a common
low-frequency error, which coincides with the parameters estimated on the motion-
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Figure 9.9: Individual plots of estimated and ground-truth parameters for detector
u and v direction. Estimated parameters are depicted by a solid, blue line whereas
the ground truth is shown as solid, pink line.
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Figure 9.10: Difference of all estimated and ground-truth parameters for detector
u direction, i. e., (sk − ŝk). Note that all deviations show a similar motion pattern.
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Figure 9.11: Low-frequency interference for detector motion in u direction, visual-
ized for the Chirp motion. A subtraction of parameters estimated on the motion-free
projection data, from the parameters estimated on projection images with motion,
leads to a very accurate alignment.

free dataset. This indicates that the estimated parameters sk are generally built by
an interference of real motion and the error estimated on the ground-truth dataset.
This procedure is visualized in Fig. 9.11, where we subtract the erroneous parameters
from the ground-truth dataset (cf. Fig. 9.9(a)), from the parameters estimated for the
Chirp motion. The result is a very accurate alignment of corrected parameters and
ground-truth Chirp motion. We have noticed similar effects for all other evaluated
motion types. It is worth noting, that the subtraction approach presented in Fig. 9.11
was only used for a better visualization and has not been applied for correction.

The amplitude of this systematic deviation is measured by the MAD of the motion-
free data (cf. Tab. 9.3). It evaluates to an MAD of 788 µm. The individual errors
range between −2.02 mm to 1.71 mm. After incorporation of the magnification factor
we obtain an average error in reconstruction domain of 394 µm.

9.4 Results for Simulated Knee Phantom
Within this section we show results of the FCC-based motion correction applied to
the XCAT dynamic squat datasets XCAT MOT and its motion-free ground truth
XCAT GT. In contrast to the FORBILD phantom, axial truncation is inevitable
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when imaging knees. Yet, the datasets do not suffer from lateral truncation as the
detector spacing was increased to fully cover both legs within axial planes. Note that
the FCC method is not yet applicable to real knee acquisitions, as it requires full scans
and truncation-free acquisitions in lateral direction. Nevertheless, we consider this
experiment as a first step towards application in real scenarios. We are specifically
interested, if the proposed extension based on dynamic apodization of projection
images in detector v direction, improves robustness to axial truncation.

9.4.1 Parameter Selection and Image Reconstruction

Parameters of the method differed from those selected for the FORBILD phantom.
In the following we present adjustments and selected parameters for the XCAT data.
First of all, we used the updated cost function in Eq. (6.28), including apodization
in detector v direction (cf. Sec. 6.5.2) and L2 regularization of motion parameters.
The maximum object extent rp was estimated by the same procedure used for the
FORBILD study (cf. Sec. 9.1.3), leading to rp = 113.5 mm.

The distance of theoretic and adjusted triangle outlines is set to ε = 0.01. In
addition we set the Lagrangian of the L2 regularizer to η′ = 1. For example, a
constant shift of 1 mm in u and v direction, would lead to a contribution of 0.5,
caused by regularization. To put this into contrast, the FCC cost function e(α)
was normalized to e(α) = 100 after the first evaluation. Note that we heuristically
adjusted η′ and ε, whereas other parameters remained constant.

We did not have access to ground-truth detector translations. Consequently, we
decided to remove the regularizer presented in Eq. (6.22) by setting its Lagrangian
multiplier η̃ = 0. However, a constant bias in motion parameters is prevented by usage
of the L2 regularizer, which was part of the apodization procedure for truncation
robustness.

The reconstruction pipeline was identical to that introduced in Sec. 9.1.3. We per-
formed reconstructions of XCAT GT without motion correction to obtain a ground-
truth volume. In addition, XCAT MOT is reconstructed with and without applica-
tion of FCC. The reconstruction volume size was 512× 512× 256, with an isotropic
voxel size of 0.5 mm.

9.4.2 Image Quality of Reconstructed Images

Fig. 9.12 shows the reconstructed images of the XCAT phantom. The images show
axial slices through tibia and fibula (top row) and sagittal slices of right-sided femur,
patella, and tibia (bottom row). From left to right, we can see reconstructions without
motion correction (NoCorr) in Fig. 9.12(a), after correction using FCC in Fig. 9.12(b),
and the ground-truth, motion-free data (GT) in 9.12(c). Severe motion artifacts can
be seen in case no correction is applied, manifested by streaking and blurring. In
addition, the outlines of femur and patella are hardly visible in the sagittal slice of
Fig. 9.12(a). Our method was able to restore most of the structure at left and right
tibia and shows a clearer visibility of the fibulas. The structure of femur and patella
improved by a large amount, yet, the difference to the ground-truth reconstruction
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(a) NoCorr (b) FCC (c) GT

Figure 9.12: Reconstruction results for the XCAT squat phantom. We show axial
slices inferior to the knee joint (top row) and sagittal slices through the right leg
(bottom row). Reconstructions are presented without correction (NoCorr), after
correction using FCC, and of the ground-truth, motion-free projection images (GT).
(W: 1815 HU, C: 246 HU).

is still substantial. Overall, the skin surface and soft tissue appears sharper after
correction and contains less streaking artifacts.

We conducted the same quantitative evaluation as used for the FORBILD data
(cf. Sec. 9.3.2). The resulting values support the visual impression in Fig. 9.12,
where NoCorr yielded an SSIM of 69.7 and an rRMSE of 6.58 %. After applying the
proposed motion correction image quality improved, showing an SSIM of 79.2 and an
rRMSE of 6.00 %.

9.4.3 Improvements in Projection and Fourier Domain
In addition to reconstruction results we also show sinograms extracted at a central line
of the detector, i. e., for v = −∆v

2 = −0.6 mm. The sinograms are shown in the top row
of Fig. 9.13. The irregular trajectories of objects clearly depict the motion artifacts
for the uncorrected sinogram in Fig. 9.13(a). The location of the most apparent
motion artifact is indicated by a red arrow. After correction the trajectory of several
objects appears smoother and a clear improvement can be seen at the location of
severe motion. Yet, we still observe several differences when comparing FCC and GT
(cf. Figures 9.13(b) and 9.13(c)). The spectra, shown with a logarithmic scaling at
the bottom row of Fig. 9.13, depict the triangular regions for a vertical frequency of
ψ = 0 mm−1. The proposed motion correction could remove a large amount of energy
from the triangular regions compared to NoCorr, yielding a sharper outline of the
zero regions. However, after correction we still notice a higher amount of energies
located within the zero regions, compared to the ground truth in Fig. 9.13(c). In
general, the spectral energies are in line with their assigned sinograms, but also with
the achieved image quality.
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(a) NoCorr (b) FCC (c) GT

Figure 9.13: Resulting sinograms and spectra for the XCAT dynamic squat phan-
tom. Top row: Sinograms are extracted at a central slice for v = −0.6 mm. Bottom
row: Spectra show the central slice in Fourier domain, i. e., for ψ = 0 mm−1, after
logarithmic scaling. Visualization windows of sinograms and spectra were [0.05, 0.5]
and [4, 12], respectively.

9.5 Discussion and Conclusion

Within this thesis we have shown that motion correction in weight-bearing imaging of
knees can be achieved by fiducial markers or by means of 2-D/3-D image registration.
Both methods performed accurately and are of potential use in a clinical applica-
tion. However, a multitude of disadvantages have been outlined for the marker-based
method (cf. Sec. 8.6), e. g., it directly interferes with the acquisition protocols and
causes metal artifacts. We show that registration-based methods can alleviate most
of the problems associated with markers. Yet, they require an artifact-free image of
the anatomies, where we had access to a high-quality, prior scan acquired while the
patient is in a supine position. In a future clinical application these supine scans
may not always be necessary for diagnosis and would cause unnecessary dose to the
patient.

A solution to this are motion correction approaches that do not rely on additional
acquisitions or surrogate signals. We have identified CC to be of potential use for
such motion correction methods. The baseline of our work was given by FCC, which
have been defined for parallel- [Edho 86] and fan-beam [Natt 86, Mazi 10] geometries.
No prior work was available for FCC-based motion correction. Additionally, the
presented concepts were rather theoretic and have been far from applicable to real
CBCT data. Within the scope of this thesis we introduce a framework for motion
correction based on FCC. Initially we defined our method for fan-beam geometries
[Berg 14b]. Subsequently, an extension to CBCT is proposed using and extended
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version of FCC. Finally, first solutions to data truncation are presented, by using
dynamically applied apodization windows.

Proof of Concept for Fan-Beam Geometry We consider the initially proposed
motion correction method for fan-beam CT as a proof of concept. An evaluation based
on the FORBILD phantom showed impressive results when applied to a simulated
full scan with a high-frequency motion pattern. Image quality improved substantially,
compared to reconstructions without corrections. The presented results in Sec. 9.2
also show that the method is robust to high amounts of noise and also works for
different detector and angular resolution levels. Even though motion was estimated
accurately, the method had difficulties to restore very sharp edges, e. g., the resolution
pattern in Fig. 9.2. A reason might be the limited flexibility of the translational
motion model, which is not able to cover object scaling, typically caused by motion
orthogonal to the detector. In summary, results of this initial investigations verified
the potential of our motion correction method, encouraging further development for
cone-beam geometries.

FCC for Cone-Beam Geometry A major contribution of this thesis is a practical
extension of FCC from fan- to cone-beam CT. The cost function uses the 3-D DFT
of the projection images. Experiments based on the FORBILD phantom presented in
Sec. 9.3, show a great reduction of motion artifacts for all evaluated datasets, where
even motion containing very high frequencies could be accurately detected. The
method does not require any regularization imposed on the estimated motion param-
eters which allows for a wide variety of motion types. In contrast, Yu et al. [Yu 06]
used a polynomial model for the motion along temporal direction when evaluating
their CC-based motion correction method on fan-beam reconstructions of the same
numerical phantom. Thus, complexity of the motion reduced to a total of six param-
eters. We successfully estimated 2K − 2 = 1022 parameters, i. e., two translations
per projection image, which underlines the potential of the proposed cost function.
In addition to a dedicated cost function for estimation of detector translations, we
present a generic cost function in Equations (6.2) and (6.26) which allows arbitrary
rigid or nonrigid deformations of the projection images. However, limitations and po-
tential invariance of the cost function to motion types beyond detector translations
are yet to be investigated. Additionally, most of these motion types would need to
be applied in spatial domain, thus, a 3-D FFT is needed for each partial derivative
and evaluation of the cost function.

Image quality could be substantially improved by FCC-based motion correction
for all motion types. We observe SSIM but also rRMSE values close to those ob-
tained using the ground-truth detector translations (CorrGT) for all high-frequency
motion types. In comparison, quantitative values for low-frequency motion could not
reach the corresponding image quality of CorrGT, yet, they still show improvements
w. r. t. no motion correction. The spectra shown in Figures 9.6 and 9.7 clearly show
that less variations in the underlying motion also leads to less impact within the trian-
gular regions, indicating that the cost function may be less sensitive to low-frequency
motion types. This is particularly apparent, in case the first and last object position
are identical, where we see only subtle differences between motion-free and motion-
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corrupted spectra (cf. Figures 9.6(d) and 9.7(j)). Opposed to the visual impression,
optimization could still reduce the total energy within the zero regions, which was
based on a small number of low-frequency bins with high intensity values. Still, image
quality of the reconstructed images improved, even for the LF-2 motion, and also
the MAD is similar w. r. t. the other motion types investigated. Independent of the
motion types, very accurate results could be obtained for translations in detector v
direction. This makes FCC an interesting method to detect and estimate respiratory
motion which is known to occur mostly in axial direction [Unbe 16b].

Restrictions of Translational Motion Model In general we see that the visually
determined image quality may be better reflected by SSIM rather than rRMSE. A
reason for this may be that SSIM is rather sensitive to alignment of edges and thus
representative for measuring motion-induced artifacts or geometric misalignments.
In consequence, we can use SSIM to verify the restrictions of our motion model when
looking at results obtained from CorrGT. One reasons for the reduction of image
quality for CorrGT is the approximative nature of applied motion compensation
method as shown in Sec. 3.5. Another reason is that translations in projection domain
cannot perfectly reflect 3-D translations, particularly for large motion amplitudes and
or motion along the principle ray. An additional scaling parameter, or even nonaffine
deformations, for each projection image could alleviate these deficiencies to a large
extent.

Robustness to Noise Similar to the results obtained in the initial fan-beam study,
the approach proved to be robust to severe Poisson distributed noise. This becomes
apparent when comparing the results in Fig. 9.8 to the results obtained on the noise-
free dataset in Figures 9.4(f) to 9.4(j) and Figures 9.6(g) to 9.6(l). Moreover, the
improvements of SSIM and rRMSE relative to reconstructions without correction,
are similar for noise-free and noisy data, as can be obtained from Tab. 9.2. Also,
MAD and SD values of the estimated motion parameters (cf. Tab. 9.3) reveal that
the accuracy of the motion estimation is not affected.

Invariance to Static Translations We were able to show analytically that the
proposed cost function is invariant to static translations, e. g., a constant misalign-
ment of the detector. Within the context of our study we solve this restriction by
fixing translations of the first projection image to the ground-truth motion which
had several benefits for our experiments. First of all, it ensured that the image
quality does not vary due to different estimated detector offsets, thus, allowing for
an accurate comparison of the method’s ability to estimate actual motion. Another
benefit is, that the adjustment implicitly aligns the coordinate systems of all recon-
structed volumes to the ground-truth reconstruction, which is important to ensure
that quantitative measures are not dominated by misalignments but rather motion
artifacts.

In case of the XCAT dynamic squat phantom, or for any real world scenario, we
do not have ground-truth translations. Thus, no direct regularization of translations
from a single time point was applied. Instead we assumed that the average of the
estimated motion is small. This was implicitly enforced by L2 regularization, which
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was applied anyway to cope with axial truncation. Given that the cost function is
invariant to static translations, the L2 norm will lead to motion estimates with a
mean value close to zero.

In general, a moderate offset in detector v direction will merely cause a shift of
the object along the z-axis and possibly a minor increase of cone-beam artifacts. Yet,
an offset in detector u direction can cause artifacts, especially in axial slices. Thus,
a simple solution may be to create reconstructions for a series of offsets in detector u
direction and manually select the reconstruction with the best visual image quality.
This could be automatized using image quality measures defined in reconstruction
domain, such as Entropy or Positivity [Rohk 13].

Systematic Deviations in Motion Estimation An important observations was
the systematic deviation caused by our method for translations in detector u direction
as presented in detail in Figures 9.10 and 9.11. In summary, our experiments revealed
that the estimation error for horizontal translations is built by the actual error of
motion estimates and an additive bias which was constant over all FORBILD datasets,
including the motion-free case. The deviation may originate from inaccuracies due to
discretization of the triangular regions, as described in Sec. 6.5.1. A small increase
of the mask size is applied to ensure that no spectral regions are undefined which
was necessary to allow correction of low-frequency motion types. Conversely, this
may cause explained residual errors as the cost function tries to remove energy in
regions that already belong the support of the object. In contrast, a mask size that
was too small often caused motion that shifted energy to undefined spectral regions,
located between mask and support region. During our experiments this often caused
interference by a sinusoidal motion of low-frequency and very high amplitudes. A
future extension could eliminate this interference and thus, improve robustness of the
method.

In case of patient motion smaller than the systematic offset our method may
lead to a slight reduction of image quality as was the case for the presented motion-
free data in Figures 9.4(a) to 9.4(e). On the other hand, larger motion artifacts will
easily cover the systematic deviation resulting in a clear reduction of motion artifacts.
Nevertheless, this issue requires further investigation for future applications.

Towards Application to Real Weight-Bearing Acquisitions The overarching
goal is to further develop FCC-based motion correction such that the method is
applicable to weight-bearing imaging of the knee. As part of this thesis we described
the initial version of the approach, which was based on several limitations. It was
only applicable to fan-beam geometries, required truncation-free data, a full-scan
acquisition, and ideal monochromatic absorption. Within the process of this thesis
we presented solutions to eliminate or at least cope with some of these limitations,
i. e., an extension to CBCT and an initial approach to allow for axial truncation of
the projection data.

Eventually, these extensions allowed a first application to the XCAT dynamic
squat phantom, which was based on real motion parameters [Choi 13]. Our exper-
iments show an improved qualitative and quantitative image quality compared to
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reconstructions without correction. With the presented evaluation we corroborate
that FCC are indeed applicable to motion correction of weight-bearing acquisitions.

However, a series of aspects need to be addressed before the method is applicable
to real weight-bearing acquisitions. The truncation robustness needs to be extended
to cover also lateral truncation and investigations are needed for short-scan acquisi-
tions.

Conclusion

Previously presented approaches for motion correction in weight-bearing imaging rely
on either surrogate signals or availability of prior acquisitions. Within this thesis a
novel approach for motion correction in CBCT has been introduced that is indepen-
dent of such additional data. The approach is based on a cost function that aims to
optimize FCC, defined in the 3-D Fourier domain of the projection image volume.
Motion is estimated in projection domain by optimizing 2-D detector translations in
order to fulfill FCC as accurately as possible. We initially propose the method for
fan-beam CT and derive an extension for an application to motion-corrupted CBCT
data. We present an extensive evaluation of the proposed method using the chal-
lenging FORBILD head phantom, for a variety of translational 3-D motion patterns.
The method shows a particularly good performance when estimating translations in
detector v direction, i. e., collinear to the rotation axis of the CT. Motion with high-
frequency was accurately identified leading to large improvements of image quality.
No temporal assumption is imposed on the estimated detector translations, allowing
application to a great class of motion types. Several issues are yet to be addressed
before an application to real weight-bearing data is possible. Our evaluation revealed
a systematic misestimation for translations in detector u direction, which requires
further investigation. Also, FCC are defined for full scans only, thus an extension to
short scans is needed. On the other hand, we introduced an extension to improve
robustness in presence of axial truncation, which eventually allowed application to a
squatting knee phantom containing real motion. Based on the results of our evalua-
tion, we are confident that FCC are applicable for design of a self-contained motion
correction method in weight-bearing imaging of knees.
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Outlook

Many of the presented approaches in this thesis offer new possibilities for future
research directions. In this chapter we provide a selection of methodological and
clinical advancements that could further improve CBCT weight-bearing imaging of
knees. Overall we present ideas for three different motion correction methods in
CBCT, i. e., marker-, registration- and consistency-based correction.

The marker-based approach existed prior to this thesis and was steadily improved,
making it a robust and sophisticated method. Yet, we can think of some weaknesses
that may be targeted by future research. First, the cost function for motion estimation
in Eq. (4.16) is based on point correspondences between 3-D reference points and
2-D detections. Currently, these correspondences are obtained only once, prior to
optimization. Potential outliers due to wrong assignments are then removed by the
outlier detection presented in Sec. 4.2. An interesting approach for future work is an
iterative adjustment of point correspondences, i. e., alternating between reassignment
of correspondences and motion estimation. This is essentially very similar to an
iterative closest point registration [Besl 92], but in the context of 2-D/3-D rather
than 3-D/3-D registration.

Further, we plan to use the final result of the marker-based approach for an
analysis of residual distances in projection domain, w. r. t. their directions and lengths.
This could provide further insight in the level of nonrigid motion. Another possible
direction is to investigate to which extent moderate, nonrigid 3-D deformations can
be modeled by markers.

Yet, for correction of nonrigid deformations, we see a higher potential when using
the registration-based approach, as the joint motion can be accurately modeled using
bone-wise rigid transformations. However, a couple of remaining challenges need to
be solved before the method is applicable in clinical routine. We did not have access
to the ground-truth motion of bones and can therefore not evaluate the accuracy
of the estimated motion parameters. In consequence, our evaluations are based on
image quality measures in reconstruction domain. In a future study cadaver legs may
be used where tibia and femur are attached to an apparatus that allows application
of defined motion patterns. This way, an exact evaluation of the registration error
would be possible. Additionally, fiducial markers may be implanted at certain points
of interest in the soft tissue of the cadaveric legs, allowing for a verification if TPS-
based motion extrapolation is sufficient.

In its current state the registration-based method requires a high amount of man-
ual interaction as bone segmentations and initial translations need to be adjusted at
least semi-manually. Further automation of these steps may be crucial for clinical ap-
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plicability. For example, annotation of only few anatomical landmarks could be used
to allow for a fast semi-manual alignment between standing and supine scans. Also,
Franz et al. [Fran 06] proposed a more advanced 2-D/3-D registration method that is
independent of a prior pose initialization, which could even allow for a full automa-
tion of the registration process. Further, the segmentation of bones may be improved
by use of statistical shape models, derived from a set of prior patient acquisitions
[Heim 09]. Statistical shape representations and featured-based 2-D/3-D registration
can also be combined into a single framework, as was recently proposed in the field
of computer graphics [Thie 15, Thie 16]. This would allow a complete replacement of
bone segmentations, and thus, could save the acquisition of a motion-free scan of the
knees.

We still see a large potential in improving the registration accuracy of the 2-D/3-D
registration. In its current form, the method only applies the assumption of smooth
transitions of motion parameters. Surely, a more sophisticated biomechanical model
of the knee joint can be used to regularize the registration. We believe that such a
model could drastically improve the method’s robustness, while preserving a large
coverage of also nonsmooth motion types. In case high geometric accuracies are re-
quired for bones and soft tissue, it may be interesting to combine the registration-
with the marker-based approach. Marker information may be incorporated into the
nonrigid motion extrapolation of the TPS models or directly during 2-D/3-D regis-
tration. Alternatively, the 2-D/3-D registrations could be extended to a flexible, yet
more complex, nonrigid motion model as used in [Zeng 05, Zeng 07].

As part of this thesis we introduce a novel motion correction based on FCC.
We present an extension to CBCT and propose an initial approach to handle data
truncation. Yet, the method is still in an early phase and not yet applicable to
real acquisitions of the knee. Nevertheless, our results are promising and encourage
further development. First and foremost an extension of the FCC theorem is needed
to allow application to short-scan acquisitions. The short scan could potentially be
interpreted as truncation in angular direction, such that apodization (cf. Sec. 6.5.2)
may also help to overcome this limitation. In general, the apodization-based method
for truncation robustness requires further evaluation and potentially improvements.
In particular, a dynamic application of apodization causes variations of the total
spectral energy, which interferes with the FCC-based cost function. Currently, we
use a regularizer based on the L2 norm, yet, this only limits the effect but does
not remove it. A smart normalization applied per projection image could help to
overcome this issue and should be verified in a future study. Additionally, an extension
of the motion model to allow for more complex motion patterns and possibly object
rotations is of interest. This is easily incorporated into the generic cost function given
by Eq. (6.2), yet, eliminates the use of an efficient implementation as the motion may
not be applicable in the 2-D Fourier domain of the projection images. An extension
of the regular Fourier transform to the a nonuniform Fourier transform could help
to overcome these limitations, allowing application of spatial affine transformations
directly in Fourier domain. Further investigations on the origin and severity of the
systematic deviations for detector u direction are essential. Of particular interest is,
if and how spectral energies minimized on the motion-free ground truth are object
dependent. And if not, whether a connection to the geometry or sampling parameters
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can be formulated. This insight is important for a reduction or even elimination of the
horizontal bias, where the goal is to achieve similar accuracies as obtained for motion
estimates in detector v direction. A comparison of FCC-based motion correction
to other approaches, that also do not rely on additional acquisitions or surrogates,
would be of great scientific value. Other methods defined in projection domain are
for example image moments [Clac 15] or epipolar CC [Aich 15, Frys 15]. We are also
interested if approaches based on MAM (cf. Sec. 3.4.4) defined in reconstruction
domain, could be a potential alternative to our method. We expect that this will be
particularly challenging, as the image entropy has already been reported to contradict
with SSIM values for weight-bearing imaging of knees [Choi 14c].

From a clinical point of view, the presented methods provide valuable tools for
motion management, e. g., for the studies introduced in Sec. 2.3. The marker-based
motion correction can be used as is for efficient and fast motion correction in case
the motion is approximately rigid. A side product of the quantitative evaluation in
Chap. 8, i. e., the registration of bones reconstructed from weight-bearing scans to the
bone in supine position, may be helpful for cartilage analysis. As shown in Fig. 8.6,
it enables aligned reconstructions of all weight-bearing scans which could help for
a consistent analysis of cartilage strain. Automatic segmentation methods of the
contrast agent’s surface are of great interest and would allow for a direct extraction
of cartilage features. The proposed registration-based method enables nonrigid joint
motion during a single scan. This could allow for a common analysis of the cartilage
at various locations along lateral and medial condyles. An ambitious long-term goal
are acquisitions during realistic walking on using a treadmill. In this case, motion
correction may also be used to obtain 4-D, time resolved reconstructions. Similar
studies are conceivable for advanced evaluation of PFPS, where a 4-D reconstruction
of a squat could even allow for a precise 3-D tracking of the patella under realistic
weight-bearing conditions.
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Summary

Within this thesis we propose several contributions to the state-of-the-art in
motion-corrected CBCT reconstruction. The application area for the presented ap-
proaches is weight-bearing CBCT of knee joints in standing or squatting position.
The thesis is divided in three parts. The background of weight-bearing imaging and
motion-corrected reconstruction is given in Part I. In Part II we present the theory
and concepts of the proposed methods, followed by their evaluation in Part III.

Part I: Background

An overview of the knee anatomy and its role as joint of the lower bodies locomo-
tor system is given in Chap. 2. OA and PFPS are two of the most common knee
joint disorders, showing high incident rates. Medical imaging plays a vital role for
diagnosis and classification of these conditions. We show that 3-D imaging under
weight-bearing conditions, can lead to a more precise diagnosis. This thesis builds on
a novel CBCT device which allows 3-D weight-bearing acquisition of knees with high
spatial resolution and fast acquisition times [Choi 14a]. Initial feasibility and clinical
studies of CBCT weight-bearing imaging are presented. A study related to OA, aims
to investigate cartilage strain under weight-bearing conditions using direct arthrogra-
phy. The novel weight-bearing acquisition mode introduces several challenges for 3-D
image reconstruction, i. e., detector saturation, data truncation, and patient motion
based on the unsupported standing position. We show that patient motion is the
most dominant source of image artifacts, thus, motion correction is mandatory to
allow for diagnosis based on the reconstructed images.

In Chap. 3 we first introduce fundamental image reconstruction algorithms along
with a description of acquisition geometries. Also, the mathematical basis of the the-
sis is provided, e. g., introducing projection matrices and concepts of discretization.
Within this thesis, motion correction is defined to consist of a motion estimation
step, followed by a motion compensated reconstruction. We focus on the optimiza-
tion of parameters that describe a certain motion model. A description of such
models is given for rigid and nonrigid motion, using matrix multiplications or TPS
deformations, in projection as well as reconstruction domain. Algorithms for motion
estimation are categorized into three groups: 1) methods based on surrogate sig-
nals which usually interfere with the acquisition, 2) methods based on a prior image
usually incorporated using image registration, and 3) purely based on the acquired
motion-corrupted projection images. A large contribution is the extensive literature
review provided for motion estimation methods w. r. t. the introduced categories. As
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part of the first group, we show a motion estimation based on tracking of fiducial
markers attached to the skin [Choi 13, Choi 14c], which also builds the baseline of
this thesis. Additionally, other surrogate-based techniques are provided, e. g., in the
field of radiation therapy or cardiac imaging. Within the second group, literature is
presented that uses image registration to estimate patient motion, with a focus on
2-D/3-D registration approaches. The last group introduces methods based on met-
rics that are optimized in reconstruction domain, e. g., image entropy. Additionally,
we provide a thorough review of CC, followed by an overview of their application to
motion estimation. We conclude the chapter with an analysis of the presented litera-
ture w. r. t. its applicability to CBCT weight-bearing imaging of knees. Many of the
methods are based on certain assumptions on the motion or assume its consistency
within subsequent scans. Both is not given for weight-bearing imaging of the knees.
Some methods even rely on modalities that are not applicable to a weight-bearing
scenario, e. g., a prior 4-D CT scan is often used in radiation therapy.

Part II: Theory

In prior work, fiducial markers have been used to estimate motion parameters, yet,
the approach required a large amount of manual interaction and suffered also from
incorrect assignments of point correspondences [Choi 13, Choi 14c]. Within the scope
of this thesis, marker-based motion correction has been steadily improved. The in-
dividual advancements are detailed in Chap. 4. The main contributions include a
robust, fully automatic detection of markers, with an automatic assignment of corre-
spondences [Berg 14a]. An essential step of marker segmentation is the FRST, which
replaced an approach based on the Hough transform, leading to robust suppression of
background structures. In addition, we introduce a method for automatic extraction
of average 3-D marker locations. The FRST result is backprojected to reconstruction
domain and high intensity blobs caused by markers are automatically segmented. The
locations are then given by the blobs’ centroids, determined using a 3-D connected
components analysis. Forward projections of the 3-D reference points are then used
to obtain correspondences between 2-D detections and 3-D marker locations. Also, an
automatic outlier removal and an advanced, gradient-based optimization is proposed
[Mull 15b, Berg 16a]. To avoid metal artifacts, we propose an extrapolation scheme
in projection domain, that removes the markers prior to reconstruction [Berg 14a].
Based on the contributions of this thesis, the marker-based approach is now a fully
automatic motion correction tool which we deem ready for clinical practice.

Nevertheless, the approach has several weaknesses including, metallic artifacts, its
limitation to purely rigid motion, and most importantly a direct interference with the
image acquisition, due to the careful attachment of markers. In case a small acquisi-
tion time is important, a surrogate-free motion correction is required. In Chap. 5 we
introduce a novel motion estimation method based on bone segmentations of a previ-
ously acquired supine scan. Rigid motion parameters of femur and tibia are optimized
during a 2-D/3-D registration of segmented bones, to each of the weight-bearing pro-
jection images [Berg 15, Berg 16a]. Final motion estimates are then incorporated into
a nonrigid motion field using TPS. Rigid motion is estimated for each bone yielding
up to 24 parameters, whereas prior work on 2-D/3-D registration usually only esti-
mates six rigid parameters. To increase registration robustness, a regularization that
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enforces temporal smoothness of motion parameters is proposed. Overall, a certain
amount of manual interaction is required, e. g., for bone segmentations and manual
alignment from supine to standing scans. Yet, the additional time is part of image
reconstruction, hence, the method has no influence on the acquisition itself.

Registration-based motion correction requires a prior, motion-free acquisition,
which was part in all our clinical studies. However, in a future clinical application
this reference may not be required, such that the supine scan causes additional dose
for the patient, without increasing the diagnostic value. In Chap. 6 we derive an
innovative motion correction, that enforces FCC defined in the spectrum of the pro-
jection domain. FCC are a theoretic concept that defines certain triangular regions
in the spectrum to have an absolute value close to zero. Patient motion violates FCC,
allowing a motion estimation that aims to decrease the energy in the triangular areas
by optimization of a motion model defined in projection domain. We initially derived
the method for fan-beam geometries [Berg 14b], followed by an extension to CBCT
[Berg 16b]. An efficient implementation is suggested for optimization of translational
detector motion. We also propose usage of a dynamic apodization method to allow for
axial truncation. Spectral triangles are defined by known geometric parameters (i. e.,
SID and DID) and the maximum extent of the object w. r. t. the isocenter. A simple
approximation of the latter, based on the acquired data, is part of our work. Hence,
the approach does not require surrogate signals nor any additional acquisitions.

Part III: Experiments and Results

In the last part of this thesis we evaluate the theoretical concepts for motion correc-
tion presented in Chapters 4 to 6. The marker- and registration-based approach are
jointly evaluated in Chap. 8 using a total of nine real weight-bearing acquisitions. The
novel FCC-based motion correction was evaluated in Chap. 9 using simulated pro-
jections of the numerical FORBILD head phantom [Laur 01]. Additionally, we show
an evaluation using an XCAT-based squat phantom that incorporates particularly
realistic motion patterns [Sega 10, Choi 13]. Data acquisition for simulated and real
datasets is explained in Chap. 7. We introduce all relevant acquisition parameters
for weight-bearing and simulated scans and define a set of representative, artificial
motion patterns used for the FORBILD simulations.

Looking at the resulting image quality of the proposed marker-based method in
Chap. 8, we can see that structural information such as bone and cartilage surfaces
are well restored with a clear reduction of motion-induced streaking and blurring
artifacts. However, due to its current limitation to rigid motion the method’s per-
formance substantially reduced for two datasets that contained severe and clearly
nonrigid motion. Note that an extension of the method to nonrigid motion is non-
trivial as it requires a large number of motion parameters, whereas the number of
markers is inherently limited due to practical and technical reasons. One of the main
issues of the marker-based approach is the attachment process which leads to a de-
crease of patient comfort and may hinder image acquisition in clinical routine. In
addition, our results indicate that a marker-based correction can cause slight distor-
tions at the bones leading to a reduction of our quantitative measurements. This
supports that externally attached markers may not be suitable to estimated bone or
cartilage motion accurately. The majority of the deficiencies related to the marker-
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based method can be alleviated by the proposed motion correction using 2-D/3-D
registration. A qualitative and quantitative comparison of the two methods reveals
similar improvements in image quality. Yet, for the two datasets with severe, nonrigid
motion, we see a substantially better correction by the registration approach. More
robust 2-D/3-D registration results are obtained using NGI as a similarity measure
[Otak 13], rather than the well-known GC [Penn 98]. Also, reconstructions of the car-
tilage showed consistently clear visualization of the contrast agent and bone surfaces,
which builds the baseline for further quantitative analysis of cartilage strain.

In case patient comfort and acquisition time is of little importance and the motion
is restricted to rigid movements, we recommend usage of the extended marker-based
correction followed by a marker removal step to avoid metal artifacts. The method
is readily applicable, fast, and requires little manual interaction. Furthermore, it
is not restricted to knee anatomies and has already been applied to estimate head
motion of stroke patients [Mull 15a]. However, the clinical application may prohibit
prolonged image acquisition. Additionally, a restriction to only rigid motion, e. g.,
by external fixation, further delays acquisition and may even contradict with the
clinical motivation. For these cases, we recommend the more flexible registration-
based motion correction, which we have shown to be similar or even more accurate
than a marker-based correction.

Ideally, motion correction can be performed using only the acquired projection
images. We introduce a novel approach based on FCC, that belongs to this group of
algorithms. Prior to this thesis no FCC-based motion estimation was known in liter-
ature, showing that the approach is still in an early phase of development. Currently
no lateral truncation is allowed and the acquisitions should originate from a full-scan.
This prohibits an application to real weight-bearing acquisitions, and thus a common
evaluation with marker- and registration-based methods. However, in Chap. 9 we
show a thorough evaluation using the challenging FORBILD head phantom. A total
of five types of representative translational 3-D motions have been simulated which
are then corrected by estimating 2-D detector shifts. Results indicate a particularly
accurate estimation of motion collinear with the scanner’s rotation axis. The estima-
tion performed reliably, even without incorporation of temporal assumptions, e. g.,
smoothness of the motion over time, thus allowing for a great variety of motion types.
We show promising estimation results especially for high-frequency motion, leading
to large improvements of visually observed but also quantitatively measured image
quality. Yet, the method produced a small, but systematic deviation for translations
perpendicular to the scanner’s rotation axis, which requires further research. As a
last evaluation of this thesis, we successfully applied the FCC-based correction to
projection images of a simulated knee phantom with realistic patient motion.

In future work we aim to further reduce runtime and manual interaction of the
registration-based motion correction which may even allow a complete replacement
of the less flexible marker-based approach for all clinical applications. Another goal
is to extend the FCC-based method for an application to real acquisitions. Given its
performance on simulated data, we are confident that FCC is a future candidate for
a completely self-contained motion estimation. Equipped with the motion correction
methods presented in this thesis, weight-bearing CBCT now provides a valuable tool
for novel and innovative clinical research in the field of orthopedics.
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A.1 Definition and Derivative of Rigid Motion
We defined Tk(α) : R6K → R4×4 to be a function that represents a rigid motion
consisting of rotation and translation given the parameters in α. Let us assume
the parameter vector α ∈ R6K holds 6 rigid parameters for each of K projection
images, i. e., 3 Euler angles φxk, φ

y
k, and φzk as well as 3 translations txk, t

y
k, and tzk. The

parameter vector is given by

α =
(
α1 α2 ··· α6K−1 α6K

)>
=
(
φx

1 φy
1 φz

1 tx1 ty1 tz1 ··· φ
x
K φy

K φz
K txK tyK tzK

)>
From Eq. (3.34) we get

Tk(α) =
(

Rk(α) tk(α)
0> 1

)
,

where Rk(α) : R6K → R3×3 is a function building the 3-D rotation matrix and
tk(α) : R6K → R3 returns the translations for the k-th projection.

The translations are defined straightforward by

tk(α) =
(
txk tyk tzk

)>
=
(
α6(k−1)+4 α6(k−1)+5 α6(k−1)+6

)>
.

Rotations in 3-D may be defined by Euler angles, an axis-angle representation
or by using quaternions [Gonz 08]. We define Rk(α), using an Euler angle represen-
tation. Let us first introduce rotation matrices around x, y, and z axis, given by
Rx
k(α) : R6K → R3×3, Ry

k(α) : R6K → R3×3 and Rz
k(α) : R6K → R3×3, respectively.

It holds that

Rk(α) =Rx
k(α) ·Ry

k(α) ·Rz
k(α)

Rx
k(α) =

1 0 0
0 cos(φxk) − sin(φxk)
0 sin(φxk) cos(φxk)

 =

1 0 0
0 cos(α6(k−1)+1) − sin(α6(k−1)+1)
0 sin(α6(k−1)+1) cos(α6(k−1)+1)



Ry
k(α) =

 cos(φyk) 0 sin(φyk)
0 1 0

− sin(φyk) 0 cos(φyk)

 =

 cos(α6(k−1)+2) 0 sin(α6(k−1)+2)
0 1 0

− sin(α6(k−1)+2) 0 cos(α6(k−1)+2)



Rz
k(α) =

cos(φzk) − sin(φzk) 0
sin(φzk) cos(φzk) 0

0 0 1

 =

cos(α6(k−1)+3) − sin(α6(k−1)+3) 0
sin(α6(k−1)+3) cos(α6(k−1)+3) 0

0 0 1

 .

Building the partial derivatives of Tk(α) with respect to the parameters is given by

∂Tk(α)
∂αl

=
∂Rk(α)

∂αl

∂tk(α)
∂αl

0> 1

 ,
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where the derivative of the translations is obtained by

∂tk(α)
∂αl

=



αlex if l = 6(k − 1) + 4
αley if l = 6(k − 1) + 5
αlez if l = 6(k − 1) + 6(
0 0 0

)>
otherwise

,

with ex, ey, and ez being the directions of the world coordinate system with unit
length. Similarly the derivatives for the rotations are given by

∂Rk(α)
∂αl

=∂Rx
k(α)
∂αl

·Ry
k(α) ·Rz

k(α)

+ Rx
k(α) · ∂Ry

k(α)
∂αl

·Rz
k(α)

+ Rx
k(α) ·Ry

k(α) · ∂Rz
k(α)
∂αl

,

where the derivatives for the individual rotation matrices are obtained by

∂Rx
k(α)
∂αl

=




0 0 0
0 − sin(αl) − cos(αl)
0 cos(αl) − sin(αl)

 if l = 6(k − 1) + 1

(
0 0 0

)> (
0 0 0

)
otherwise

∂Ry
k(α)
∂αl

=




− sin(αl) 0 cos(αl)

0 0 0
− cos(αl) 0 − sin(αl)

 if l = 6(k − 1) + 2

(
0 0 0

)> (
0 0 0

)
otherwise

∂Rz
k(α)
∂αl

=




− sin(αl) − cos(αl) 0
cos(αl) − sin(αl) 0

0 0 0

 if l = 6(k − 1) + 3

(
0 0 0

)> (
0 0 0

)
otherwise

.
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