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Abstract

Nowadays, minimally invasive surgery is an essential part of medical interven-
tions. In a typical clinical workflow, procedures are planned preoperatively with
3-dimensional (3-D) computed tomography (CT) data and guided intraoperatively
by 2-dimensional (2-D) video data. However, accurate preoperative data acquired
for diagnose and operation planning is often not feasible to deliver valid informa-
tion for orientation and decisions within the intervention due to issues like organ
movements and deformations. Therefore, innovative interventional tools are re-
quired to aid the surgeon and improve safety and speed for minimally invasive
procedures. Augmenting 2-D color information with 3-D range data allows to use
an additional dimension for developing novel surgical assistance systems. Here,
Time-of-Flight (ToF) is a promising low-cost and real-time capable technique that
exploits reflected near-infrared light to estimate the radial distances of points in a
dense manner. This thesis covers the entire implementation pipeline of this new
technology into a clinical setup, starting from calibration to data preprocessing up
to medical applications.

The first part of this work covers a novel automatic calibration scheme for hy-
brid data acquisition based on barcodes as recognizable feature points. The com-
mon checkerboard pattern is overlaid by a marker that includes unique 2-D bar-
codes. The prior knowledge about the barcode locations allows to detect only
valid feature points for the calibration process. Based on detected feature points
seen from different points of view a sensor data fusion for the complementary
modalities is estimated. The proposed framework achieved subpixel reprojection
errors and barcode identification rates above 90% for both the ToF and the RGB
Sensor.

As range data of low-cost ToF sensors is typically error-prone due to different
issues, e.g. specular reflections and low signal-to-noise ratio (SNR), preprocessing
is a mandatory step after acquiring photometric and geometric information in a
common setup. This work proposes the novel concept of hybrid preprocessing
to exploit the benefits of one sensor to compensate for weaknesses of the other
sensor. Here, we extended established preprocessing concepts to handle hybrid
image data. In particular, we propose a nonlocal means filter that takes an entire
sequence of hybrid image data into account to improve the mean absolute error
of range data by 20%. A different concept estimates a high-resolution range im-
age by means of super-resolution techniques that takes advantage of geometric
displacements by the optical system. This technique improved the mean absolute
error only by 12% but improved the spatial resolution simultaneously. In oder to
tackle the issue of specular highlights that cause invalid range data, we propose
a multi-view scheme for highlight correction. We replace invalid range data at a
specific viewpoint with valid data of another viewpoint. This reduced the mean
absolute error by 33% compared to a basic interpolation.

Finally, this thesis introduces three novel medical applications that benefit from
hybrid 3-D data. First, a collision avoidance module is introduced that exploits
range data to ensure a safety margin for endoscopes within a narrow operation
side. Second, an endoscopic tool localization framework is described that exploits
hybrid range data to improve tool localization and segmentation. Third, a data



fusion framework is proposed to extend the narrow field of view and reconstruct
the entire situs.

This work shows that hybrid image data of ToF and RGB sensors allows to
improve image based assistance systems with more reliable and intuitive data for
better guidance within a minimally invasive intervention.



Kurziibersicht

Minimal-invasive Chirurgie ist heutzutage ein essentielles Teilgebiet medizinis-
cher Eingriffe. In einem typischen klinischen Arbeitsablauf werden Operationen
prdoperativ anhand von 3-dimensionalen (3D) Daten der Computertomographie
(CT) geplant und intraoperativ mittels 2-dimensionaler (2D) Videodaten unter-
stiitzt. Prézise prdoperativ aufgenommene Daten fiir die Diagnose und Opera-
tionsplanung sind aufgrund von Problemen wie der Organbewegung und Organ-
verformung meist nicht in der Lage valide Informationen fiir die Orientierung
und Entscheidungen wéhrend der Operation zu vermitteln. Daher werden in-
novative interventionelle Werkzeuge benétigt um den Chirurgen zu unterstiitzen
und die Sicherheit und Dauer von minimal-invasiven Eingriffen zu verbessern.
2D Farbdaten mit 3D Entfernungsdaten zu iiberlagern erlaubt es eine zusatzliche
Dimension zu nutzen um neuartige chirurgische Assistenzsysteme zu entwick-
eln. Dabei stellt Time-of-Flight (ToF) ein kostengtinstiges und echtzeitfdhiges Ver-
fahren dar, das reflektiertes nahinfrarotes Licht ausnutzt um radiale Distanzen in
einem dichten Gitter zu erfassen. Diese Arbeit behandelt die komplette Imple-
mentierung dieser neuen Technologie in ein medizinisches Umfeld, angefangen
von der Kalibrierung tiber die Datenvorverarbeitung bis hin zu medizinischen
Anwendungen.

Der erste Teil der Arbeit behandelt ein neuartiges automatisches Kalibrierungs-
verfahren fiir hybride Datenaufnahmen. Es basiert auf Barcodes als identifizier-
bare Merkmalspunkte. Das gewohnliche Schachbrett Muster ist iiberlagert mit
einem Marker, der unverwechselbare 2D Barcodes beinhaltet. Das Vorwissen iiber
die Positionierung der Barcodes erlaubt es nur valide Merkmalspunkte fiir die
Kalibrierung zu erfassen. Basierend auf den aus verschiedenen Ansichten erkan-
nten Merkmalspunkten wird eine Datenfusion der sich ergdnzenden Modalitdten
ermittelt. Das vorgestellte System erreicht Riickprojektionsfehler im Subpixelbere-
ich und Barcode Identifikationsraten von tiber 90% fiir ToF und RGB Sensoren.

Da Entfernungsdaten von kostengiinstigen ToF Sensoren aufgrund verschie-
dener Probleme, z.B. spiegelnde Reflektionen und ein niedriges Signal-zu-Rausch
Verhiltnis (SNR), tiblicherweise fehleranféllig sind, ist Datenvorverarbeitung ein
essentieller erster Schritt nach der Aufnahme photometrischer und geometrischer
Informationen in einem gemeinsamen Aufbau. Diese Arbeit stellt das Konzept
der hybriden Datenvorverarbeitung vor, um mit den Vorteilen des einen Sensors
die Nachteile des anderen zu kompensieren. Hierbei erweiterten wir etablierte
Vorverarbeitungverfahren um hybride Bilddaten zu verarbeiten. Im speziellen
stellen wir einen nichtlokalen Mittelwertfilter vor, der eine ganze Sequenz von
hybriden Bilddaten verwendet, um das den mittleren absoluten Fehler der Ent-
fernungsdaten um 20% zu verbessern. Ein anderes Verfahren schitzt ein hochau-
flosendes Bild von Entfernungsdaten mittels Super-Resolution und nutzt dabei ge-
ometrische Verschiebungen des optischen Systems aus. Diese Technik verbessert
den mittleren absoluten Fehler zwar nur um 12%, verbessert aber gleichzeitig
auch die raumliche Auflosung. Um die Problematik der spiegelnden Glanzlichter,
an deren Stelle ungiiltige Entfernungsdaten ermittelt werden, anzugehen stellen
wir ein Konzept mit Bildern verschiedener Ansichten vor um die Glanzlichtdaten
zu korrigieren. Wir ersetzen ungiiltige Daten von einem bestimmten Beobach-



tungspunkt durch giiltige Daten einer anderen Ansicht. Dies verminderte den
mittleren absoluten Fehler um 33% verglichen mit einer konventionellen Interpo-
lation.

Abschliefiend fiihrt diese Thesis drei neuartige medizinische Anwendungen
ein, die von hybriden 3D Daten profitieren. Zunéchst wird ein Modul zur Kol-
lisionsvermeidung vorgestellt, das die Entfernungsdaten nutzt, um einen Sicher-
heitsabstand des Endoskops in dem engen Arbeitsfeld sicher zu stellen. Als zweites
wird ein System zur Lokalisierung von endoskopischen Werkzeugen beschrieben,
das die hybriden Entfernungsdaten ausnutzt, um die Ortsbestimmung und die
Segmentierung der Werkzeuge zu verbessern. Als drittes wird ein System der
Datenfusion vorgestellt, das das eingeschriankte Sichtfeld erweitert und dabei den
gesamten Situs rekonstruiert.

Diese Arbeit zeigt, dass hybride Bilddaten von ToF und RGB Sensoren es er-
moglichen bildbasierte Assistenzsysteme zu verbessern, indem zuverldssigere und
intuitivere Daten zur Unterstiitzung wiahrend minimal-invasiven Eingriffen ge-
nutzt werden kdnnen.
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Part 1

Introduction






CHAPTER 1

Structure of the Thesis

1.1 Contributions . . . . . o oot e
1.2 Outhline. . . . . .. 4]
1.3 Notation. . . . . o o vt Bl

This thesis focuses on fundamental research and first applications of novel minia-
ture hybrid range imaging devices in minimally invasive abdominal surgery. The
applications are based on data of a 3-dimensional (3-D) Time-of-Flight (ToF) /RGB
endoscope and on a concept of a miniature ToF based satellite camera. The work
covers the whole pipeline of investigating a new imaging device: First, the setup
including a range imaging sensor and a color sensor is calibrated. Second, the
measured data is preprocessed considering different sources that disturb the ToF
signal. Third, medical applications, e.g. endoscopic tool localization and collision
avoidance, are investigated and evaluated. An important point of this work is to
take advantage of the combination of sensors in a hybrid imaging system to build
more robust and intuitive applications for image guidance in minimally invasive
surgery.

This work will not investigate different optimization techniques of the hard-
ware, e.g. in terms of the optical systems or the sensors. Though several error
sources of ToF devices are known, in this thesis all problems are addressed in a
matter that the ToF sensor could generically be replaced by a different range im-
age acquiring sensor.

1.1 Contributions

The scientific focus of this work is to investigate novel miniature hybrid range
imaging devices in minimally invasive procedures and their potential as guid-
ance systems for endoscopic interventions. The applications are to be evaluated
with medical experts and on realistic data gained either from porcine studies or
for quantitative evaluation gained from range image simulation. As published in
different scientific papers, the main contributions of this work are as follows:

* Development of a fast and robust calibration framework for hybrid range
imaging setups. The focus lies on intrinsic and extrinsic calibration of color
and range sensors. Sensor data fusion of color and range data is investigated
for different setups. Due to the low image resolution of data measured by

3



4 Structure of the Thesis

miniature range sensors the investigated calibration techniques are based on
enhanced checkerboards and automatic corner detection [Haas 12, [Haas 13b]].

¢ Investigation of different preprocessing techniques required for robust appli-
cations and intuitive visualization. These algorithms consider the low signal-
to-noise ratio (SNR) [Lind 14], invalid range measurements induced by spec-
ular reflections [Haas 14] and the low spatial resolutions [Kohl 13, Koeh 14a),
Koeh 14b] of miniature range sensors.

* Development of three concepts for computer guidance systems driven by
range images. First, a novel enhancement module for endoscope holders
to avoid collision within the human body is engineered [Haas 13c|]. Second,
endoscopic tool localization is investigated for 3-D endoscopy [Haas 13e].
Third, initial situs reconstruction using ToF satellite cameras for improved
orientation is developed [Haas 13a].

Besides these major aspects, this work also contributed to other publications,
e.g. toinvestigate different range imaging techniques in minimally invasive surgery
[Groc 12, Maie 14], to develop a range imaging software framework [Wasz 11a] and
to investigate real-time feasibility of super-resolution [Wetz 13]].

1.2 Outline

This thesis is divided into three major parts: Background information on range
imaging in minimally invasive surgery, hybrid preprocessing for data quality im-
provement and medical applications for image guidance within endoscopic inter-
ventions. In detail, the work is structured by:

Range Imaging in Abdominal Surgery Part|l|outlines the medical and technical
background of this work. Initially, the workflow and the medical scenario of min-
imally invasive abdominal surgery is introduced. Then, existing image guidance
systems are described briefly and the benefits of additional range imaging sen-
sors are elaborated. This chapter also describes different range image acquisition
techniques including structured light, stereo vision and ToF technology.

Hybrid Range Data Preprocessing Part[[|begins with describing the sensor data
fusion of range images and color images in detail. Here, the focus is set on the
calibration framework using a self-encoded marker. For the fusion itself, two dif-
ferent setups are analyzed: A stereo setup with two different viewing points and
a setup including a beam splitter for a single viewing point. After calibration, a
variety of techniques to overcome technological limitations of range imaging de-
vices in general with an evaluation on ToF data is described. All concepts exploit
the fact that hybrid data, i.e. complementary data of two different sensors, is ac-
quired and aligned to each other. First, a denoising approach based on nonlocal
means is evaluated. Second, this part investigates a multi-sensor super-resolution
approach for denoising, deblurring and upsampling in a joint manner. Third, a
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pipeline for restoration of defect range image regions caused by specular high-
lights is described.

Applications in Abdominal Surgery Part[[I]covers three concepts for range im-
age driven applications to aid surgeons within intervention. A first application
performs distance supervision and correction between the endoscope and the ob-
served tissue. The second application shows the feasibility to automatically lo-
calize endoscopic tools with 3-D ToF/RGB endoscopy. In a third application the
initial reconstruction of the operation situs for better orientation and navigation is
investigated.

Summary and Outlook Part[lV|summarizes the entire work and its general con-
clusion is drawn. The key concepts and major issues are pointed out. Furthermore,
a short outlook for future work and potential of next-generation range imaging de-
vices is outlined.

The remaining part of this chapter introduces the notation necessary to describe
the mathematically formulations of the algorithms developed within this thesis.

1.3 Notation

As this thesis deals with cameras, we have to introduce points in different coordi-
nate systems and dimensions first. A 3-D point is denoted as:

X

X1 xl
x=|x or xX= x2 , (1.1)

3

X3 1

if described in homogeneous coordinates. The coordinate system is denoted by the
subscript, where x,, describes a point in the common world coordinate system and
x. describes a point in a local camera coordinate system. To allow transformations
from world coordinates to camera coordinates and vice versa, rotation matrices
and translation vectors need to be introduced. A rotation matrix is described as
R € SO; and a translation vector is denoted as t € R3:

"1 rp2 g t1
R= |13 1mpa 13 and t=|[f]. (1.2)
31 732 733 t3

A transformation of a 3-D point x from the world coordinate system to a camera
coordinate system is thereby described by x. = R(xy — ).

As this thesis deals with common CMOS/CCD cameras, we reduce there model
to a usual pinhole camera. Therefore, we describe a projection from 3-D coordi-
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nates in the camera coordinate system onto the 2-dimensional (2-D) image plane
to compute sensor pixel coordinates by a perspective transformation [Hart 04]:

X
1/[]_ fX1 xl + Cxl -x3 fx1 O CX1 O x;

su=s|u| =|fox2at+ce,xs| =0 frx, cx, O | = Kx., (1.3)
1 X3 0 0 1 0 13

with f and c describing the focal length and the central point of the pinhole cam-
era, respectively. Here, both parameters are given in pixel units and therefore
might vary in x; and x; dimension depending on the aspect ratio of an individual
pixel on the sensor. To compute 2-D pixel coordinates u; and u; of the projection,
the result needs to be scaled by s. By choosing s = xl—3 it is already shown that
uncertainty in the x3 coordinate has a direct influence on the pixel coordinates.

The computed pixel coordinate # € R? describes a point on the image plane
that delivers a measured intensity i. The subscript denotes the image source and
the superscript describes the pixel position, e.g. if,, denotes the intensity of a pixel
in a grayscale image. A 2-D image with M; pixels in u; direction and M, pixels
in u, direction is written as a vector i € RM with M = Mj - M, by concatenating
all pixels. As this thesis deals with sensors that acquire a sequence of frames,
successive frames are described by their time step t. The set of all frames up to
time T is denoted as Q = {i,, ..., ir }.

Further variables and formulations that are only necessary in a particular part
of this thesis are introduced where they are needed.



CHAPTER 2

Background on Abdominal
Surgery

2.1 Minimally Invasive Surgery and Open Surgery. . .............. f
2.2 Minimally Invasive Abdominal Surgery. ... ................. 9l
2.3 Assistance Systems for Endoscopy. .. ............... ... ... ol
2.4 Motivation for Range Images in Endoscopy . ................. [10]

The term Surgery is derived from the Greek word Xeipovpyiky and describes a
medical procedure to improve a patient’s quality of life. These procedures are
either required to investigate or treat a pathology or in modern surgery also to
change the patient’s appearance. Considering only inpatient surgery, 51.5 million
surgical procedures were performed in 2010 in the U.S. [Unit 10]. More than 6 mil-
lion of those were operations on the digestive system constituting this to be one
of the most important fields of surgical interventions. This highlights the need
for further improvement on abdominal surgery involving the stomach, kidneys,
liver etc. Abdominal surgery can be sub-divided by different criteria, e.g. by the
invasiveness, by the affected body regions or by the particular pathology. In this
thesis, abdominal surgery is split into two categories considering their invasive-
ness: Conventional surgery, also known as open surgery, and minimally invasive
surgery, also called endoscopy. According to [Unit10], in 2010 1.6 million endo-
scopic interventions were performed in the U.S. treating the digestive system, i.e.
other endoscopic interventions as bronchoscopy or cystoscopy are not included.
Therefore, to assist surgeons in difficult medical scenarios, a variety of guidance
systems evolved over years, in particular for minimally invasive interventions.
Those system usually acquire images with different modalities that visualize cer-
tain aspects of the human body to help making a diagnosis or to ease the actual
treatment of a pathology [Grim99]. This chapter points out the key aspects of
minimally invasive surgery with particular focus on abdominal surgery. The com-
parison between minimally invasive and conventional open surgery is illustrated
and several procedures are detailed. Moreover, this chapter introduces available
assistance systems for endoscopy. Finally, this leads to the motivation why range
imaging is of special interest for the next step of modern surgery.

7



8 Background on Abdominal Surgery

(a) (b)

Figure 2.1: Illustrations of a cholecystectomy. shows an open surgery with
direct access and 2.1b|shows a minimally invasive approach with endoscopic tools.

2.1 Minimally Invasive Surgery and Open Surgery

One criterion to categorize medical interventions is the degree of invasiveness.
Therefore, this work distinguishes between minimally invasive and open surgery
which is illustrated in Fig. As the notation suggests, minimally invasive pro-
cedures describe medical procedure with little operative trauma. In comparison
to conventional open surgery this leads to a shorter recovery time for the patient
and thereby to a reduced hospital stay. In recent years, a variety of minimally in-
vasive alternatives to conventional open surgery have evolved with special focus
on pathologies of the heart [Gold 04] and the abdomen [Krem 01]]. In minimally in-
vasive surgery the physician has no direct access to the organs or structures of the
human body. On the one hand this means fewer and smaller scars and less pain
for the patient. On the other hand, without direct access the physician has a lim-
ited sense of orientation and usually has to rely on additional imaging techniques.
For some medical procedures minimally invasive alternatives are not available as
the incision is just too small, e.g. the removal of larger organs or transplantations.
For smaller organs such as the kidney or gallbladder, laparoscopic interventions
are already performed as a common routine. In terms of operative time, minimally
invasive surgery usually takes longer due to the smaller incision and worse orien-
tation. Both open and in most cases minimally invasive surgery require anesthe-
sia within the intervention. Statistical comparison of open and minimally invasive
surgery in terms of quality of life was published by Velanovich [Vela 00] and shows
an overall improved result for laparoscopic interventions evaluated on four differ-
ent procedures. Surgeons have applied endoscopic interventions as treatments for
a multitude of different areas of the animal and human body, e.g. bronchoscopy
covers examinations of the trachea and the lung, laparoscopy covers examinations
of the abdominal organs and otoscopy covers examinations of the ears.
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2.2 Minimally Invasive Abdominal Surgery

As one of the most important fields of minimally invasive procedures, the diagno-
sis and treatment of abdominal pathologies is the main medical application of this
thesis. Here, a variety of important special instruments are required, see Fig.

e Endoscopes: Depending on the procedure these devices are non-rigid (flex-
ible endoscopes) or rigid (laparoscopes) and serve as a camera inside the
human body. Rigid endoscopes have the benefit that the navigation is way
more intuitive although the degrees of freedom during the navigation is re-
duced compared to non-rigid endoscopes.

e Trocars: To allow a fast exchange of different instruments a trocar is placed in
the human body as a port to the abdominal cavity. For different procedures
different sizes ranging from several mm up to a few cm are available.

* Surgical instruments: For the actual procedure different endoscopic tools are
required, e.g. clamps or scissors. As illustrated in Fig. those instruments
have a scissor-like grip to control the action at the top of the tool.

The workflow of an endoscopic procedure in general is described by three ma-
jor steps, i.e. preparation, procedure and recovery [Krem 01]. Starting up to several
days before the actual intervention, the patient has to stop taking medication that
is not prescribed due to the procedure. Furthermore, he is not allowed to drink
or eat 6-12 hours in advance. After removing all clothes and all jewelry the pa-
tient is getting dressed in operation clothes and brought into the operation room.
The actual procedure starts with attaching several sensors to the patient to contin-
uously monitor his health status. Usually, then, the patient is anesthetized until
the whole procedure is finished. After removing the hair and cleaning the surgi-
cal site, the actual procedure starts with a small incision, where the first trocar is
inserted. Through this trocar, the abdomen is insufflated with carbon dioxide gas.
This allows the physician to have more room for the procedure. Then, additional
cuts for additional trocars might be performed dependent on the complexity of
the procedure. These trocars are then used as a port to the abdominal cavity for a
laparoscope or endoscopic instruments within the actual treatment. In a final step
of the procedure, the carbon dioxide gas has to be removed and all the incisions
are closed with stitches. The recovery phase starts after the patient woke up. He
is then instructed how to keep the wounds clean and follow-up appointments are
set up, e.g. to have the stitches removed. On average the recovery takes up to 12
weeks.

2.3 Assistance Systems for Endoscopy

In modern surgery, companies develop a variety of assistance systems to ease
the navigation or to reduce the required manpower for minimally invasive pro-
cedures. Usually, besides the physician several assistants are required within the
intervention. As the surgeon performs the actual procedure with endoscopic tools,
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Figure 2.2: Different instruments for minimally invasive abdominal surgery. From
left to right: A rigid endoscope, a non-rigid endoscope, a trocar, a set of sterile
surgical instruments.

one assistant has to hold the endoscope, one has to hand him the required instru-
ments over, one has to supervise the patient and often a few more are involved
for general organization. The remaining part of this section introduces the most
relevant of the available assistance systems in detail.

A very basic and intuitive assistance system is an endoscope holder, see Fig.
These medical devices are available in different complexities, ranging from simple
non electronic static holders to automatic flexible holder that are navigated by a
joystick. In general, these endoscope holders allow a more stable image acqui-
sition as they exclude any jitter induced by a human. However, those systems
are often very basic and still have to be navigated by a surgeon. Fig.[2.3| shows
the SOLOASSIST [Hart 09], an electronic assistance arm that is navigated by an
joystick and simulates a human arm.

Besides endoscope holders fully automatic robotic assistance systems are al-
ready commercially available [Sung 01]. These systems allow the surgeon to be at
a separate workstation as illustrated in Fig. All commands are directly trans-
mitted to the robot allowing the surgeon to be at a distant place while performing
the procedure. To describe one system in more detail, the da Vinci system in par-
ticular is navigated by grips and pedals to enable various degrees of freedom. For
intuitive visualization this robot acquires stereoscopic images and thereby gives
the surgeon a 3-D impression of the scene.

2.4 Motivation for Range Images in Endoscopy

Although assistance systems for minimally invasive surgery, e.g. endoscope hold-
ers, are commercially available, one major issue of endoscopic interventions is the
orientation in the human body. Therefore, the navigation is dependent on the ex-
perience of the surgeon and usually based on endoscopic 2-D video images. Due
to the lack of intuitive visual comparison to the environment, the narrow field of
view induces a loss of depth and size estimation in the abdominal cavity. How-
ever, this information is required for diagnosis, e.g. the size of a polyp, and for
decision, e.g. choosing the most reasonable endoscopic instrument. Schoen et

! AKTORmed GmbH, Barbing, Germany
2Intuitive Surgical Incorporated, Sunnyvale, USA



2.4 Motivation for Range Images in Endoscopy 11

©2014 Surgimed Solutions, LLC ©2014 AKTORmed GmbH ©2014 Intuitive Surgical, Inc

Figure 2.3: Photos of three surgical assistance systems. First, a static endoscope
holder from Novid Surgical. Second, the SOLOASSIST, a joystick navigated en-
doscope holder. The third photo shows the da Vinci assistance system with the
workstation on the left and the distant robotic system on the right.

al. [Scho 97| have shown that about 20% of the polyps in their experiments were
estimated inaccurately. Therefore, a variety of different approaches to compensate
for this loss of information were investigated [Vaki94], e.g. adding grids to the
endoscope lens or estimate sizes by comparison with known instruments. The ris-
ing importance of minimally invasive procedures in abdominal surgery and the
novel assistance systems allow the integration of additional sensors for faster and
safer interventions. Both previously described assistance systems lack the support
for real 3-D metric data acquisition to either react on changes in the environment
or to allow measurements within the human cavity. An additional 3-D sensor of-
fers new applications reaching from collision avoidance to robust tool localization
and 3-D situs reconstruction. The long-term goal of those assistant systems is to
ensure safety while reducing manpower, costs and complexity of abdominal inter-
ventions.

This thesis focuses on range image acquiring devices as additional 3-D sen-
sors in minimally invasive abdominal surgery due to their non-harmful acqui-
sition technique. Range image sensors measure topographic surface data of the
observed scene. Usually, this data is delivered as a 2-D image with metric radial
or orthographic information as intensity values for each pixel. With metric range
data and known camera parameters it is possible to reconstruct the surface S of
the operation site in 3-D by inverting Eq. (1.3):
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where x3 is given by the range data. Different concepts for range image acquisition
have been proposed. For abdominal surgery three major techniques have evolved
as described in Chapter 3| In this work, in particular, ToF sensors are utilized
to deliver topographic data in a fast manner. Detailed information on the ToF
measurement technique is given in Section
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Different hardware setups for range image acquisition are already implemented in
a multitude of different applications, e.g. entertainment systems like the Kinect
or radiotherapy systems like Cyberknife Besides several Shape-from-X ap-
proaches, e.g. Shape-from-Shading [Wu 09, Mour 01], the three most popular ac-
quisition techniques are using Stereo Vision, Structured Light or Time-of-Flight.
With increased precision and reduced manufacturing costs, these devices gained
interest for new application as well, e.g. driver assistance system or minimally
invasive surgery. Recently, the three major concepts were adopted and imple-
mented into endoscopic hardware and thereby face the conflict of delivering data
with high accuracy and miniaturizing the setup for minimally invasive surgery.
Today, only stereo endoscopes are commercially available, but setups using struc-
tured light and ToF technology are highly investigated by different researchers.
Maier-Hein et al. [Maie 13, Maie 14] have published a first comparison between
all three range acquisition techniques and evaluated their performance on real
ex-vivo data. A long-term goal for range imaging in abdominal surgery was pro-
posed by Su et al. [Su09], where data registration of intra operative range data and
preoperative computed tomography (CT) data is described for augmented reality.
This combination would allow to have a detailed visualization of the high reso-
lution volumetric CT dataset while it is correctly aligned to the current position
of the endoscope. This improves orientation and thereby allows better navigation
within the abdominal cavity. This chapter will focus on the working principle and
the state-of-the-art of available range imaging systems and conclude with a first
comparison of these approaches as proposed in [Maie 14]. We only consider es-
tablished range image setups that acquire data in a single shot procedure, i.e. all
Shape-from-X techniques are not included.

Microsoft Corporation, Redmond, USA
2 Accuray Incorporated, Sunnyvale, USA
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Figure 3.1: (a) describes a stereo vision setup with two cameras Camera; and
Camera; that observe a 3-D point xyy. The projection of this point onto each image
plane results in an pixel index #; and u, which can be computed by Eq. (1.3). (b)
shows the front view of a stereo endoscope with two apertures to acquire images
from two different points of view [Spei(09].

3.1 Stereo Vision

Stereo endoscopy is the most commonly used 3-D range image acquiring technol-
ogy in minimally invasive surgery. Besides its application in rigid endoscopes,
stereo vision is also implemented in the da Vinci assistance system. Stereo vision
describes an intuitive acquisition technique that is similar to the human vision and
depth estimation.

Working Principle The core concept behind stereo endoscopy is to estimate range
information by observing a scene from two different perspectives. Given a known
baseline, the framework has to detect the 2-D projections of a 3-D point in both
image planes. In theory, using basic trigonometry the range information of these
points can then be computed by triangulation, see Fig. In practice, both lines
will probably not intersect and minimizing the distance of both lines will estimate
the position of the 3-D point.

The requirements for stereo endoscopy are on the one hand a precisely cali-
brated device and on the other hand a diversified texture information of the ob-
served scene. Accuracy is increased with a wider baseline between both sen-
sors. As this baseline is limited by the diameter of the endoscope, the improved
accuracy has to be gained by computing the corresponding points in both im-
ages with higher precision. Corresponding points are computed by detecting fea-
tures in both images, e.g. by applying the scale-invariant feature transform (SIFT)
[Lowe 04] or by computing speeded-Up robust features (SURF) [Bay 06]. Match-
ing those feature points results in point pairs that correspond to the same 3-D
point in the observed scene. Therefore, the output of a stereo endoscope highly
depends on the quality of the two images and on the speed and robustness of the
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feature detection and matching. As the estimated range images of a stereo setup
are computed from disparity maps and highly depend on the texture variety in the
observed scene, the range data resolution is spatially varying and can not be con-
sidered constant in the entire image. In areas with homogeneous color information
no range data can be estimated.

As the bottleneck of this range image acquisition technique is the computation
of corresponding feature points, hardware manufacturers tackle this problem by
increased image resolution in the sensor domain. This leads to more details even
in almost homogeneous regions in the acquired images but also induces more
computational effort to compute features on both images. Therefore, estimating
accurate 3-D range data in real-time is a major issue in stereo endoscopy.

State of the Art Stereo endoscopes are currently the only commercially avail-
able and CE certified 3-D endoscopes. However, concrete benefits of stereoscopic
reconstructions in endoscopy have not been proved yet. New applications and
algorithms for disparity maps and stereo endoscopic reconstructions are still in-
vestigated. Mueller et al. [Muel 04] summarized the possibilities and limitation
of those setups for minimally invasive surgery. Two major trends in stereo en-
doscopy have evolved, recently. On the one hand computation of feature points
and thereby computation of the disparity map is transferred onto general pur-
pose computation on graphics processing units (GPGPU) as proposed by Rohl et
al. [Rh112] and Stoyanov et al. [Stoy 10]. On the other hand, extending the field
of view by registering successive stereo range image frames in an extended si-
multaneous localization and mapping (SLAM) approach is an important topic to
improve the surgeon’s orientation as published by Totz et al. [Totz 11]].

3.2 Structured Light

Structured light endoscopy is a novel technique based on stereo vision concepts
but with artificially created feature points instead of those given by textural in-
formation. In minimally invasive surgery, structured light systems are not yet
commercially available and only few publications have addressed this technique
so far, see [Clan 11, Schm 12].

Working Principle The working principle of structured light sensors is very sim-
ilar to stereo vision systems. In comparison to those, structured light systems do
not require two cameras observing the scene. The second camera is replaced by a
projector that generates a known pattern onto the observed scenario, see Fig.
Still, the known baseline and corresponding points in the acquired image and the
known projection pattern are used to reconstruct 3-D points by triangulation. As
the projector generates the pattern that is used to compute the feature points, struc-
tured light is also called an active triangulation technique.

Similar to stereo vision, the baseline between the sensor and the projector and
an accurate calibration is required for high quality measurements. As long as the
pattern is clearly visible, this technique is independent of texture information of
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Projector

(a) (b)

Figure 3.2: (a) describes a structured light setup with one camera and one projector
that generates a known pattern onto the scene. The projection of this point onto
the image plane results in an pixel index u. Together with the projection pattern,
the 3-D world coordinates x}y can be reconstructed using triangulation. (b) shows

the prototype proposed by Schmalz et al. .

the observed scene. Opposed to stereo vision systems, the feature detection frame-

work can be highly adapted to the projection pattern, as the structure of the feature

points is known. The projection pattern should be easy to detect and hard to dis-

turb by the texture of the scene. In conventional structured light setups, stripes

or sinusoidal patterns are popular. In minimally invasive setups, color coded dots
Clan 11] and circles [Schm 12] are employed.

As the core concept for structured light is similar to stereo vision, it shares the
same bottleneck of detecting and identifying the feature points of the projected
pattern. Furthermore, the smaller the structures of the projected pattern are, the
more 3-D points can be reconstructed, but the harder it is to identify those struc-
tures in the acquired images.

State of the Art Only few prototypes of structured light devices for minimally
invasive procedures exist. Clancy et al. proposed a device that is capable
to reconstruct only approx. 50 3-D points, but with high accuracy. They manu-
factured a fiber-based structured light probe that projects color coded dots onto
the scene. A different setup was proposed by Schmalz et al. [Schm 12], where the
projected pattern consists of color coded circles. This allows a reconstruction of
approx. 5000 high accurate 3-D points. Beside the lack of a CE certification, the
disadvantage of this prototype is missing photometric information. Current struc-
tured light technology as it is implemented in the Kinect® has tackled the issue of
the visible projected pattern by using near-infrared wavelength.
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ToF sensor
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Figure 3.3: (a) describes a ToF setup with a single camera and a illumination unit
that sends out the modulated light. The reflected signal is then received by the
ToF sensor at pixel index u. After calculating the phase shift, the radial distance
is computed. (b) shows the prototype described by Haase et al. [Haas 13b]. The
setup includes two separated light sources for the color and the ToF acquisition.

3.3 Time-of-Flight

ToF technology tackles the topic of 3-D reconstruction from a completely different
point of view. Instead of using acquired color images to find any distinctive struc-
tures, reflection characteristics are exploited to physically measure the distances of

the observed scene [Lang 01].

Working Principle The concept behind ToF technology is to measure a frequency
modulated light ray that is sent out by an illumination unit and received by a ToF
sensor, see Fig. The received sinusoidal signal is sampled at four timestamps
to estimate the phase shift ® between the emitted and received signal. The radial
distance d is then computed by:

i=- 2
2fmod 27’

(3.1)

where ¢ denotes the speed of light and f,,,q the modulation frequency [Lang 01].

As the illumination unit can be realized by LED diodes and the sensor is a sim-
ple CMOS or CCD chip, production costs of ToF sensors are rather low. However,
due to their novelty compared to stereo vision, current ToF devices exhibit low
data quality and low image resolution. Besides the range image, most ToF devices
provide additional data, e.g. photometric data, often denoted as the amplitude
image, and a binary validity mask. Due to its measurement technique ToF setups
do not require a baseline between the illumination unit and the measuring sensor,
which is beneficial for the use in minimally invasive surgery.

Besides the low resolution, systematic errors reduce the data quality extremely.
Kolb et al. [Kolb 10] proposed a report on ToF sensors and described their error
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Figure 3.4: Two photos of the experi-
mental setup in [Maie 14]. Different or-
gans were examined in realistic medi-
cal scenarios, including surgical cuts,
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Figure 3.5: A boxplot comparing the
mean root-mean-square error of four
stereo endoscopic systems, a struc-
tured light setup and a Time-of-Flight

smoke and blood.

endoscope [Maie 14].

sources, e.g. color dependent range measurements, temperature issues of the de-
vices and flying pixels at object boundaries. In minimally invasive procedures
two major issues occur. First, multiple reflection within the abdominal cavity cor-
rupt ToF measurements. Second, inhomogeneous illumination caused by the en-
doscopic optic hinders accurate range measurements.

State of the Art For minimally invasive surgery, only very few prototypes of ToF
endoscopes are described in literature. Penne et al. [Penn 09] proposed their first
prototype of a rigid 3-D ToF endoscope in 2009 as a university research project. In
[Penn 10] they extended that hardware by an attached RGB endoscope for a first
feasibility study of ToF/RGB data fusion for 3-D endoscopy. In 2012, Haase et
al. [Haas 12] published a first approach to fuse ToF range data and RGB color data
acquired with a novel hybrid ToF/RGB endoscope manufactured by Wolf GmbH,
Knittlingen, Germany. This hardware acquires both complementary data through
a single optical channel and is further described in Section In [Haas 13a a first
approach of an ToF based satellite camera was introduced, see Section

3.4 Comparison on Real Data

As mentioned in the previous sections, all three single shot range image acquisi-
tion techniques have their benefits and drawbacks. In [Maie 14] a first quantitative
comparison study has been presented. A single structured light sensor, one ToF
setup and four stereo vision setups were investigated. As illustrated in Fig.
the study considered several different organs and included challenging scenarios,
e.g. a surgical cut, smoke and blood. For quantitative comparison all scenarios
were also measured in a CT scanner before and after the experiments. This data
served as ground truth data for the study. To register the acquired range images
and the ground truth data, small markers were attached to the regions of interest.
The evaluation only considered the region inside those markers.
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As illustrated in Fig. the stereo endoscopes and the structured light setup
achieved a similar mean root-mean-square error, whereas the ToF device exhibits
a rather high error. However, this device is still in an early prototype status and
thereby is hardly comparable with the other setups. Due to its compact housing
and on-chip acquisition technique the ToF technology was chosen for further re-
search described in this thesis. Furthermore, ToF sensors have less issues in terms
of occlusions due to non existing baseline in the setup, in comparison to the stereo
vision and structure light.

3.5 Time-of-Flight Sensor Issues

All range image acquiring systems exhibit similar error sources. As this thesis uti-
lizes ToF technology for data acquisition, we focus this section on ToF issues. Due
to its novelty ToF imaging technology still suffers from a multitude of different
drawbacks and error sources [Kolb 10]. A variety of correction methods from cali-
bration techniques to filtering were investigated and summarized by Reynolds et
al. [Reyn11]. This chapter describes three major issues regarding ToF sensors in
general and their application in minimally invasive surgery, in particular. First,
the low SNR makes image preprocessing a mandatory first step. Second, the large
pixel size of those sensors limits the measured range image resolution. Third, spec-
ular highlights, known to be an issue in medical applications for conventional RGB
endoscopes [Zimm 06} /Arno 10], result in invalid range measurements as well.

Low Signal-to-Noise Ratio As mentioned in Section[3.3) ToF data acquiring sen-
sors face several different error sources that lead to temporal noise, systematic
offsets and invalid or incorrect range data. Temporal noise is most notably at
dark areas, where the reflected signal is of poor quality. In static scenarios tempo-
ral noise can be tackled with averaging successive frames. However, in dynamic
scenes this leads to motion artifacts and thereby to incorrect data. Different reflec-
tivity also leads to an amplitude related offset. Other systematic offsets are caused
by the sensor’s temperature and the integration time as described by Mersmann
et al. [Mers13]. Another issue of ToF devices is the correct measurement of ob-
ject boundaries where different distance levels adjoin each other. As described by
Sabov et al. [Sabo 10], flying pixels are randomly assigned to the foreground object
or background. In the abdominal cavity a major problem occurs from multiple
reflections. Several emitted light rays are reflected at multiple objects before be-
ing received by the sensor. Here, the chip is not able to separate these signals and
thereby computes incorrect range measurements.

Low Spatial Resolution Pixel spacing, pixel sizes and the chip dimensions of an
imaging system define the spatial resolution of the sensor and thereby the quality
of details that are visible in the acquired data. ToF sensors, in particular, are still
manufactured with rather low spatial resolution which leads to an image resolu-
tion of 512 x424 px at the maximum for the Kinect One® down to 64 x48 px for the
ToF/RGB endoscope prototype described in Section[3.6] In hybrid imaging setups,
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the complementary photometric sensor usually exhibit a higher image resolution
for a similar field of view. This leads to the concept to increase the low-resolution
(LR) ToF data not only by naive upsampling, e.g. using bilinear or bicubic inter-
polation, but by including high-resolution (HR) photometric information into the
upsampling process of the acquired range data. Incorporating information with
higher SNR and higher image resolution allows to reconstruct these features in
the range domain. This leads to higher accuracy in identification and localization
of important image structures.

Specular Highlights In conventional endoscopy specular reflections are a known
issue, as in those areas pixels are oversaturated and only deliver white color infor-
mation. Here, light rays hit the object perpendicular to its surface plane. Different
approaches have been published to detect specular reflections and to replace in-
valid photometric information, e.g. by data provided by a technique based on
a normalized convolution [Arno 10], anisotropic diffusion [Grge 01] or temporal
registration [Stoy 05]. Range image data is equally affected by specular reflections.
Some sensors are able to detect affected regions and deliver this information in its
validity mask. However, highlight boundaries with invalid data often remain and
small specular regions are often ignored. Here, it is hard to identify small spec-
ular highlights as incorrect data in the range domain as they might just result in
small topographic offsets. Therefore, additional photometric data, either acquired
by another sensor or delivered by the ToF device itself can be exploited to detected
specular highlights and mark them invalid. Removing invalid range data in those
areas can either be performed by interpolation techniques as proposed by Wasza
et al. [Wasz 11af] or by replacing it with correct data of different images as proposed
in Chapter[7]

3.6 Employed Hardware

For the evaluation of the algorithms on real data as described in the following
chapters, we examined two different sensors, dependent on the application. On
the one hand we had access to a 3-D ToF/RGB endoscope with low SNR but high-
quality RGB information in addition to range data. On the other hand, we used
a miniature ToF sensor acquiring range data with improved image resolution and
data quality as a reference for a range data acquiring satellite camera.

Hybrid 3-D Endoscope The ToF/RGB endoscope is manufactured by Richard
Wolf GmbH, Knittlingen, Germany. The prototype acquires ToF (64 x 48 px) and
RGB (640 x 480 px) data simultaneously through one optical system at a frame rate
of 30 frames per second (fps). In addition, the photometric amplitude image and a
flag image is delivered to indicate for each pixel if its measured range is reliable or
erroneous. Nevertheless, most valid pixels show a low SNR due to several error
sources, e.g. temperature related or amplitude related offsets [Kolb 10]. Since this
endoscopic system is in an early prototype stage, all experiments were only per-
formed in ex-vivo studies with porcine organs or realistic human organ phantoms.
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3-D Satellite Camera Our reference hardware for a range data acquiring satel-
lite camera is a PMD CamBoard nano manufactured by pmdtechnologies GmbH,
Siegen, Germany. This device acquires data with up to 90 fps and delivers an am-
plitude, flag and range image with an image resolution of 160 x 120 px. The sensor
is integrated into a miniature housing with a size of 37 x 30 x 25 mm. This still ex-
cludes the use through a trocar in minimally invasive procedures, but it identifies
the trend towards smaller devices that will fulfill the requirements for real-time
applications in minimally invasive surgery.

Range Image Simulator For quantitative evaluations, a range image simulator
was implemented that allows to imitate different range data acquiring setups. This
data source behaves like a common range image device and delivers data accord-
ing to its real counterpart. It allows simulation of the endoscope and the satel-
lite camera, i.e. range images, amplitude images, validity maps and color images
are generated. Furthermore, realistic lighting behavior is implemented including
specular reflections. For simplicity, additive Gaussian noise and blur is used to ob-
tain noisy data and simulate the optical system. To simulate the amplitude related
error described in Section 3.5 the variance of Gaussian noise depends on the sim-
ulated amplitude data. The operation scenes are composed by medical experts.
Based on CT scans, textured 3-D meshes of human organs are observed by a vir-
tual range image device. The depth information of this 3-D rendered scene is then
used as a ground truth range image. As different devices show different individ-
ual error sources, the range image simulator was designed to provide the basic
behavior that most devices have in common.

The next chapter describes the required calibration of hybrid range imaging
setups. With the knowledge of error-prone range data in most scenarios it also
elaborates techniques to tackle the issues mentioned in Section 3.5
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Data fusion is one of the major topics in medical imaging. The key idea is that
different sensors acquire complementary data and thereby are able to provide an
augmented view for guidance during an intervention. As surgeons are used to
endoscopic 2-D color data, without photometric information an intuitive repre-
sentation of range data alone is hardly feasible. Therefore, an automatic calibra-
tion scheme for data fusion of photometric RGB information and ToF range data
is investigated in [Haas 12, [Haas 13b].

For ToF/RGB data, sensor fusion has been demonstrated for two individual de-
vices in a stereo setup [Lind 07, (Gudm 11] and in particular for ToF endoscopy by
Penne et al. [Penn 10]. Compared to these setups, the device described by Haase
et al. [Haas 12, IHaas 13b] acquires data through a common optical system. This
improvement allows to use a robust homographic mapping instead of exploiting
the error-prone range information to project 3-D points onto the RGB sensor. Both
mapping techniques require a calibration of the RGB and ToF sensor beforehand.

Conventionally, the corners of neighboring patches of a checkerboard pattern
are used as features for camera calibration. These feature points can be detected
automatically with established calibration frameworks. For ToF endoscopy, cal-
ibration is a highly recurrent task as a recalibration of the system must be per-
formed each time the endoscope optics are changed. Due to inhomogeneous illu-
mination in the ToF images, conventional checkerboard detection algorithms re-
sult in a high error rate. Since the RGB and the ToF chip do not share the same
geometries both sensors need to be calibrated separately. For estimating a rela-
tive transformation from the coordinate system of one sensor into the coordinate
system of the other sensor, corresponding feature points in both views have to
be detected. Therefore, 2-D barcodes are used for feature point identification as
proposed by Fiala et al. [Fial 08]. Conventional checkerboard detection systems
have to identify the complete checkerboard in each image. For extrinsic calibra-
tion in particular, it is not sufficient to detect feature points in each view, but it is
also required to identify their position in the known ground truth checkerboard.

25
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(a) (b)

Figure 4.1: Detailed illustration of the self-encoded marker. (a) shows a single
patch with green lines separating the barcode and the border and orange lines
separating the barcode boxes. (b) is the set of all barcodes used for calibration.

This chapter describes an approach that uses the entire field of view at all dis-
tances even if the checkerboard is only partially visible. This allows to compute
parameters with equal accuracy for the entire volume of interest, as the feature
points throughout all images are evenly distributed across the whole field of view.
For higher robustness in low resolution ToF images (64 x 48 px), we adopted the
marker of Forman et al. [Form 11]] with a reduced barcode size of 3 x 3. The de-
tected corner points are used for camera calibration to estimate the intrinsic and
extrinsic parameters.

4,1 Camera Calibration with Self-Encoded Marker

Camera calibration in general exploits known ground truth 3-D world coordinates
and corresponding 2-D image coordinates to estimate parameters of a projection
matrix by minimizing an error metric between the detected 2-D image coordinates
and the results of projecting the 3-D points onto the image plane. Therefore, a
plane calibration pattern with easy detectable feature points, e.g. black circles on
white background or a checkerboard, is utilized to be observed from multiple dif-
ferent views to estimate the projection parameters robust for the whole volume of
interest. In addition to a basic camera calibration we need to compute correspond-
ing points in both sensor domains, this section starts with a detection scheme of a
self encoded marker that allows to compute same feature points for both sensors.

Self-Encoded Marker As proposed by Fiala et al. [Fial 08], 2-D barcodes can be
used for feature point identification, which are required for camera calibration. In
our approach, we use a checkerboard marker with unique barcodes embedded in
the checkerboard patches for a recognition of the feature points independently of
the rotation of the entire marker [Form 11]. The 2-D barcode is described by 3 x 3
blocks as depicted in Fig. Even in low-resolution images, a robust detection
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Figure 4.2: Tllustration of the image enhancement pipeline. (a) shows the original
amplitude image. (b) is upsampled data generated with bicubic interpolation. (c)
shows the image after applying an unsharp mask.
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Multiscale Approach

Figure 4.3: Workflow of the marker detection process. The different scales of the
patch recognition phase vary in the number of erosions and dilations applied on
the binary image. The examples show an image section of a Time-of-Flight ampli-
tude image. Green pixels denote the detected contours.

of the barcodes is feasible. All barcodes are embedded into a checkerboard patch
and thus surrounded by a black border. The feature points for calibration are the
checkerboard corners identified by the barcodes.

Time-of-Flight Image Enhancement As this approach utilizes an implementa-
tion of a pixel-accurate framework, upsampling the ToF amplitude images is the
initial step. Next, preprocessing these images as shown in Fig. 4.2 is required to
compensate for inhomogeneous illumination. After bicubic resampling, unsharp

masking is performed for local contrast enhancement [Mali 77]: fzmp = Ly — Enmpblurs
where fzmp is the contrast enhanced photometric amplitude value at pixel position

u and ¥ is a blurred version of the input image. As illustrated in Fig. the

Amp,blur
contrast was improved after applying our preprocessing pipeline.
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Figure 4.4: Workflow of the marker identification process describing the phases
leading from barcode calculation to checkerboard corner detection.

Marker Detection The marker detection process is illustrated in Fig. and
demonstrated for a ToF amplitude image. For marker detection, we use a bina-
rized version of the ToF amplitude and RGB input image. Therefore, an adap-
tive thresholding technique is performed calculating the threshold individually for
each pixel depending on its neighborhood [Well93]. In order to retrieve the con-
tours of each checkerboard patch, morphological erosion and dilation is applied
on the binary images to separate the blurred patches. Enhancing the detection al-
gorithm proposed by Haase et al. [Haas 12], the inhomogeneous illumination in
the acquired images is addressed by using a multiscale approach. Within each
scale a morphological opening is performed, which is a dilation of the eroded im-
age. Across multiple scales the number of erosions applied on the image before
applying the same number of dilations defines the individual scale. The output
of the morphological enhancement is used for contour detection as proposed by
Freeman [Free 70] to find the checkerboard patches. Subsequently, a shape analy-
sis is performed on all contours. First, the contours are approximated by polygons
[Doug 73] and rejected if an approximation by four points is not achieved within
ten iterations. Then, the contours are analyzed by their shape and length. Con-
tours with a non-square convex hull or with an unexpected size are rejected. Fi-
nally, a clustering, similar to [Corm 01], is performed across all scales to combine
contours of different scales describing the same checkerboard patch.

Marker Identification The marker identification process is depicted in Fig.
First, all detected patches are identified by their barcode. The barcode is calcu-
lated by dividing each patch in 5 x 5 blocks and analyzing the inner 3 x 3 blocks.
The barcode is represented by a unique hash value calculated by the number of
black blocks and their position. Therefore, all barcodes have to be unique in terms
of rotation in order to prevent wrong identifications if the marker is rotated by
more than 45°. Subsequently, these identified barcodes are associated in a common
structure describing their neighboring patches. The same structure is constructed
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for the ground truth image, respectively. In order to verify the identified barcodes,
each associated neighbor of an identified patch is compared to the ground truth
neighbor. A score calculated by the validity of all four neighbors of each patch
is finally used to reject an incorrect identified barcode. For the upcoming calibra-
tion process all identified checkerboard corners are then corrected with subpixel
accuracy by gradient analysis.

Camera Calibration Finally, the previously identified checkerboard corners are
utilized for camera calibration. For estimating the intrinsic parameters, the corners
in all views are associated to their real world coordinates using prior knowledge
about the checkerboard geometry. Following the approach of Zhang et al. [Zhan 04],
the focal length (fx,, fx,) and the principal point (cy,, cx,) assembling the camera
matrix K € R3*3 are estimated dependent on the pixel spacing. The matrix is
calculated by minimizing the reprojection error e** using a Levenberg-Marquardt
optimization:
— 5 rep

R, t,K] = arg Irentlrl} € (Xyer, Xost), 4.1)
where X, is a matrix composed by all detected feature points in the acquired
image. Xest is composed by the 2-D points calculated by projecting the 3-D ground
truth coordinates onto the camera plane with the estimated camera parameters
R, t and K by Xest = K(Rxw + t). From now on the equation sign is used for
homogeneous coordinates, which means that both sides are equal up to a scale
factor. The error e is defined by the mean of the euclidean distance between each
point pair.

4.2 Color and Range Data Fusion

Stereo Setup Previously proposed approaches for ToF/RGB image fusion esti-
mate the relative transformation using the extrinsic parameters of both sensors,
see Fig. First, the 3-D world coordinates are calculated based on ToF range
data. Second, all 3-D points are transformed into the RGB sensor coordinate sys-
tem. Third, the derived 3-D points are projected onto the RGB image plane. The
relative transformation between both sensors is described by:

Rrel - RRGBR;EF/ ta = tres — Rrel tror, (42)

where R € R3*3 denotes a rotation matrix and t € R? a translation vector and the
index denotes the modality. Considering a pinhole camera model, a 2-D coordi-
nate on the RGB sensor plane is computed by first applying Eq. to reconstruct
Xroic, transform it into the RGB camera coordinate system and then apply Eq. (1.3):

5CVRGB - KRGB(ﬁrzll(fToF,C - Eel))- (4-3)

This deduces that the range data accuracy has direct influence on the mapping
quality of the color information.
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Figure 4.6: Mapping RGB color data
and range data in a beam splitter setup.
Data fusion is performed by applying a
homography on each 2-D pixel position
in the color domain to compute the cor-

responding pixel position in the Time-
of-Flight domain.

sensors and projecting them down onto
the RGB sensor plane.

Homographic Setup In the described hybrid ToF/RGB endoscope both sensors
acquire the scene through the same optical system, see Fig. A beam splitter
separates the incoming signal into near-infrared light for the ToF chip and the
residual for the RGB chip. Since ToF and RGB images share the same center of
projection [Ben 00], this allows to use a homographic mapping for transforming a
2-D RGB pixel xggp onto the ToF chip following the equation:

EToF - H-'SERGB/ (44)
where H € R**3 denotes the homography between both sensor planes. This ho-
mography is estimated by employing the point correspondences in an image pair
of both sensors.

4.3 Experiments

Hardware All experiments were performed using a 3-D endoscope prototype as
described in Section that acquires ToF and RGB data through a single endo-
scopic system. As the calibration pattern is printed on a flat plane, detecting and
identifying the checkerboard patches in the range domain is not feasible. How-
ever, as ToF sensors also compute an amplitude image that provides photometric
information, the framework is applied on this image to estimate parameters for
the ToF sensor.
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(b)

Figure 4.7: Two checkerboard views of the Time-of-Flight/RGB fusion result. (a)
shows a stereo vision mapping by projecting the reconstructed 3-D world coordi-
nates on the RGB chip. (b) illustrates the improved homographic mapping with
more robust results noticeable at the border of the endoscopic tool.

Calibration Data To enable a reliable evaluation, the calibration pattern was ob-
served from 100 different views. The views were shifted in all directions and ac-
quired from different angles and thereby contain a varying amount and size of
checkerboard patches. For evaluating the robustness of our calibration algorithm,
the reprojection error for a setup using 70 different views was computed for both
sensors in 30 repetitions. Furthermore, the focal length and the principal point
were calculated for different numbers of views for 30 repetitions each. The views
were chosen randomly from all 100 views without using any view twice within
one repetition. Evaluating the barcode identification process was based on a gold
standard in all images labeled by an expert.

Sensor Fusion For sensor fusion evaluation, we constructed a realistic medical
scenario and used the stereo vision mapping according to Eq. as well as
the homographic mapping according to Eq. (#.4). In order to obtain a quantita-
tive comparison for both techniques, the normalized mutual information (NMI)
[Stud 99] was computed as a similarity measurement using the RGB image and
the amplitude image, which represents the ToF domain. NMI is derived from
information theory and computes the inherent dependence of two random vari-
ables and thereby allows to compute a similarity measurement between images
acquired from different modalities. A checkerboard representation of both input
images as depicted in Fig. .7/ shows qualitative improvements.

In a second part we evaluate the data fusion by measuring distances on our 3-D
reconstruction in the color domain and transferring those points into the ToF do-
main for distance computation. Compared to Field et al. [Fiel 09], the ToF surface
mesh does not rely on corresponding feature points in a stereo setup and there-
fore provides measurable points in a dense manner all over the observed scene.
Given a ground truth distance, e.g. the length of an endoscopic tool, we compare
the known length and the computed distance. This comparison was repeated for
30 successive frames acquired in a realistic medical scenario with a liver phantom
and endoscopic tools, see Fig.
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Figure 4.8: Measuring the length of the endoscopic tool in a realistic scenario. The
yellow line denotes the measured length. Left: Mapped RGB image. Right: Time-
of-Flight range image.

4.4 Evaluation and Discussion

Calibration Data The advantage of our multiscale approach is noticeable in the
rejection phase of Fig. On the last scale, our algorithm was able to detect
different patches compared to the first scale. Only choosing one of those scales
always leads to missing patches. In terms of marker identification, we achieved
an identification rate of 92.7% for the RGB images. The small improvement from
an identification rate of 92.3% in the single scale approach in is due to
the fact that almost all completely visible barcodes were identified using the con-
ventional approach. The residual were expert labeled barcodes that were only
partially visible and thereby not identified by our algorithm. In terms of the ToF
data, we improved the identification rate of the barcodes from 92.0% to
96.4% using our multiscale approach. Partially visible barcodes are less an issue
in the ToF images due to the fact that the expert was not able to identify those bar-
codes either. Note that all identified barcodes are verified beforehand. Therefore,
no erroneous identified barcodes are retained for calibration. As shown in Fig.
increasing the number of different views and thereby increasing the amount of
checkerboard corners improves the robustness of intrinsic parameter calibration.
Please note that 70 different views seems sufficient to result in a reliable calibration
output as all relative standard deviations were below 5%. For 30 repetitions using
70 images for calibration the mean reprojection error resulted in 0.63 px for the
ToF sensor and 0.49 px for the RGB sensor. The reprojection error allows a first in-
terpretation of the quality of the estimated parameters, where a high reprojection
error indicates that the parameters fit poorly to the input data. On the other hand,
a low reprojection error combined with a huge collection of input data indicates
high quality parameters. We managed to keep the reprojection error in subpixel
accuracy for all input data. Comparing the ToF results and the RGB results in
Fig. |4.9|leads to the conclusion that due to the higher SNR and the higher image
resolution the RGB sensor requires less calibration images for robust results.
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Figure 4.9: Plots of the mean and the standard deviation of the focal length (fy,,
fx,) and the principal point (cy,, cx,) for different number of checkerboard views
N. (a) and (b) illustrate the calibration output for Time-of-Flight data. (c) and (d)
illustrate the calibration output for RGB data.

Sensor Fusion As shown in Fig. the homographic mapping is independent
of the error-prone ToF range values and, therefore, is more reliable. The improved
results are noticeable along the border of the observed tool and at the corners of
the image where range data is usually less reliable due to inhomogeneous illumi-
nation. The NMI between the amplitude image and the raw RGB image resulted in
0.92. After stereo vision mapping it was improved to 0.93. With our homographic
transformation we achieved an NMI of 0.95. This leads to the conclusion that the
initial misalignment of both input images is not huge, but can be further improved
by our approach.

The tool tip measured as depicted in Fig.[4.8has a length of 20.0 mm. Averaging
the values using the range data for calculating this length resulted in a mean length
of 18.0mm with a standard deviation of 3.3mm. This accuracy enables rough
estimations within the human body. However, due to the early development stage
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of this ToF/RGB endoscope, the accuracy is not yet sufficient enough for assisting
surgeons during minimal invasive procedures, but it demonstrates the feasibility
of measurements with improved hardware.

4.5 Conclusion and Future Work

An easy-to-use calibration technique for hybrid ToF/RGB miniature devices was
presented and demonstrated for a 3-D endoscope. The evaluation has shown that
the estimated intrinsic and extrinsic parameters are reliable and that metric mea-
surements are possible in both the ToF and the RGB domain. The search for corre-
sponding feature points in data of different imaging sensors to estimate a relative
transformation was eased by utilizing a self-encoded marker with unique barcodes
and an automatic detection and identification scheme.

Further research needs to investigate if different calibration patterns, e.g. cir-
cles, are able to provide more reliable results. Furthermore, it should be analyzed
how the size of the barcodes influences the calibration accuracy.
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This chapter addresses the low SNR of ToF range data mentioned in Section
In image processing a variety of different approaches to reduce the noise level
of acquired data have been proposed. Local filtering, such as the bilateral filter
[Toma 98] or the guided filter [He 13], smooth the image while preserving edges.
Here, a pixel is denoised by analyzing the local neighborhood. Then, the filtered
pixel value is usually computed by a weighted average of the surrounded pixel
values with the weights controlling the smoothness along and across edges. As
each pixel can be calculated separately these local filters exhibit a fast computation
time if parallelized for GPGPU. Both the bilateral filter and the guided filter have
only few parameters, which eases their adaption to specific scenarios. Both tech-
niques have been applied to ToF range data [Lenz 13, Wasz 11b] and have shown
to reduce noise notably. In contrast to these preprocessing techniques based on
data of a single modality, our setups allow hybrid approaches, like it is shown in
[Kopf 07] for the joint bilateral filter. Here, high quality color information is uti-
lized to denoise low quality range data. Nevertheless, those methods only exploit
local structures to preserve image details while smoothing. However, repetitive
structures distributed over the entire image can be exploited to denoise measured
image data with a similar neighborhood.

Buades et al. [Buad 05, Buad 08] and Danielyan et al. [Dani 12] proposed nonlo-
cal filtering techniques, where similar neighborhoods all over the image are used
to denoise a specific region. Both approaches do not only try to find similar pixels
in the local neighborhood of a pixel, but identify same structures across the entire
image. A denoised pixel value can be computed by a weighted average of all other
image points, with the weights describing the similarity of the neighborhoods. Hu
et al. [Hu13] have compared nonlocal filtering techniques for range data. How-
ever, the low quality of ToF range data hinders a robust similarity measure.

35
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We introduce a hybrid approach for nonlocal filtering based on the example of
the nonlocal means (NLM) filter [Buad 08]]. Due to the low SNR of ToF range data,
mapped high quality RGB data is used to compute neighborhood similarities for
range data patches. Furthermore, the NLM filter was extended into the temporal
domain as published in [Lind 14] to utilize an entire sequence of range images for
turther denoising.

5.1 Nonlocal Means Filtering

Buades et al. [Buad 05] proposed the NLM filter for 2-D images as a denoising
technique that exploits the fact that in most scenarios similar structures appear all
over the image. Later, Schall et al. [Scha 07] applied the same technique on range
data and showed that nonlocal similarity measurements result in higher quality
range data than conventional local measurements, e.g. used in the bilateral filter.
Originally, the NLM filter was proposed for monochrome images, but can eas-
ily be calculated for multichannel images by applying the technique on each chan-
nel. Each intensity i at pixel position # in a monochrome image i is denoised by:

Z —w u,v) (5.1)

vew“

where w" denotes the search window around u# and w(u, v) defines the similarity
weight between the neighborhood around u and the neighborhood around v. k*
is a normalizing constant for each weight. The weights w(u, v) are computed by:

/
w(1,0) = exp <_% Z exp ( ||7;||2> i u+v _iv+v’|2) ) (5.2)

v'ew!

where /1 is the filtering parameter that limits the influence of both the pixel distance
and the intensity difference, ¢ is the standard deviation of the Gaussian kernel
and ' is the similarity window. The points v’ are relative offsets describing the
neighborhood of # and v, e.g. v/ € [-1,0,1] x [-1,0,1] for a 3 x 3 similarity
window. The normalizing constant is computed for the entire search window by:

=) w(uo). (5.3)

In Fig. 5.1 the NLM filter is illustrated for different pixels at a single time step t.

5.2 Hybrid Nonlocal Means Filtering

Schall et al. [Scha 07] have shown that directly applying a nonlocal filter on range
data notably increases its SNR and achieves better results compared to local bilat-
eral filtering [Toma 98]]. However, their experiments were based on data captured
with a laser and structured light scanner. In contrast, our setups have a very fast
acquisition time but due to the novelty of ToF devices show a rather low quality
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output. This leads to unreliable results by simply using Eq. for calculating
the weights necessary for averaging all pixels within the search window appropri-
ately. Noisy data might influence the filter output by pretending structures that
do not exist in ground truth data. Therefore, the NLM filter was extended in a
hybrid manner by using a more reliable data source for calculating the similarity
weights. In our endoscopic setup, in addition to the ToF data source we have ad-
ditional RGB information of higher resolution and higher quality available. Sim-
ilar to Huhle et al. [Huhl10], we calculate the similarity weight of corresponding
neighborhoods not only in the range domain but also in the grayscale converted
photometric domain. This is based on our texture mapping as described in Chap-
ter ll In minimally invasive procedures usually this is valid, as important struc-
tures that differ in the range domain, e.g. organ boundaries, are also clearly visible
in the color domain. As the pixel density of both color and range images differ by
a factor of ten we simply adopt the color data dimensions to the image resolu-
tion of the range data. Based on Eq. (5.1), this leads to the following equation for
denoising a range value iy at position # considering weights in both data sources:

A,

l?oF = Z wHYb(u’v)i:g)F’ (5.4)

vew"

where wy, denotes the hybrid similarity weight computed by:

1 1
Wiy (U, 0) = ocTaJToF(u,v) +(1- tx)TwRGB(u,v), (5.5)
kTOF kRGB

where k% . is calculated by Eq. with the intensity being replaced by the corre-
sponding range value iy;. Wy and wee denote the similarity weights computed
in the ToF domain and the color domain, respectively. The range reliability pa-
rameter « is chosen empirically and denotes the influence of the range similarity
weight wy,. For simplicity, the color weights in the grayscale converted image are
calculated equally to Eq. and in the range domain by:

1 AN .
W (,0) = exp <_E Y exp <_Ha#> e’ zf;”/|2> : (5.6)
v ew’
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Figure 5.1: Workflow of the NLM filter. Red denotes the search window, blue the
neighborhood of u# and green the neighborhood of other pixels within the search
window. The neighborhood in the middle shows a very high similarity with the
blue one which will result in a high weighting w(u, v1). The similarity of # and v,
is rather low which will result in a low weighting w(u, v).
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Figure 5.2: Workflow of the hybrid NLM filter. Red denotes the search window,
blue the neighborhood of u and green the neighborhood of other pixels within
the search window. The neighborhood in the middle shows a very high similarity
with the blue one which will result in a high weighting w(u, v1). The similarity of
u and v, is rather low which will result in a low weighting w(u, v;). All similarities
are computed in the ToF and RGB domain, simultaneously.

In a more general scenario, the similarity measurements can be replaced by any
other function and for color images in particular, could be a function considering
all three channels. Jingjing et al. [Dai13] published an article about multichannel
consideration in NLM.

In Fig. 5.2 the hybrid NLM filter is illustrated for different pixels for a single
time step tp. As calculations are performed in both domains the computational ef-
fort is increased. However, details not visible in the noisy ToF data can be induced
into the output range image by the higher quality color information. Nevertheless,
both the original NLM filter and the hybrid formulation need to have repetitive
structures within the search window to achieve satisfying results.

5.3 Multi-Frame Hybrid Nonlocal Means Filtering

In images obtained by cameras covering a wide field of view, repetitive structures
are a common feature. However, in the small field of view of endoscopic devices,
this is not always guaranteed. Therefore, we enhanced the hybrid nonlocal means
filter into the temporal domain. By extending the search window of similar struc-
tures from a single frame into a sequence of frames at different time steps, it is
ensured that at least the same scene point is seen several times. Due to the tem-
poral noise mentioned in Section 3.5 averaging corresponding pixels in a range
image sequence can already increase ToF data quality. However, as organs and en-
doscopic tools move during medical procedures, keeping the search window fixed
at a certain position for only 30 frames already means that motion is ignored for an
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Figure 5.3: Workflow of the temporal hybrid NLM filter. Red denotes the search
window, blue the neighborhood of the u and green the neighborhood of other pix-
els within the search window. In time step t; the tool has moved to a new position
within the current search window of ty. The search window for the upcoming time
step t; is now shifted to be centered around the most similar pixel @;. If the tool
moves outside the search window of t this shifts keep the relevant pixels available
for denoising i*.

entire second. Extending the search window by another dimension also leads to a
tremendous computational effort. To address the motion issue, we adopt the posi-
tion of the search window for a particular pixel for each frame by the relative offset
of the most similar pixel in the previous frame. This implicitly tracks the motion
for each scene point in the temporal domain. In a usual scenario most scene points
will be seen in most of the frames within the sequence. This leads to the feasibility
to rather denoise a particular pixel by its representation in other frames than by
similar but different pixels within one single image. As the most similar pixel in
the color domain and the ToF domain might be at different pixel positions at a sin-
gle time step in both domains, we have to introduce a consolidation step to merge
both results. Therefore, w,,, in Eq. is substituted by Eq. and expanded.
Furthermore, the weighted average is not computed across the search window w,
but across an image sequence of T frames, where f is the current frame and ¢, are
the previous frames. The denoised range value is computed by:

T
1
Z ww W, B i + (1 — &) 2 Wacn (1, iy )i ioment, (5.7)

= ToF RGB

where ¥ denotes the point v with the most similar neighborhood «w’ within the
search window w at time step t compared to w’ around u at time step #(. This point
should describe the same point at different time steps and thereby allows tempo-
ral averaging without the issue of motion artifacts. Even if a point appears for the
first time, it will at least be denoised by averaging points in a similar structure. The
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Table 5.1: Influence of the different pa-  3s
rameters. For each parameter test all

other parameters were kept fixed at the Figure 5.4: Boxplot of 10 evaluation se-
optimal output of the grid search. These quences. It shows the mean absolute
numbers are only a subset of the grid difference of the intensities between
search results to show that the parame- the ground truth data and the input
ters only have little influence on the out- data (Input), the output of the con-
putif not set to extreme values. The error ventional NLM filter, the output of the
is given in mm describing the mean ab- hybrid nonlocal means (H-NLM) filter
solute differences of the intensities in the and the output of the multi-frame hy-
filter output and the ground truth data. ~ brid nonlocal means (M-H-NLM).

Input NLM H-NLM M-H-NLM

weightings wyq; and wy,; are calculated according to Eq. and Eq. (5.6). Apply-
ing this technique in a sliding window allows denoising in a continuous way. In
contrary to the single-frame approaches described in Section 5.Tjand Section[5.2in
the temporal extension the size of the search window w can be set to a rather low
value as it only needs to cover the shift of pixels within two time steps.

5.4 Evaluation and Discussion

For evaluating the different variations of the NLM filter on ToF range data, we di-
vided our experiments into two groups. For qualitative evaluation on real data we
acquired ToF and RGB data of a porcine liver in a box that imitated the abdominal
cavity with the hybrid 3-D endoscope introduced in Section For qualitative
and quantitative evaluations in a controlled environment we created 11 scenar-
ios with the range image simulator described in Section [3.6/and applied all three
techniques to denoise the simulated low quality ToF range images. The synthetic
range image results were then compared to ground truth input data to calculate
absolute errors. Random motion of the camera was used to simulate movements
of the endoscope held by a surgeon for the sequence required in the multi-frame
hybrid NLM filter. To find optimal parameters, a grid search was applied con-
sidering all parameters on the first simulated dataset. The first dataset was then
excluded from further evaluations. The grid search was performed on the original
NLM filter and on the hybrid NLM as the best parameters might change consider-
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(a) RGB Input (b) ToF Input (c) Ground Truth

(d) NLM (e) H-NLM (f) M-H-NLM

Figure 5.5: A synthetic scene (S2) without defect range data induced by specular
reflections. The first row shows the color input data, the range input data and
the ground truth data. The second row illustrates the output of the original NLM
filter (d), the output of the single-frame hybrid NLM filter (e) and the output of
the multi-frame hybrid NLM filter (f).

ing similarity calculations in the color domain. The obtained optimal parameters
were then kept fixed for all other datasets. To show the influence of each parame-
ter in the hybrid and the multi-frame hybrid NLM filter Table 5.1| shows a subset
of the grid search results for different parameter combinations. The relevant pa-
rameter varies within a realistic interval and the other parameters were kept fixed
at their optimal value. The optimal values for the hybrid approaches are h = 0.2,
« = 0, 0 = 2.1. The optimal size of the search window w is 11 x 11 and of the
neighborhood w’ is 11 x 11. Note that setting the reliability of the range sensor to
« > 0 increases the mean error. This shows that the current quality of the input
range images is not sufficient for detecting similar neighborhoods. But with in-
creasing progress in sensor development « might increase. Considering Eq.
to Eq. (5.7) show that in comparison to most local filters, e.g. the bilateral filter, the
quantity of parameters in the NLM filter hardens the optimization for different
applications. However, for our medical application the parameters have shown to
be easy to adjust due to their rather small influence on the mean absolute error.

Considering 10 different simulated scenarios the mean of all absolute errors
when compared to ground truth data was 7.58 mm for the raw input data. Apply-
ing the conventional NLM filter reduced the error only to 7.56 mm due to the low
SNR of the ToF range data. The hybrid approach reduced further it to 6.39 mm and
with the extension into the temporal domain the mean of all absolute errors was
6.06 mm. In Fig. 5.4 we also evaluated the output by comparing the original NLM
filter, the hybrid and the multi-frame hybrid approach to the raw input data. Here,
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(a) RGB Input (b) ToF Input (c) Ground Truth

(d) NLM (e) H-NLM () M-H-NLM

Figure 5.6: A synthetic scene (S2) with defect range data induced by specular re-
flections. The first row shows the color input data, the range input data and the
ground truth data. The second row illustrates the output of the original NLM fil-
ter (d), the output of the single-frame hybrid NLM filter (e) and the output of the
multi-frame hybrid NLM filter (f).

the mean absolute errors of all 10 evaluation datasets were taken into account to
compute boxplots for all approaches. Note that the multi-frame hybrid NLM filter
achieved the lowest error across all datasets. Fig.[5.5/and Fig.|5.6{show one dataset
for qualitative comparison. Although, the hybrid NLM results seem smoother, this
technique also provokes more artifacts and copies the specular highlight visible in
the color domain into the range domain. This issue is most notably in the dataset,
where the specular highlight is only visible in the color domain. Note that pix-
els with defect range data induced by specular reflections are tracked and thereby
will stay defect in all NLM filter variations. For qualitative evaluation on real data
we reconstructed two datasets of porcine organs measured by our ToF/RGB en-
doscope prototype. One scene was composed with endoscopic instruments and
one showed the porcine organs only, see Fig.[5.7/and Fig. Note that smooth-
ness was better when applying the hybrid NLM filter, but the temporal approach
exhibits less artifacts induced by copying texture information into the final range
image, e.g. shadow of the tool in the first sequence and smoothness between the
background and an organ in the second scenario. We used a sequence length of
30 frames to have a realistic acquisition time of one second. The conventional and
hybrid NLM filter were able to have an increased search window which results
in a huge amount of pixels considered for denoising. Increasing the amount of
pixels in the temporal approach would mean to extend the sequence. Therefore,
please consider that a direct comparison of the hybrid NLM and the temporal hy-
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(a) ToF Input (b) H-NLM (c) M-H-NLM

(d) ToF Input 3-D (e) H-NLM 3-D (f) M-H-NLM 3-D

Figure 5.7: Real data results of the hybrid and multi-frame hybrid NLM filter.
(a) and (d) show the raw input range images, (b) and (e) show the output of the
single-frame hybrid NLM filter and (c) and (f) show the output of the multi-frame
NLM approach. The red arrow marks a texture issue of the single-frame hybrid
approach, i.e. shadows are copied into the range domain.

brid NLM is only marginally feasibly as the latter one is a multi-frame approach
in contrary to the single-frame hybrid NLM.

5.5 Conclusion and Future Work

This chapter has described a hybrid nonlocal filtering technique for denoising low
quality ToF range images using the example of the NLM filter. Instead of analyzing
neighborhood similarities in the range domain, we have measured the similarity
in the high quality color images and used this information to increase the SNR of
the range data. Furthermore, a multi-frame extension was introduced using pixel
tracking that allowed averaging of image sequences without having to deal with
motion artifacts. Both NLM variations showed improved data quality in compar-
ison to noisy input data and to the naive NLM filter.

Regarding the NLM filter for range images, future work should evaluate if
combining the multi-frame approach with the conventional single-frame NLM fil-
ter could build an improved denoising technique. Furthermore, different sensors
should be evaluated, where the range sensor reliability can be taken into account.
Nonlocal filters in general should be compared for ToF and hybrid ToF setups.
Here, the BM3D is of great interest as it combines the correlations of
different neighborhoods known from NLM filters with the correlations within a
neighborhood known from wavelet shrinkage [Bals 05]. Nevertheless, for all hy-



44 Hybrid Nonlocal Means Filtering

(a) ToF Input (b) H-NLM (c) M-H-NLM

(d) ToF Input 3-D (e) H-NLM 3-D (f M-H-NLM 3-D

Figure 5.8: Real data results of the hybrid and multi-frame hybrid NLM filter. (a)
and (d) show the raw input range images, (b) and (e) show the output of the single-
frame hybrid NLM filter and (c) and (f) show the output of the multi-frame NLM
approach. The red arrow marks a texture issues of the single-frame hybrid ap-
proach, i.e. smoothness in the color domain is transferred into the range domain,
where an organ and the background should be strictly differentiated.

brid preprocessing it is highly recommended to analyze the correlation of both
sensor data beforehand. Often color and range data exhibit similar structures,
similar edges and smooth regions. However, specular highlights, strong vessels or
blood flow might create distinctive photometric features that should not be trans-
ferred into the range image. Therefore, it is advisable to inspect corresponding
patches of color and range data by a data independent similarity measurement,
e.g. the normalized mutual information [Stud 99]. Then it is possible to adapt the
sensor reliability based on the correlation of both datasets. This allows to take
high quality color images into account, where similar structures are visible, and to
prevent copying incorrect photometric structures.
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This chapter addresses the low SNR of ToF range data mentioned in Section
and improves the low image resolution as described in Section simultane-
ously. A joint framework to increase ToF range image resolution and increase the
data quality has been introduced by Park et al. [Park 11]. Although, their results
were quite convincing, this approach was composed by several separate steps in-
cluding color data segmentation and a NLM term. Therefore, we decided to solve
both issues in a joint super-resolution framework. Multi-frame super-resolution
methods recover a HR image from a sequence of LR frames with known sub-
pixel displacements [Park 03]. Compared to single image upsampling, such tech-
niques also increase the SNR and preserve edges essential for noisy range data.
Approaches for color images were also adopted to ToF imaging [Schu(09]. For
super-resolution in general and ToF range data in particular, accurate estimation
of subpixel displacements is a challenging task to be solved before applying any
super-resolution technique [Fars 04]. In literature, several robust methods were
proposed [Tipp 03, Fran 07]. Here, super-resolution and motion estimation are for-
mulated as joint optimization which is computationally demanding [Fran 07] or
restricted to simplified motion models such as rigid motion [Tipp 03] being an in-
valid assumption for the medical applications considered in this work.

In this chapter a novel super-resolution framework for range data acquired in
the multi-sensor setup described in Section 3.6|is introduced. Movements of the
3-D endoscope held by the surgeon are used as a cue for super-resolution. Our
approach is based on sensor fusion of complementary RGB and range data, which
is described in Chapter ] Motion is estimated by computing optical flow on RGB
data to obtain accurate displacements for range images as published in [Kohl 13].
This novelty of our method enables robust motion estimation without computa-
tionally demanding joint optimization whereas optical flow avoids restrictions of
simplified models essential for realistic laparoscopic scenes.

45
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6.1 Maximum A-Posteriori Framework

For this chapter a single LR image i with intensities i at time step ¢ from a sequence
of T frames is denoted as vector i; € RM with M = M, - M by concatenating all
pixels. Each i; is related to a reference frame i, by a geometric transformation
modeling 3-D displacements. The goal of super-resolution is to determine an HR
range image i'* € RN, N = s2- M from T LR frames in Sequence Q for the magni-
fication factor s € RN

As published in [Park 03], the MAP framework is based on a generative image
model, which describes the image acquisition in mathematical terms. To recover
an HR image, super-resolution is implemented by energy minimization based on
this generative model.

6.1.1 Generative Image Model

To obtain the HR image i, the relation to each LR frame i; at time step ¢t is de-
scribed by the generative image model according to:

it = WfiHR + €. (61)

The system matrix W; covers the following three deformation. First, the geometric
displacements between i"* and i; is modeled. Second, blur induced by the camera
point spread function (PSF) is described. Third, downsampling of the HR image to
its LR representation is covered. Additionally, spatially invariant noise is modeled
by €; € RM. For a space invariant Gaussian PSF of width ¢, the matrix elements

are obtained by:
2
vy — U,

where v, € R? are the coordinates of the n'" pixel in i"™® and u), € R? are the
coordinates of the m" pixel in i; mapped to the HR grid [Tipp 03]. To be efficient

in terms of memory management, we truncate Wy, for ||v, — u;n||§ > 3c0. The
algorithm shown in Section gives further details on the parameterization of
this model for range image super-resolution.

6.1.2 MAP Estimator

For the MAP estimation 7™ of the HR image i'%, a data term and a regularizer
weighted by A > 0 is required:

T N
i = arg min (; i — Wa™|[3 + A Zlhr ((DiHR)n)> , (6.3)
= n=

where D is a high-pass filter and /. is the pseudo Huber loss function [Hube 64]
used for regularization and described by:

he(z) = T2(y/1+ (2/7)2 = 1). (6.4)
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Algorithm 6.1 hybrid super-resolution (HSR)

Input: Range data it,rs € Q, RGB data igrgp s, reference frame with ref = [T /2]

Output: Super-resolved range image i;'x

fort=1...T do

iRGB,t = Fuse(iToF/tl iRGB,t) > see Chapter @

Wres (Urep) = OpticalFlow (ixcs, Traprer)

wToF(uToF) = A( (ll * Wrea, (uRGB) lz . wRGB/z(MRGB)) T) > see Eq 1@’

W; := ComposeSystemMatrixX(wrs (11, )) > see Eq. (6.2

V¥ vt = MSAC (i e, WArp(inosy, Wror (trer))) > see Section
iy, = BicubicUpsampling(ir...) > initial guess
i = SCG(i,, {inw}, AW}, {07, 71D > see Eq.

To enforce smoothness for the HR image i™, D is chosen to ba a Laplacian. Since
the regularizer is based on the Huber function, it penalizes outliers less strictly
and thereby preserves edges more reliable compared to a Tikhonov regularization
[Tikh 77] using the L, norm.

6.2 Hybrid Super-Resolution

As introduced in Section |6.1| for intensity images, for the hybrid ToF/RGB setup
we denote iy and iy as vectors of concatenated color and range pixels, respec-
tively. In our framework, each iy, is aligned to i, after sensor fusion as described
in Chapter |4, Motion estimation is performed on the sequence of color images by
employing optical flow and the displacement fields are projected to the range im-
age domain to compose all system matrices W;. We obtain i'® by minimizing the
refined version of Eq. as described in Eq. using scaled conjugate gradi-
ents (SCG) optimization [Nabn 02] with a bicubic upsampled version of reference
frame i, coincident with f?(}; as initial guess. See Algorithmfor further details
on our approach.

6.2.1 Range Image Registration

Based on optical flow, we determine displacement vector fields wggs : Qres — R?
between a reference frame iy« and every other frame of the image sequence Q.
For each pixel u; the displacement vector wyes(#ycs) is given by:

Wrcs (uRGB) = (wRGB,l (uRGB ) s Wrea» (uRGB) ) T (6-5)

This transforms each point #¢; from a color image ixqg, of time step t to its posi-
tion u}, in the reference image iz, according to )., = Mpes + Wres(Ures). The
central frame ipg, With ref = [T/2] is chosen as reference to minimize the ex-
pected displacements between g, and ixcs, for robust flow estimation. Opti-
cal flow is computed in a course-to-fine manner using the method proposed by

Liu [Liu09]. After estimating a displacement vector field wyg; in the color domain,
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it is transformed into the range domain to obtain the range displacement vector
field wry : Qpr — R2 by:

wToF(uToF) =A (ll : wRGB,l(uRGB) I - wRGB,2(uRGB))T . (6.6)

Here, A : R> — R? describes the resampling operator. It is implemented as the
median of corresponding displacement vectors wyg; in both coordinate directions.
To obtain wy, in the dimension of range data, rescaling by I, with 0 < [, < 1, is
required, where I, denotes the ratio of resolutions between i, and iygs,. After this
registration step, we follow Eq. to compose the system matrix for each frame.

6.2.2 Range Correction

As the 3-D movements of the endoscope also include out-of-plane translations, the
successive acquired range images show an offset due to the distance measurement.
Former super-resolution approaches, such as [Schu 09], have neglected this effect
and thereby reconstruct less reliable images in our scenarios. However, since this
is comparable to the fusion of intensity images with different illumination, we
adopt a photometric registration scheme to correct the range values. With the
assumption that the frames are geometrically aligned by warping them according
to the precomputed optical flow displacement vector field, we denote iy, as a
range value in reference frame i, and iy, as the corresponding range value at
another time step t. This corresponding range value is then computed according
to the affine model irr, = Y™ + Tgopres + V-

An M-estimator sample consensus (MSAC) [Torr 00] is utilized for robust esti-
mation of 7™ and ¢” as suggested by Capel [Cape 04] for photometric registration.
These parameters are plugged into the generative image model for «}" and
7v{. For the reference iy, we set 7y ;= 1 and v}, ;= 0 to obtain a super-resolved
image having the same measurement range as the reference frame. Including both
correction parameters ¢ and " in Eq. results in:

Tpore = ')’;nwtiHR + ')’?1 + €¢. (6.7)

The objective function Eq. applied on range data is then extended into:

T N
iy = argmin (Z [lings — VWit — 1[5+ A Y b ((Di?oi)n)) : (6.8)
ToF =1 n=

1

The minimization problem is then solved using an SCG optimization framework.

6.3 Evaluation and Discussion

Our HSR technique is compared to the conventional single-sensor super-resolution
(SSR) approach where optical flow is estimated on range data directly. The PSF
width was set to o = 0.5 and for regularization using the Huber function we set
A =50and T = 5- 103 determined empirically. SCG was used with termination
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Figure 6.1: (a) shows the absolute error of the entire image in dependency of the
regularizer weight A. (b) shows a boxplot of the absolute errors for all 10 evalua-
tions sequences.

tolerance 1073 for pixels of i and the objective function value. The maximum
iteration number was set to 50. Super-resolution was applied with magnification

s = 4 using T = 30 frames (29 template and one reference frame).

For computing reliable and repeatable quantitative results we used the range
image simulator described in Section Each LR frame is a downsampled ver-
sion of the HR ground truth data and disturbed by a Gaussian PSF and by additive,
zero-mean, Gaussian noise. Random motion of the camera was used to simulate
movements of the endoscope held by a surgeon. Small displacements of endo-
scopic tools and organs simulated minimally invasive surgery, see Section As
quality metric we employed the mean absolute error. See Fig. for comparison
of absolute error measures averaged over ten sequences. Applying conventional
super-resolution the mean absolute error over all sequences was improved from
748 mm to 6.88 mm. With our proposed multi-sensor we reduced the error fur-
ther to 6.58 mm. Fig. evaluates the mean absolute error for the training set
with different values for the regularizer weight A. Note that any value between
20 and 100 seems to be reasonable. For qualitative evaluation on the synthetic
datasets, Fig.|6.2|and Fig. |6.3| show the output of the single-sensor and the multi-
sensor super-resolution as well as the input data. The organ boundaries in general
and the endoscopic tools in particular are better reconstruct in the multi-sensor
approach due to the improved registration.

For evaluation on real datasets, we used the same datasets as in Section 5.4
The results are illustrated in Fig. 0.4/ and Fig. Note that the trade-off between
smoothness and preserving edges is improved in our hybrid approach. The endo-
scopic tool as well as organ boundaries are reconstructed more accurately.
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: iy
(a) RGB Input (b) ToF Input (c) Ground Truth

Lo LA

Figure 6.2: A synthetic scene with realistic lighting and texture information. (a),
(b) and (c) show the color input data, the range input data and the ground truth
data. (d) shows the output of the SSR and (e) shows the output of the HSR.

(a) RGB Input (b) ToF Input (c) Ground Truth

(d)SSR ] (e)HSR

Figure 6.3: These images show the same data as described in Fig. but with
defect range values induced by specular highlights. Note that both approaches
suffer from this issue as the specular highlights are visible in both RGB and ToF
data.
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(b) SSR o (c) HSR

(d) ToF Input 3-D (e) SSR 3-D (f) HSR 3-D

Figure 6.4: Real data results of the single-sensor super-resolution and the multi-
sensor super-resolution. (a) and (d) show the raw input range images, (b) and
(e) show the output of the single-sensor super-resolution and (c) and (f) show the
output of the multi-sensor super-resolution. The red arrow marks a registration
issue of the single-sensor approach, which causes the endoscopic tool to be recon-
structed poorly.

6.4 Conclusion and Future Work

This chapter introduced a novel super-resolution framework designed for multi-
sensor setups. In our experiments we increased the SNR and the image resolution
of ToF range data. The approach was evaluated on range data of realistic synthetic
scenarios and real data of porcine organs acquired with a ToF/RGB endoscope.
The crucial task of image registration is solved in the color domain, where high
resolution and more reliable data is available. This allows a more accurate mo-
tion estimation compared to the error-prone range image registration. Due to a
direct mapping of both sensor data, we used the registration output of the HR
color images for the super-resolution framework applied on range data. The re-
sults showed improved image resolution and higher quality range data. Details
hardly visible in the raw input range data were reconstructed in the output while
reducing the noise, simultaneously.

Future work should analyze possibilities to use the HR color images for reg-
ularization in the super-resolution framework. Additional structures only visible
in the color images could help to prevent smoothing across edges and keep de-
tails that are not visible in the raw low-resolution range data. Furthermore, the
optical flow output needs to be verified and could be improved by a reliability
term. In some cases, e.g. if blood flows over an organ, optical flow applied on
the color data might result in wrong transformation estimations. Further work on
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(a) ToF Input (b) SSR o (c) HSR

(d) ToF Input 3-D (e) SSR 3-D (f) HSR 3-D

Figure 6.5: Real data results of the single-sensor super-resolution and the multi-
sensor super-resolution. (a) and (d) show the raw input range images, (b) and
(e) show the output of the single-sensor super-resolution and (c) and (f) show the
output of the multi-sensor super-resolution. The red arrow marks a registration
issues of the single-sensor approach, which blurs an edge induced by a organ and
the background that should be strictly differentiated.

multi-sensor super-resolution was published by Kohler et al. [Koeh 14a, Koeh 14b]].
Furthermore, real-time capability needs to be investigated. First results for super-
resolution on the GPU were already published by Wetzl et al. [Wetz 13].
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Specular highlights are common issues in laparoscopic images [Arno 10]. These ar-
eas provide no information as the majority of the light emitted by the light source is
directly reflected at the surface. This saturates the sensor pixels at those areas and
thereby only white intensity information is acquired. As described in Section
range sensors in general and ToF sensors in particular are equally error-prone to
those effects. Specular highlights usually appear at round objects and mirror-like
surfaces, as it is seen on wet organs in the abdominal cavity.

In color images specular highlights are characterized in the HSV color space
by low saturation and high value intensities whereas in ToF based range images
those areas show incorrect or missing measurements, see Fig. Different ap-
proaches for specular reflection removal have been proposed [Arno 10, Grge 01,
Stoy 05, Xu 10, Wasz11a]. A method for conventional endoscopy proposed by
Arnold et al. [Arno 10] uses an inpainting technique based on a normalized convo-
lution [Knut 93]. Groger et al. [Grge 01]] reconstructed image structures by employ-
ing anisotropic diffusion. Stoyanov et al. [Stoy 05] published an approach based on
temporal registration. However, as there is no evidence that replacing specular re-
flections in color images improves the impression for surgeons, our approach only
tackles the problem of replacing invalid range information. Satisfying interpola-
tion results for defect pixel restoration in range image were published by Wasza et
al. [Wasz 11al]. However, interpolation techniques suffer from missing information
in the defect regions. Therefore, Xu et al. [Xu 10] described an approach where two
images from slightly different points of view are registered using SURF matching.
Then, specular reflections of the first view are replaced by non specular areas in
the second view based on global intensity adjustment of both images. However,
this global approach suffers from misaligned edges after image registration. Espe-
cially in our medical application, the camera movement is not controllable which
might result in structures reconstructed at wrong positions.

This chapter is based on [Haas 14] and describes a combination [Xu10] and
[Arno 10]. The registration in [Xu 10] is extended by a robust patch based approach
and the global intensity correction is replaced by a local adjustment. Then spec-
ular reflections in a range image are replaced by non specular pixels of another

53
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(b)

Figure 7.1: Workflow of our mask images. (a) shows the two different color input
frames ipcs; and iggs,, (b) denotes the two highlight patches after registration, (c)
shows the direct result of Eq. (7.2), (d) denotes the result after applying morpho-
logical opening and closing, (e) shows the margin for Section

view. Remaining defect data will be interpolated using normalized convolution
[Knut93]. In comparison to conventional interpolation techniques, our approach
is able to recover structures that are completely marked as invalid in a single range
image.

7.1 Specular Highlight Detection

Specular reflections are detected in the color images by analyzing the color com-
ponents in the HSV color space. Hue represents the color, which is not of further
importance for our application. The saturation intensity is denoted by iZ,. The
value intensity is denoted by il}, and describes the brightness. Value and satura-
tion intensities are given by:

il =1-— mmin(i?,i@,i]’j) and 1, = max(i},ig, 1Y), (7.1)
with min(i¥, i#,i*) and max(i¥,i,i*) denoting the minimal and maximal intensity
of the three color channels red, green and blue. Specular reflections typically show
a low saturation and a high value intensity. We apply the reflection detection pro-
posed by Zimmermann-Moreno et al. [Zimm 06] by marking all pixel positions u
as specular reflections according to:

M = 1/ ! i;’at <ua- l:[snaix A i\l/lal > AB ' l@\alx (7 2)
Mask 0, else ! ’

where i and 73 denote the maximal intensity in the saturation and the value
channel, respectively. i¥ and i}, are given by Eq. (7.1). As this techniques leads
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to fuzzy segmentation boundaries, morphological operations such as opening and
closing are subsequently applied to the reflection masks to ensure that all reflec-
tions are covered completely and noise is removed, see Fig.

7.2 Specular Highlight Removal

Similar to the NLM filter described in Chapter |5 this section describes a single-
frame and a novel multi-frame approach to replace invalid information in range
images corrupted by specular highlights. First, a single-frame approach is de-
scribed as proposed by Arnold et al. [Arno 10] for endoscopic interventions and
proposed by Wasza et al. [Wasz 11a] for medical range data. Second, a novel multi-
frame approach is introduced as proposed in [Haas 14].

7.2.1 Single-Frame Defect Pixel Interpolation

Knutsson et al. [Knut93] proposed the normalized convolution (NC) as an inter-
polation technique, to smear valid neighborhood information into invalid regions.
An output pixel of the NC is computed by:

"2 . ) ,
u Zv’Ew’ exp(— HZZHZ)O - lht/l[ask)lu+v
e = B -
ZU/E(UI exp(_ 0—2 )(1 - ll\l//l[ask)

where 7}, is calculated by Eq. and denotes whether a pixel u is part of a
specular highlight. Similar to the NLM v’ describes the relative pixel offsets in the
neighborhood. The final output of the normalized convolution replaces invalid
pixels with the output of the NC by:

, (7.3)

izc = (1 - ili\lllask)iu + il\lflaskizC' (74)

7.2.2 Multi-Frame Defect Area Restoration

Hybrid range imaging in minimally invasive procedures, e.g. by a 3-D endoscope,
is usually embedded in a workflow, where the device is moved within the ab-
dominal cavity. This induces that a sequence of images is acquired from different
perspectives. Similar to Chapter |6} this section describes a correction technique for
specular highlights, where multiple frames are fused to restore a range image.

Matching Two Range Image Patches

Endoscopic ToF images suffer from a high noise level. Therefore, a direct regis-
tration of two range images iy, and i, is not feasible. However, as we have
corresponding high quality photometric color information ixgs, and iggs,, We esti-
mate the transformation in the RGB domain. Due to the homographic alignment
between the range images and corresponding color images, a local transformation
between ixgs; and iz, can be mapped directly to the range image domain similar
to the registration process in Chapter |6} As proposed in [Xu10] we use a feature
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based registration approach as conventional optical flow techniques would try to
match the specular reflections. Our technique calculates SURF in both images and
detects corresponding points in both views [Bay 06]. The SURF detector is inspired
by SIFT but is more robust and faster to compute by the use of integral images. The
feature description is based on 2-D Haar wavelet responses. To reject erroneous
matching feature points we apply the hierarchical multi-affine algorithm proposed
by Puerto-Souza et al. [Puer13]. This approach estimates different transforma-
tions by including different clusters of feature points randomly sampled by means
of random sampling and consensus (RANSAC) [Fisc 81]]. All clustered correspon-
dences that result in a similar transformation are then included into the final point
correspondence dataset. Based on this feature matching an affine transformation
is estimated. However, an affine transformation is often only an unsatisfying esti-
mation of the actual motion, the proposed approach improves the concept of Xu et
al. [Xu10] to feature a more robust registration. This is achieved by only estimat-
ing local transformations and by analyzing and restoring each specular highlight
by a patch with an edge length three times the size of the highlight’s bounding box
in each dimension. These individual patches can be computed by different tech-
niques after computing the binary mask according to Eq. (7.2), e.g. by a connected
component analysis [Same 88] or clustering techniques such as k-means clustering
[Hart79].

Range Correction

To cope with different range values in iy, and i, after registration due to view-
point changes, e.g. out-of-plane movements, a correction of range values is manda-
tory, see Section[6.2.2l We extend the global intensity correction proposed in [Xu 10]
by correcting each non specular region in i, locally. Here, we consider a margin
of the specular reflection that is computed by dilating the reflection mask and then
subtracting the original reflection mask, see Fig. This margin contains the
range data closest to the defect area that is not part of a specular highlight in both
views. To achieve a smooth transition between the content of i, and the replaced
regions of iy, we correct each pixel in iy, by:

. Y w(u,0) (i, —ity,), (7.5)

A . S S—
Loemw(u,v) /5y

ToE2

where M is the set of all margin pixels and w(u, v) is a weight that takes the dis-
tance of a margin pixel at position v to the pixel position u into account. The
weights are thereby derived by:

[|u — o3

), (7.6)

where ¢ controls the influence of the distance as a weight.

w(u,v) = exp(— 2

Reflection Restoration

In a final step we replace all specular reflection in #,,;; by non specular correspond-
ing areas in iy, based on the previously estimated transformation and on range
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u

correction as proposed in the previous paragraphs. The restored range value iy .

at pixel position u is given by:
‘U _ ‘U U ‘U ‘U
Lok = (1 - lMask,l)lToF,l  Dyase1 Fror2 - (7.7)

Depending on the viewpoint this may result in remaining pixels that are marked as
reflections in both images. Thereupon, a last mask image with if; . =iy} iV ., is
calculated. This mask image serves as input to replace the remaining defect pixels
with a version of i% ., where the defect areas are interpolated by the normalized

convolution, see Eq. (7.3). Therefore, the final output is given by:

i]IiF,l = (1 - iII;l/[ask,l’)i"lt::F,l' + iI\IfIaSk,l’i!l:i)F,l’,NC’ (7'8)
where i . . denotes the range value obtained from the normalized convolution
applied on the corrected range image i, obtained according to Eq. (7.7).

7.3 Evaluation and Discussion

The proposed method was evaluated on synthetic datasets acquired with the range
device simulator introduced in Section Based on ground truth data, absolute
distance errors were calculated and qualitative results are given. To evaluate our
approach only in terms of invalid range data, the simulator created perfect low
resolution range images solely corrupted by specular highlights. For real data sce-
narios, we used the 3-D endoscope described in Section However, due to the
early prototype status of this device quantitative evaluations are not yet feasible
on real data. In terms of patch computation, we dealt with typical simplified sce-
narios, where only a single specular highlight was detectable.

In Fig. [7.2l we compare the absolute errors between a conventional interpola-
tion technique and our approach. Here, 10 common datasets and four challenging
datasets, i.e. range images where important structures are covered by specular
highlights, are evaluated. Note that in three of the four challenging cases our ap-
proach was able to restore the important structure, see Fig. The higher error in
dataset 513, was induced by a poor registration of both views. Overall, the error is
reduced in 13 of the 14 datasets. In the common scenarios, the mean absolute error
across all datasets was reduced from 0.45 mm using a normalized convolution to
0.30 mm using our approach. Regarding the mean absolute error in dataset S14
the error was reduced from 2.2 mm to 0.7 mm. Qualitative results for real data are
depicted in Fig.[7.4|that shows two 3-D meshes overlaid with RGB information be-
fore and after applying an NC interpolation and our restoration technique. In both
cases the spikes of the raw input data were reduced by applying the defect pixel
restoration. Due to the low SNR of the acquired data of the current prototype no
notable difference between both restoration techniques is observable. However,
the synthetic results show that our approach will be beneficial when data quality
will improve.
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Figure 7.2: Boxplots for the pixelwise absolute error in the specular region consid-
ering synthetic data: 10 conventional datasets (left) and four challenging datasets
(right). Note that only in dataset S13 our approach failed due to a poor registration
of the affected image patches.

7.4 Conclusion and Future Work

This chapter has presented a novel technique to restore valid range data in invalid
regions caused by specular highlights. As proposed in [Haas 14] we apply a patch
based registration for each highlight and fuse valid information of different view-
points into the current view. We have shown that our approach outperforms con-
ventional interpolation in 13 of our 14 datasets. In one dataset a poor registration
led to a higher mean absolute error in comparison to an interpolation approach. In
other challenging scenarios we restored important structures where conventional
interpolation lost the information due to its single frame concept.

Future work has to cover an evaluation on more datasets to show benefits in
other scenarios, e.g. a surgical cut in the organ that is covered by a reflection. Ad-
ditionally we have to investigate the behavior in the presence of laparoscopic tools.
For real-time requirements in a medical environment the framework has to be par-
allelized using GPGPU. In particular, the computational expensive registration can
be parallelized. The individual steps of the workflow could also be replaced, e.g.
the feature detection or the range correction, and should be evaluated for the best
outcome.
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Figure 7.3: The four rows show the challenging datasets of Fig. In the first
dataset, a specular highlight covered a simulated polyp. The second and fourth
dataset show highlights near organ boundaries. In the third scenario the highlight
covers a rather smooth and homogeneous areas, which hardens the registration
process.
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(c) Final Output (d) Final Output

Figure 7.4: Two real ex-vivo datasets. (a) and (b) show both 3-D reconstructions of
the raw input data. (c) and (d) show the output after specular highlight removal.
Black areas inside the surface shows regions where no valid information is given
by the sensor.



Part 111

Applications in Abdominal Surgery

61






CHAPTER 8

Collision Avoidance

8.1 Time-of-Flight Guidance Module. . ........................ 64
8.2 Workflow Integration . ............ ... ... ... . ... ....... 65]
8.3 Evaluation and Discussion . ............................. 66l
8.4 Conclusionand Future Work. . . ........ ... ... .. ........... 671

After addressing the data issues of range imaging in minimally invasive proce-
dures, this chapter describes the first application to assist surgeons in endoscopic
interventions. In conventional minimally invasive procedures instruments and en-
doscopes are navigated by a surgeon and his team. Especially during long inter-
ventions this includes the risk of a jitter as an additional source of error and leads
to unstable blurry images during the intervention. By erroneous navigation of in-
struments or the endoscope the surgeon may harm surrounding healthy tissue. To
compensate for the issue of jitters robotic assistance systems have been proposed
to allow indirect navigation by the use of joysticks [Hart 09, [Aion 02 Pole 08]. Al-
though, jitters are avoided by these systems, navigation with the joystick is even
less intuitive. Hence, for direct and indirect navigation the problem of erroneous
movements caused by misinterpreted images and an insufficient field of view re-
mains. The avoidance of risk situations in minimally invasive procedures has been
addressed by several research groups [Spei(8, Haas 13e]. Speidel et al. propose
an approach using a stereo endoscope and a knowledge representation system
[Spei08]. The endoscopic tools are tracked in 2-D and located in 3-D. Based on the
defined logic the surgeon is warned in case of any risk situations. In [Haas 13e]
Haase et al. describe a 3-D tool localization algorithm based on a ToF/RGB en-
doscope that holds potential for avoidance of risk situations using 3-D metric in-
formation. Nevertheless, both approaches require a specific 3-D endoscope and a
learning phase for interpreting the additional information.

Our approach is published in [Haas 13¢] and integrates seamlessly into the cur-
rent workflow without the need of expensive hardware and any further learning
phase concerning new software. We propose a supervision module for any robotic
endoscope holder that keeps a safety margin between the endoscope and the oper-
ation site by extending or retracting a telescope that is directly attached to the en-
doscope. The adjustment is based on range images acquired at high frame rates.
For clinical scenarios real-time constraints are fulfilled by using state-of-the-art
hardware and software optimization. This module holds the potential to improve
the safety for patients and simultaneously ease the navigation for surgeons.
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Figure 8.1: The three components of our enhancement module. From left to right:
PMD CamBoard nano, Adruino Uno micro controller, L12 linear servo motor.

PMD CamBoard nano

Telescope Module

Rigid Endoscope

Figure 8.2: The prototype Time-of-Flight based module in a phantom study on the
left and in an in-vivo study on a pig on the right. Due to the prototype status the
in-vivo experiments were performed in an open surgery manner.

8.1 Time-of-Flight Guidance Module

The enhancement module is composed of three parts: The distance measuring
sensor, the telescope module and a micro controller for communication. Fig.
illustrates those three components and Fig. depicts our assembled proto-
type attached to a robotic endoscope holder. Though our setup is generic for
different endoscope holders, for all our experiments we used the SOLOASSIST
robotic endoscope holder, which imitates a human arm and is navigated
by small joystick that allows free movements in all three dimensions. For distance
measurement a ToF camera acquires range information in real-time [Lang 01]], see
Section For our experiments the CamBoard nano was chosen as a reference
device as it combines an adequate resolution (160 x 120 px) in a small housing
(37 x 30 x 25mm). However, due to a low SNR, preprocessing range images is
an essential step. To satisfy real-time constraints we use the RIT
software framework to build a preprocessing pipeline on the graphics card using
CUDA. As ToF sensors suffer from temporal and spatial noise, preprocessing in
both domains is required. Otherwise, the noise forces the telescope to adjust the
distance constantly which results in a rather instable video image. As the prepro-

1http:/ /wwwb.cs.fau.de/research/software/ritk /
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cessing techniques described in Part[[l|are not yet real-time capable, we perform a
temporal averaging on a few consecutive frames first and then apply the bilateral
filter [Toma 98] for edge-preserving spatial denoising:

A N | 12’3 it — 2
Linp = Tzlt and iy = % Y eXP(——Uz )eXP(—T)l , (81)
t=1 v ew’ 1 2

where ft’;p denotes the result of the temporal averaging, i denotes the result of
the bilateral filter and k is a normalizing constant. The sigmas describe the influ-
ence of the spatial and intensity distance to the final output. For robust results
the median distance value of a region of interest is calculated as input for the dis-
tance correction. On the operation site, the telescope module executes the actual
distance adjustment. Depending on the range information of the ToF device we
adjust the length of the telescope to fit the safety margin. A fast length adaption
and a small housing is an essential requirement in a clinical setup. For our proto-
type we have attached an L12 linear servo moto to the robot assistance system. It
allows adjustments at a speed of 23 mm/s and a maximum extension of 100 mm.
Communication of the telescope and the computer that acquires range data using
the ToF sensor is handled by a micro controller offering a Labviewﬁ interface. In
our prototype module the open source hardware micro controller Adruino Uno
[Banz 11] is used for simple data processing and instructing the telescope. The
data exchange between the computer and the guidance module was performed
over a serial communication interface.

8.2 Workflow Integration

An initial software setup is required before using our module the first time. Due
to the generic framework all configurations in terms of preprocessing can be set
up once and kept for further interventions. For the preprocessing steps we have to
adjust the number of frames T used for temporal averaging, the kernel radius of
the neighborhood w’ and both sigmas in bilateral filtering. Before the intervention,
the supervision module needs to be attached to the endoscope holder. Instead of
the actual endoscope we attach the telescope to the assistance arm and attach the
endoscope to the telescope. This allows navigation of the robotic arm and correc-
tion of the distance between the endoscope and the operation site without the need
of manipulating the actual endoscope holder. The ToF device is then attached to
the fixed part of the telescope. In a final version of our module all components will
be kept in one housing for easier usage. During the intervention the surgeon navi-
gates the endoscope using the joystick of the robotic assistance system. Depending
on the range image of the ToF sensor the telescope then automatically adjusts its
length to protect healthy tissue by avoiding collisions. Furthermore, this guar-
antees a sufficient field of view by keeping a maximal distance to the observed
surface.

2Firgelli Technologies Incorporate, Victoria BC, Canada
3h’ttp: / /www.ni.com/labview /
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Figure 8.3: (a) shows an experimental setup to evaluate the module’s behavior
with different photometric intensity values. (b) shows the setup in an in-vivo pig
study. The upper left image is a grayscale image acquired by the Time-of-Flight
sensor. The upper right image is the corresponding color coded range image.

8.3 Evaluation and Discussion

The experiments are split into two parts. First, we measure the accuracy of the ToF
sensor in a quantitative manner. Second, we demonstrate the ability of our mod-
ule in an in-vivo pig study. However, due to size limitations of our prototype the
experiments are performed in an open surgery manner. For all experiments the
entire data processing pipeline using RITK operates at a frame rate above 20 fps
on an off-the-shelf mobile graphics card (Nvidia Quadro FX 1800M). For our ex-
periments we set T = 4, w' to describe the 5 x 5 neighborhood and ¢; = 6 and
o = 1.6.

Fig.[8.4a|demonstrates the accuracy of the PMD CamBoard nano. We measured
a wooden step phantom with a given step heights of 12 mm. The 1-D signal of the
ToF sensor was computed by measuring median distances in a region of interest
acquired by the ToF sensor after applying the described preprocessing pipeline.
Note that our measurements follow the ground truth data with a mean distance
offset of less than a millimeter.

For qualitative evaluation we utilize our prototype in a pig study in an open
surgery manner as illustrated in Fig. During the intervention the endoscope
is navigated across the situs resulting in several different range plateaus. The dark
blue area in Fig. denotes an organ close to the sensor. After navigating to
the dark red area, the telescope extends to keep the desired distance and shortens
after returning to the blue spot. Besides the change of distance due to navigation
to different operation spots we also address respiratory motion in the pig study.
Fig. illustrates the median value of a fixed region of interest for several sec-
onds. Within this experiment, the respiration amplitude was increased artificially
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Figure 8.4: (a) shows a plot of a measured step phantom. In red the preprocessed
Time-of-Flight data and in green the ground truth distances with 0 mm denoting
the initial distance. (b) shows the median distance values during artificial respira-
tion. Note that for interpretation of the breathing amplitude the vertical axis needs
to be flipped.

using a ventilator. The plot shows the increasing amplitude by a decreasing dis-
tance to the sensor. Note that the maximal exhale state remains almost constant.

Our experiments have shown that the proposed module is feasible to super-
vise minimally invasive interventions and ensure a safety margin by adjusting the
telescope length and thereby adjust the distance between the endoscope and the
operation site. The change of distance can either be induced by navigation of the
endoscope or by organ movements due to respiratory motion. The robustness of
our range acquisitions depends on the size and the position of the region of inter-
est. Due to occlusion artifacts the module is not yet capable to guarantee safety
in all directions. In terms of module size upcoming ToF device are expected to
satisfy the required dimensions to allow further experiments in realistic scenarios
for minimally invasive surgery. The speed of the telescope motor is sufficient for
smooth navigation but is expected to be increased with upcoming hardware.

8.4 Conclusion and Future Work

In this chapter we proposed a new guidance module for robot assistance systems
for minimally invasive interventions. We enhanced an endoscope holder by a ToF
sensor to measure the distance of the observed tissue and used a telescope to adjust
the distance of the endoscope. This ensures a safety margin from healthy tissue
and thereby eases the navigation for surgeons. An in-vivo pig study in an open
surgery manner has shown that our module adjusts the distance to the surface and
additionally allows compensating respiratory motion.
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Future work will address further miniaturization and a single housing for the
module to allow first in-vivo experiments in a minimally invasive manner. Fur-
thermore, different range cameras have to be evaluated. However, even with im-
proved range data one issue remains, i.e. at least two cameras are required to han-
dle occlusions caused by the endoscope itself. In the current state, only one side
of the endoscope can be observed to adjust the distance. Approximating healthy
tissue from the opposite direction will still cause collisions. Further investigations
concerning this issue should try to integrate the ToF endoscope into this module,
as it covers the entire field of view directly.
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This chapter addresses image guided surgery for robot assisted interventions. In
particular, the task to localize instrument tips and thereby to ease autonomous
field of view correction has always been a highly investigated field of research. Ap-
proaches to localizing endoscopic tools can be split into two groups: Tool segmen-
tation and tracking based on color features [Doig 05] or by using prior knowledge
about the tool geometry [Clim 04} Spei 08, Wolf 11]. Climent and Mares [Clim 04]
proposed a technique that relies on the Hough transformation to find straight lines
indicating the presence of endoscopic instruments. This approach combined with
an heuristic filter achieves robust results being capable to detect the tool tip in 99%
of all evaluated cases. However, to reach interactive frame rates and high robust-
ness, several restrictions have been made, e.g. only radial lines are considered as
tool candidates. Furthermore, this technique processes color images only and is
thereby error-prone to inhomogeneous illumination. Doignon et al. [Doig 05] pro-
posed another technique for recognizing endoscopic tools based on a joint hue sat-
uration color feature. Their approach takes prior knowledge about the color of the
endoscopic tool into account to perform an adaptive region growing with the seed
point automatically detected by the algorithm. For this purpose, the fact that the
endoscopic tool enters the scene from the boundary is utilized to search the border
for minima in the joint color feature space as seed candidates. However, due to
possible occlusions this assumption does not always hold true for color images.
Recently, a technique relying on statistical and geometric modeling was proposed
by Wolf et al. [Wolf11]. They utilize the insertion point in 3-D and the conven-
tional 2-D color information for more robust tool tracking and enabled tracking in
3-D compared to Climent [Clim 04]. Another method for 3-D localization using a
stereo endoscope was proposed in [Spei 08] where the tool tip was first located in
2-D and in a second step its 3-D location was estimated using stereo vision.

Our approach extends those concepts by combining range and color informa-
tion and utilizing a scoring system for higher robustness. The algorithm is pub-
lished in [Haas 13e] and is based on prior knowledge about the color as well as
the geometry of instruments used in minimally invasive procedures. The nov-
elty of our approach is to exploit both color and range information of the new
ToF/RGB endoscope to increase robustness and to enable 3-D localization of en-
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doscopic tools. To increase reliability, a scoring system of intermediate results is
introduced. This allows to assess the results between both modalities and enables
the automatic adoption for subsequent steps to be performed on the best results
of the previous calculations. In contrast to the real-time capable tool localization
proposed in [Haas 13e]], we published a tool segmentation technique in [Haas 13d]
that requires a sophisticated preprocessing as described Chapter [l Tool segmen-
tation is desired if data needs to be used for registration as in Chapter Due
to the complicated preprocessing, we demonstrate a rather basic hybrid segmen-
tation technique but show that the hybrid super-resolution is able to improve the
segmentation output notably.

9.1 Tool Tip Localization Framework

In this section we describe our approach to locate endoscopic tools in a multi-
modal manner using color and range data. In the following sections the scoring
value is defined within [0, 1] and denoted by S with the subscript denoting the cur-
rent step. Finally, u.,, marks a candidate point of the current step and # denotes a
point indicating a reliable result for the next step. In this thesis we denote the part
of the instrument attached to the shaft as the tool tip. Regions of interest are abbre-
viated as ROIs. As this chapter describes a hybrid approach that works entirely
equal on both modalities all equations are not associated to a specific sensor.

9.1.1 Preprocessing Pipeline

As described in Section ToF data is not suitable to be used as the raw sensor
output. Therefore, preprocessing the range images is essential for robust tool local-
ization. Due to the high frame rate of our endoscope and time constraints in a med-
ical environment, we use a real-time preprocessing pipeline similar to [Wasz 11a]
for the range images instead of the novel preprocessing approaches described in
Part Il The color information was denoised using edge-preserving guided filter-
ing [He 13]. These color images were thereupon used for guided upsampling the
ToF images in a joint manner. In detail, we apply a bilinear upsampling of the
range data and then use the color data similar to Chapter 5/ to denoise the data.
Upsampling the range data allows to work in the same domain for both modali-
ties within the entire framework and precludes scaling operations in each step. In
terms of color data, the saturation space is a suitable representation of the color
image to distinguish between instruments and body tissue as endoscopic tools are
in general grayish. The saturation image is calculated as described in Eq.

9.1.2 Generic Localization Algorithm

To increase robustness we developed a generic algorithm that can be applied to
both color and range information likewise. The algorithm is divided into three
steps, each followed by a rejection phase, a scoring phase and a consolidation of all
intermediate results as depicted in Fig. First, ROIs are extracted that indicate
potential locations of laparoscopic tools. Second, the two lines defining the shaft of
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Figure 9.1: Tool localization is computed for both modalities denoted by iy, for the
range image and by i, for the saturation image. After rejecting false candidates
and scoring, the results are fused for the next step.
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the endoscopic tools are detected. Third, the tool tip is located along the centerline
of the shaft.

ROI Extraction To reduce computation time and increase robustness all ROIs
are to be found where endoscopic tools are expected. We exploit the fact that
tools enter the scene from the boundary of the image. This allows us to reduce
the search space for the ROIs by analyzing pixels along the border of the images
only. As values in range images represent distances to the sensor, small values
indicate close points. In saturation images low intensity values indicate uncolored
pixels being a typical property of laparoscopic instruments. Thus, detecting local
minima along the border for both modalities results in a hypothesis generation uc,,
of an endoscopic tool. After finding all u.,, a twofold rejection phase is performed.
First, the neighborhood of all uc,, is expected to have a similar value and therefore
is analyzed by its variance. Second, candidates that have an intensity value 7*ca
above the mean y of the corresponding input images are determined as unreliable
and therefore rejected. Then a simple clustering is performed to fuse candidates
of close mutual proximity that refer to the same tool. The representative of each
cluster is denoted by #. The scoring value for each # in the input image i, is
calculated by:

Z‘ﬁ
SROI(ﬁ) - 1 - z/:i (9.1)
Inp

for the range image candidates and equally for the saturation image candidates.
This scoring value converges to 1 the lower the located minimum is compared
to the mean of the whole image. The size of the ROIs is defined by J denoting a
fraction of the input image size, e.g. § of the input image. The ROIs are determined
with the previously found initial points # being the center.

Shaft Detection On the saturation as well as the range images we apply the Sobel
operator to find edges as depicted in Fig. For each of the previously detected
ROIs the gradient image is then transformed into Hough space to detect noticeable
lines in polar coordinates. This step requires the instrument to be rigid with a
cylindrical shaft, which is a valid assumption for laparoscopic tools. We assume
that calculating the Hough transformation of an ROI results in two high peaks in
Hough space that point to the location of the two lines describing the boundary
of the shaft. The crucial step of this part is finding these maxima. To find two
separated peaks, first the global maximum in Hough space is found and then the
second maximum outside the neighborhood of the first maximum is located.

To reject false candidates uc,, in Hough space the angle between the corre-
sponding lines is analyzed. Within a tolerable range due to perspective distortion
shaft lines are expected to be parallel. Thus, if the angle exceeds a threshold A¢
the line referred by the second maximum in Hough space is rejected. Otherwise
both candidates uc,, are accepted as reliable ii.
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Figure 9.2: Range image outputs (first column), RGB image outputs (second col-
umn). Range and modified saturation input (first row), corresponding edge im-
ages (second row), Hough image for the calculated regions of interest denoted by
the orange boxes (third row).

For scoring shaft lines the intensity of the peaks i . are evaluated, as a higher
intensity value in Hough space indicates more points being assigned to that line.

Therefore, the score is computed as:

See() = 1 — i‘ 9.2)
oug]

with .4, denoting the mean value of votes in Hough space. A higher peak com-
pared to the mean results in an increased score.

Tool Tip Localization Finally, we assume that the tip of the endoscopic tool
needs to be located along the centerline between both detected shaft lines and
is detectable by a steep gradient on this line. The point with the highest gradient
indicates a step from the tool to the background.

As we assume smooth movements between successive frames, the criterion for
rejection of the tip location is its distance to the location of the previous frame.
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Therefore, a located point u.,, is considered as a reliable point # if the 3-D distance
to its location in the previous frame is below a threshold €. The reliability of # at
the tip of the endoscopic tool is then computed by:

Sup(t) =1 — £, 9.3)
lSobel
with ps..q denoting the mean of all edge pixels of the input image. A strong gradi-
ent compared to all other edges results in a score converging to 1.

9.1.3 Combining Range and Color Localization

To increase robustness the result of each step is combined for both imaging modal-
ities. For consolidation the scoring is analyzed and a weighting a denoting the
reliability of the range sensor is used for each step. a depends on the hardware
and scenario. The combined results serve as an input for the next step for both
modalities. If the euclidean distance of their final pixel positions iy, is low, the
final score S, for this step is calculated as:

A

SFin(ﬁFin) = ‘XSToF,Tip + (1 - “)SSat,Tip/ (94)
and the consolidated point 7, is given as:
Upy = Qg + (1 - ‘X)ﬁSat- (9-5)

Otherwise, if S of a single modality weighted by « still exceeds a threshold v, SAFin
is calculated as:

A { (XSToF,Tip 7 1f “S ToF Tip 2 (1 - “) SSat/Tip
(1

SFin(uFin) - - “)SSat,Tip Ilf (]— - a)SSat,Tip > “STOF/Tip (9.6)

The final result 7, is then equal to 7, of this modality. If in any step neither
similar values nor dominant scores for a single modality are found the possible
candidate for an endoscopic tool is rejected and the localization procedure for this
point is aborted.

9.1.4 Evaluation and Discussion

All experiments were performed using the 3-D endoscope prototype described in
Section As this endoscope is still in an early prototype stage, all experiments
are performed ex-vivo using a liver phantom and real endoscopic tools.

For all scenarios we set the angular threshold Ag¢ to 25°, the scoring threshold
7 to 0.15 and the size of each ROI denoted by 4 to 3 of the input image size. The
threshold € defining smooth movements was set to 5mm. As in our experiments
usually the RGB data showed more reliable results for the initial point the weight-
ing g for the first step was set to 0.40. ag,, was set to 0.50. Due to material prop-
erties of the instruments, tool tips in the saturation image are usually located at
the beginning of the tool tip, whereas the step in range data is expected at the very
end of the tool. Therefore, both final tool tip locations differ even though they may
describe the same tool tip. As the gradient information of the color image showed
more reliable edges o, was set to 0.
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(b)

Figure 9.3: Range and color images of sequences S1 (a) and S2 (b) acquired for
evaluation of the distance error. The red cross marks the detected tool tip, green
the shaft boundaries, blue the centerline, orange the regions of interest.
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Figure 9.4: Distance errors in 2-D and 3-D between manually labeled and auto-
matic located tool tips for both sequences (51, S2) in boxplots.
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Intersection | Sat Range Comb Blood Sat Range Comb
Srar (T1) 055 0.20 0.41 Srar (T1) 0 0.41 0.17
Senare (T1) 093 66 046 Senare (T1) 083 066 042
Srp (T1) 094 0.1 0.94 Srp (T1) 092 0.64 0.92
Srar (T2) 042 079 0.32 Skar (T2) 615 0 0
Senare (T2) 069 095 0.48 Ssnare (1T2) 0 0 0
Srp (T2) 094 0.61 0.94 Sy, (T2) 0 0 0
Occlusion Sat Range Comb Absence Sat Range Comb
Srar (T1) 0 0.72 0.29 Sror (TT) 025 011 0.20
Siat (T1) 0.83 07F 042 Sshare (T1) 0 0.78 0
Sy (T1) 096 0.78 0.96 Sy, (T1) 0 0 0
Srar (T2) 0.40 0 0.24 Srar (T2) 011 0 0
Sshart (T2) 0 095 0 Sshatt (12) 0 0 0
Srp (T2) 0 0 0 Srp (T2) 0 0 0

Table 9.1: The scoring results S of each intermediate step in the four challenging
scenarios. The scores are calculated for both saturation and range image separately
and combined. Crossed out values, denote candidates that where rejected. T1
and T2 denote two different endoscopic tools. Note that even in the absence of
any tool initially candidates are detected. However, these are rejected due to our
consolidation.

Sequences We evaluated the accuracy of our approach on 10 frames for two dif-
ferent scenarios. These scenarios include a scene with a single endoscopic tool in
Fig. and a scene with two endoscopic instruments inserted from different di-
rections in Fig. For quantitative results, the 2-D and 3-D euclidean distance
was calculated between the located tool tip and the ground truth data manually
labeled on the fused sensor data. In Fig. and Fig. the euclidean distances
between the manually labeled ground truth and the automatically detected tool
tips are shown. Note that for all tools the median 3-D error was below 10mm,
which seems sufficient for most applications, e.g. field of view adjustment.

Challenging Scenarios The robustness of our algorithm was evaluated on single
frames showing challenging scenarios. These scenarios include intersection of two
tools, blood splatter on a tool, occlusion by the surrounding tissue and the absence
of any endoscopic tool, see Fig. Note that in all scenarios the existing endo-
scopic instruments were found. These experiments are evaluated by their scoring
to show the influence and reliability of each modality in Table As described in
Section[9.1.3|the final scoring value is either a weighted average of both modalities
if both results are close to each other or a weighted scoring of a single modality if
this scoring exceeds <. If a field contains Os, no potential candidates are detected.
Note that in the second scene the blood on the tool caused our algorithm to find
only a wrong initial point in the color image due to the increased saturation on the
tool. Weighting the initial point detected in the range image by aror we determine
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(d)

Figure 9.5: Four challenging scenarios: (a) intersection of tools, (b) blood on the
shaft, (c) occlusion at the border, (d) the absence of tools. The red cross marks
the detected tool tip, green the shaft boundaries, blue the centerline, orange the
regions of interest.
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the correct initial point while the false candidate of the color image is rejected. In
the absence of any tools, a common initial point is wrongly detected in the first
step but correctly rejected within our scoring phase.

9.2 Case Study: Tool Segmentation

In various other applications, e.g. range image registration as included in Chap-
ter the accurate localization of the tool tip is not of particular importance.
Hence, these applications require a segmentation of the entire tool as a mask to
exclude these areas from further processing. This section describes in a first pre-
liminary case study a hybrid thresholding technique as proposed in [Haas 13d]
and simultaneously shows a comparison of the current real-time capable prepro-
cessing technique to the previously discussed hybrid super-resolution, see Chap-

ter 6l

9.2.1 Hybrid Segmentation Framework

Based on the output of the preprocessing we apply instrument segmentation on
data of both modalities. We distinguish between instruments and background by
different thresholding techniques [Doig 05]. For our segmentation we exploit the
fact that instruments are usually closer to the sensor and that instruments are usu-
ally grayish. Due to the data fusion in our hybrid 3-D endoscope, we can not only
exploit the range data but also incorporate the color information into the segmen-
tation process similar to [Spei08]. Range values i}, are considered as instruments
pixels if i, < " 4 g . This assumption requires the minimum range value to
be located on a potential tool. The parameter «s,, describes a tolerance margin for
range values on an instrument. We have chosen an additive term here, as inde-
pendent of the global minimum value i7" a,, should describe the radius of the
endoscopic tool, if entered perpendicular to the endoscope as in our case study.
In the color domain we exploit the value and the saturation channel of the HSV
color space to segment the instrument similar to Section Here, pixels u are
considered as instrument pixels if i¥, < Bs, -2 and @i}, > Vs, - 15, Where ¥,
and i}/, denote the saturation channel and the value channel of the color image,
respectively. Both binary results are then consolidated into a common segmenta-
tion mask by multiplication. For outlier removal caused by noisy data we apply

morphological operators to close small holes.

9.2.2 Evaluation and Discussion

For quantitative evaluation, a dataset of Chapter [f| was manually labeled by an
expert for ground truth data. The parameters were set empirically on a separate
dataset to as,, = 0.03, Bs,; = 0.4 and <y, = 0.6 for data scaled to [0, 1]. For robust-
ness, the minimum ziff;” was computed on a median filtered version with a kernel
size of 15 x 15. Table 9.2/ shows statistical properties of the hybrid segmentation
compared to segmentation results for each modality individually. Furthermore,

the real-time capable preprocessing of Section[9.1)is compared to the multi-sensor
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super-resolution technique of Chapter [6} Fig.[9.6 shows the qualitative results of
the evaluated segmentation techniques. Note that due to wrongly copied texture
information in the range image, e.g. the smooth transition on the tool tip, caused
by the guided filter [He 13]], the F-score of the guided output is rather low, even
though the output looks smoother. Nevertheless, in a hybrid approach the output
still benefits from the preprocessed range data. However, with the novel super-
resolution technique the F-score has the best result. Hence, a hybrid approach
allows to compensate oversegmented areas in a single modality by a correct seg-
mentation mask in the other modality and thereby increases the robustness of the
entire segmentation framework.

9.3 Conclusion and Future Work

This chapter introduced a robust localization approach for endoscopic instruments
and showed in a first case study a simple segmentation approach for comparison
of different preprocessing techniques. Both techniques are based on the concept of
hybrid 3-D imaging, i.e. acquisition of photometric information and topographic
range data simultaneously. Both applications have shown a higher accuracy when
applied on hybrid range data in comparison to an application driven by the data
of a single modality only.

Future work on this topic is divided into two different tasks. First, further
research has to cope with the issue of different data preprocessing to gain an in-
creased SNR for the input data of tool localization and segmentation. Second, both
approaches can be improved in their algorithm. For the tool localization, find-
ing the initial point is a very important task that requires further improvement.
Within the segmentation framework, the basic thresholding could be replaced by
advanced techniques, e.g. k-means clustering [Ryu12] or the segmentation tech-
nique proposed by Doignon et al. [Doig 05]. Furthermore, both techniques could
benefit from combining the algorithms and using the result of one technique as
input for the other algorithm.

HSV Guided HSR HSV Guided HSV HSR
Sensitivity | 0.94 0.06 0.47 0.63 0.45
Specificity | 0.83 0.13 0.97 0.94 1.0
F-Score 0.46 0.09 0.51 0.53 0.60

Table 9.2: Comparison of the single segmentation results for color (HSV), guided
filter preprocessing and super-resolution (HSR) preprocessing and the hybrid ap-
proaches for preprocessed data combined with color information.
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Figure 9.6: The first row denotes the input color and range image. The second row
shows the output of the guided upsampled range data and the super-resolved
range data. The last row shows the hybrid segmentation results for both prepro-
cessing techniques.
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Navigation and orientation are of particular relevance for the surgeon in mini-
mally invasive surgery due to the limited field of view with conventional endo-
scopes. To improve both, different concepts to insert additional cameras have been
proposed [Oley 05, Cade 09]]. For instance, Cadeddu et al. describe a video camera
that is positioned on the posterior abdominal wall and guided by an anterior mag-
netic device [Cade 09]. Instead, we propose the concept of 3-D satellite cameras as
illustrated in Fig. These cameras are inserted into the abdomen via a trocar
and positioned at the top of the pneumoperitoneum. Here, the imaging device
can survey the operation field. Nevertheless, due to size limitations in endoscopic
procedures, satellite cameras have shortcomings related to the hardware and op-
tical systems. One of these is a narrow field of view. To expand the limited field
of view the camera will reconstruct the entire situs initially by rotating and acquir-
ing images from different areas for data fusion and then focus on the operation
field. With no further repositioning of the patient the assumption of rigidity is ac-
ceptable for navigation assistance. Opposed to related work, our satellite camera
delivers ToF 3-D surface and photometric information instead of pure 2-D video
data. This enables a broad field of medical applications, e.g. collision detection,
automatic navigation or registration with preoperative data.

Different approaches for data fusion with real-time capability have been pro-
posed recently [Warr 12, Moun 09, IRhl112, Newc 11]. Warren et al. proposed a si-
multaneous localization and mapping based approach for natural orifice translu-
minal endoscopic surgery [Warr12]. For stereo endoscopy, Rohl et al. presented
a novel hybrid recursive matching algorithm that performs matching on the dis-
parity map and the two input images [Rhl112]. Areas with little textural diversity
are challenging scenarios for those color-based approaches regarding 3-D recon-
struction. Instead of using conventional endoscopes we propose to navigate a 3-D
satellite camera for reconstruction of the whole situs to enable a better orientation
within the pneumoperitoneum. A ToF sensor acquires photogeometric data, i.e.
both range data and intensity images encoding the amplitudes of the measured
signal. By exploiting both complementary information we are able to reconstruct
surfaces in areas with low textural diversity as well as areas with low topolog-
ical diversity. The framework is based on the implicit surface representation as
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(a)

Figure 10.1: (a) Illustration of the 3-D ToF satellite camera hovering above the situs
at the zenith of the pneumoperitoneum. (b) Experimental setup for acquiring in-
vivo data in a pig study. Note the physical dimension of the miniature ToF camera.

implemented in KinectFusion [Newc11]. In-vivo experiments on real data from
a miniature ToF camera indicate the feasibility of using 3-D satellite cameras for
situs reconstruction during minimally invasive surgery.

10.1 Photogeometric Data Fusion Framework

We use a truncated signed distance function (TSDF) [Curl96] to reconstruct the
interior abdominal space. The advantage of this approach is threefold. First, by
incorporating successive frames, details are refined. Second, the TSDF allows in-
corporating additional information for regions that were seen from different per-
spectives comparable to super-resolution techniques. This allows implicit denois-
ing of data with lower quality. Third, the TSDF representation is computational
efficient with both constant run time and memory. Inspired by the work of Whelan
et al. [Whel13], we enhanced the traditional TSDF from 3-D to 4-D to incorporate
the amplitude domain. In this context, a major contribution is the incorporation of
confidence weights derived from ToF characteristics into the TSDF reconstruction.
To cope with real-time requirements in medical environments we apply a GPU-
based photogeometric registration approach [Baue 13]. Below we detail the initial
preprocessing for ToF data. As the TSDF is an implicit surface representation ray-
casting techniques can be applied to obtain a range image [Park 98]. Raycasting
typically describes a rendering technique to visualize 3-D volumes. However, by
tracing each ray of a camera pixel, we can also fill a range image with correspond-
ing distance values.

10.1.1 Preprocessing Pipeline

To compensate for the low SNR of ToF devices, we apply a real-time capable data
enhancement pipeline that is split into three processes. First, we interpolate in-
valid pixels by a normalized convolution [Knut93]. Second, we decrease the tem-
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poral noise by averaging successive frames, which is possible owing to the high
acquisition speed of the ToF sensor. Third, we perform bilateral filtering for edge-
preserving denoising. The amplitude data depend not only on the material but
also on the distance to the light source. Therefore, correcting this data is necessary
for incorporating the photometric data into the registration process. We correct

amplitude data according to a simplified physical model %, = i* (i%)?. Here,
Iy, denotes the amplitude value at pixel position u and if; denotes the measured

radial distance [Opri07]. Furthermore, we also apply edge-preserving denoising
in the amplitude domain. Nevertheless, photometric registration is still affected
by glare lights, which we detect by basic thresholding and label as invalid pixels
to exclude them for further processing, see Section[7.1]

10.1.2 Range Image Registration

The preprocessed data deliver range corrected photometric and denoised geomet-
ric information of the situs from different points of view. For estimating the ro-
tation Ry and the translation #; between the camera coordinate system of frame
k and the global world coordinate system we align two successive frames by ap-
plying an approximate iterative closest point (ICP) implementation [Baue 13]]. The
approach extends the traditional 3-D nearest neighbor search within ICP to higher
dimensions, thus enabling the incorporation of additional complementary infor-
mation, e.g. photometric data. It is based on the random ball cover acceleration
structure for efficient nearest neighbor search on the GPU [Cayt 11]. The reference
point set is denoted as fixed point set F and the point set of successive frames
acquired with a moving camera are denoted by M. We compute the closest point
f{v in the fixed dataset by:

& = m}n d(x{v, Xl ). (10.1)

Xw

For 4-D data considered in this chapter, the photogeometric distance metric 4 is
defined as:

uf M
Al %) = (0= )l = =13 + xlite, — i 12) (10.2)

where x € [0,1] is a non-negative constant weighting the influence of the photo-

metric information. x{v and xJ denote an individual 3-D point in the fixed and
the moving point set, respectively. #/ and u™ denote the corresponding pixel co-
ordinate on the sensor plane and i,;, denote the range corrected amplitude value
given as a scalar value, see Section

For improved reconstruction, e.g. in terms of loop closures, we fuse our data in
a frame-to-model manner [Newc 11], i.e. the current frame with the moving point
set is not registered to the previous frame directly but to a raycasted image of the
reconstructed model seen from the camera of the previous frame. Due to our high
acquisition frame rate the rigid assumption for frame-to-model transformation es-
timation is tolerable.
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10.1.3 Photogeometric Data Fusion

Our reconstruction is based on a volumetric model defined by a TSDF along the
lines of [Newc 11]. The TSDF is based on an implicit surface representation given
by the zero level set of an approximated signed distance function of the acquired
surface. For each position x,, € IR3, the TSDF 75 holds the distance to the closest
point on the current range image surface S w.r.t. the associated inherent projective
camera geometry:

Ts () = 17 (xuscll3 = ||xcl3) (103)

where x. = Ryxy, + t; denotes the transformation of x,, from world space into
the fixed local camera space. As described in Eq. (I.3), the 2-D pixel index u is
computed by utilizing the intrinsic camera parameters K to perform the projection
of each 3-D point x. into the image plane. xy, is the 3-D reconstructed 2-D point u
by utilizing the measured range data, see Eq. . Therefore, x;c represents the
closest point to x. on the surface S. The truncation operator # controls the support
region, i.e. outside this region the distance function is cut off.

To enable photogeometric reconstruction in a frame-to-model manner, our ap-
proach stores and fuses amplitude information. The amplitude value 74, is de-
scribed by:

Tamp (Xw) = 145, (10.4)
where u is the associated 2-D pixel coordinate of x,, computed by Eq. (1.3). For
robust data fusion we assign a confidence weight to each TSDF value to describe
the reliability of the new measurement. In particular, we introduce the confidence
weight w of a new measurement as:

2
wlu) = expl— ) exp(— 1By 105)
ZAI_np ﬁ
with a and B controlling the influence of the first terms and ¢ denoting the pixel
position of the center in the range image as included in K. Here, we exploit three
characteristics of ToF cameras. With lower amplitude values or higher distances
to the center the confidence decreases. The binary validity information i | is pro-
vided by the ToF sensor and combined with the result of our glare light detection.
To provide temporal denoising we benefit from different frames that acquired
the same spots by:

Ti = wi(w)yTe +wea () (1 —9) Tin, (10.6)

where 7; denotes the temporal denoised result and 7; denotes the current result
of Eq. and Eq. (10.4). The weight 7 describes the influence of the previously
reconstructed result 7;_;. The confidence weights w;(u) and w;_1(u) ensure that
unreliable new data has no influence on the current surface representation.

10.2 Evaluation and Discussion

The experiments are split into two parts. First, for quantitative evaluation, we
utilized the range image simulator described in Section 3.6| and reconstructed a
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Figure 10.2: Comparison of data fusion based on frame-to-frame 3-D registration
(F2F 3-D), based on frame-to-frame 4-D registration (F2F 4-D), based on frame-
to-model 3-D registration (F2M 3-D) and based on our approach (F2M 4-D). The
left plot shows the mean absolute error of a point-to-point distance metric for a
sequence of 100 frames. The right image shows the same distances for a sequence
length of 50 frames.
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human abdomen with a rotating virtual satellite camera with realistic noise char-
acteristics from different points of view. Based on the known camera path a direct
comparison of ground truth data and reconstructed data is possible. Second, we
acquired real in-vivo data in a pig study. In both experiments the satellite cam-
era was moved across the situs at a typical measuring distance of 20 cm, while
reconstructing the 3-D geometry of the operation field. The temporal denoising
parameter was set to y = 0.95. The weightings of the confidence terms were set to
a =2-10% and B = 5. The photometric weighting was set to xy = 2-10~7. Regard-
ing the scale of the parameter, range of the amplitude value has to be taken into
account that exceeds 1 - 10%. In the considered scenario, the texture is rather homo-
geneous. Hence, we set y comparably low. Nonetheless, it guides the registration
in flat regions.

Considering the quantitative evaluation, we compared the point-to-point dis-
tance of data fusion based on frame-to-frame registration to data fusion based
on frame-to-model registration. In addition, we applied data fusion for pure 3-
D data and with additional photometric data to prove its benefit. As illustrated
in Fig. and Fig. we additionally showed that the camera speed within a
sequence influences the reconstruction accuracy. However, in both scenarios the
data fusion based on a 4-D frame-to-model registration achieves the best results.
Furthermore, the plots in Fig. highlight the great loop-closure behavior of the
frame-to-model approach as the end of the sequence coincide with its beginning
due to the rotational movement of the satellite camera. The median absolute error
along all datasets was more than 50.00 mm for both frame-to-frame approaches,
26.01 mm for the frame-to-model 3-D approach and further reduced to 24.64 mm
for our proposed frame-to-model 4-D approach. For the real data experiments we
used 25 frames for data fusion. In particular, we acquired a scene of 250 frames
and fused every 10th frame to obtain a sufficient frame-to-frame movement. We
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Figure 10.3: (a) shows our final result of the dataset evaluated in Fig. (b)
shows the our final result of the dataset evaluated in Fig. Note the improved
edge-preservation between both organs in (a).

averaged data over three successive frames to reduce temporal noise for the regis-
tration process. Note that even considering two additional frames for temporal de-
noising of each frame used for situs reconstruction, the entirety of required frames
is 75, which is still an acquisition time of below 1s. The parameters for the bilateral
tilter and the normalized convolution were set empirically. Fig. shows in-vivo
data reconstructed with our proposed technique. In Fig. [10.5 we show that the in-
troduction of confidence weights allows to reconstruct the situs properly from the
single frames. The upper right frame shown in Fig. is clearly reconstructed
wrong in the data fusion without confidence weights.

10.3 Conclusion and Future Work

This chapter introduced a miniature ToF device as a 3-D satellite camera for min-
imally invasive surgery to reconstruct the operation situs. To extend the camera’s
tield of view, we introduced a fusion framework that allows to reconstruct the op-
eration situs for better orientation and navigation using both geometric and pho-
tometric information. Our proof-of-concept GPU implementation runs at 2 Hz on
an off-the-shelf laptop. Experiments on simulated and real data showed that we
benefit from our proposed confidence weights and resulted in a median absolute
mesh-to-mesh distance of less than 25 mm compared to ground truth data. How-
ever, current ToF cameras do not yet fit the required size for minimally invasive
surgery and exhibit an insufficient SNR for real medical environments.

Future work will investigate the upcoming generation of miniaturized ToF
cameras that are expected to feature a geometry that fits through a trocar. Further-
more, additional terms for the confidence maps, such as surface normals, need to
be evaluated. In terms of robustness an additional color sensor with higher quality
photometric data could have a beneficial impact on the reconstruction.
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Figure 10.4: This image shows three individual frames of the pig study and the
final situs reconstruction below. Blue arrows point to landmarks of individual
frames and the reconstruction. Red arrows denote common landmarks in the in-
dividual frames to point out that the data fusion was performed in the correct
order.

(b)

Figure 10.5: (a) shows the reconstruction with and (b) without the use of the con-
tidence maps to compensate for sensor issues.
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CHAPTER 11

Summary

This thesis investigated the entire data processing pipeline for novel hybrid
range image acquiring devices with the focus to assist in a medical environment
for modern minimally invasive surgery. The term hybrid refers to two different
imaging technologies that are utilized to acquire complementary data. In our sce-
nario this data was composed by range images delivered by a ToF sensor and
additional photometric data, i.e. either a grayscale representation of the entire
scene also acquired by the ToF sensor or color data acquired by an additional RGB
sensor, see Section Not only improves the photometric information the visual
impression and eases the diagnosis, the proposed preprocessing algorithms and
medical applications have also shown that complementary range and photometric
data has the potential to improve the actual output of image guided interventions
in abdominal surgery. The aim is to reduce the duration of an intervention while
keeping or improving the level of safety. The medical applications presented in
this work are all together targeting the tremendous challenge of minimally inva-
sive surgery, i.e. the navigation and orientation within the narrow field of view in
the abdominal cavity.

After explaining the medical background in Chapter |2 in terms of workflow
and currently available devices for minimally invasive surgery, we motivated the
use of range image guided assistance systems for endoscopic interventions. Then,
we introduced the three major single-shot range image acquiring technologies:
stereo vision, structured light and Time-of-Flight. Consecutively, we motivate our
decision to use ToF technology. Although all the work presented in this thesis was
evaluated on ToF data, please note that the concepts are applicable to any other hy-
brid range image acquiring sensor. Subsequently, we described the current issues
of range images in general and ToF technology in particular, i.e. low SNR, low spa-
tial resolution and invalid or missing data due to specular highlights. In Chapter[3]
we introduced our three data acquisition systems for experimental evaluations. In
this thesis we acquired qualitative evaluation data with a ToF/RGB endoscope
prototype and the compact PMD CamBoard nano as a reference hardware for a
satellite camera. The latter device performs better in terms of range data quality,
but does not acquire color data and is not yet compact enough for endoscopic in-
terventions. Quantitative evaluation was performed with a range image simulator
that delivers high quality ground truth range images and RGB color data as well
as realistic ToF data. The synthetic scenes were composed by textured 3-D meshes
of human organs based on CT scans. Our framework is able to simulate both the
endoscope prototype and the satellite camera.
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The first part of this work presented a fast calibration technique to estimate
camera parameters, e.g. the focal length and the central point, and simultaneously
align the complementary data to enable joint data processing in hybrid range im-
age acquiring setups, see Chapter @ In contrast to conventional checkerboard de-
tection techniques, the proposed calibration scheme is based on a self-encoded
marker with embedded 2-D barcodes that allows to use the entire field of view for
automatic feature point detection. Furthermore, the simplistic embedded barcodes
enable feature point detection even on low quality image data as acquired by most
currently available compact ToF sensors. Using a multiscale barcode identification
framework, we achieved identification rates > 90% for the RGB and ToF sensor.
Based on feature points located at the corners of those barcodes in 70 different im-
ages the reprojection error using our estimated camera parameters was kept below
1px. Due to the fact that the unique barcodes are observed and recognized from
both imaging devices, i.e. the RGB and the ToF sensor, the coordinates of common
tfeature points are thereupon used to estimate a relative transformation between
both sensors, either based on a conventional stereo setup or a homographic trans-
formation in a beam splitter setup.

The second part of the this work tackled the major issues of range imaging
devices in general and for their applicability in minimally invasive surgery in par-
ticular: low signal-to-noise ratio and spatial resolution, due to size limitations in
the abdominal cavity, and invalid measurements for areas affected by specular re-
flections, due to wet surfaces and direct light irradiation of the imaging device.
In Chapter [5| we addressed the low SNR by a novel denoising approach based
on the nonlocal means filter. For higher robustness in hybrid imaging, we ex-
tended the NLM concept by color weights. Here, we exploited the benefits of
hybrid range image acquiring devices to use the advantages of the one sensor,
i.e. high quality color data, to enhance the data of the other sensor by calculating
similarity measurements in the HR color domain. Furthermore, the multi-frame
hybrid NLM filter applies a tracking of image points within a sequence instead
of conventionally averaging similar points within a single image. Our novel tech-
nique reduced the mean absolute distance errors compared to ground truth data
by 20%. In Chapter [p| a hybrid super-resolution concept was introduced, where
we estimated sensor movements based on a sequence of high-quality color images
and thereupon used this information to improve the spatial resolution and data
quality of the ToF sensor. The framework estimates an HR range image recon-
structed by a sequence of LR range images. Here, the improvement of the mean
absolute distance errors by 12% was slightly higher compared to the M-H-NLM
tilter. However, super-resolution increases spatial resolution simultaneously and
thereby reconstructs important structures not visible in LR raw data. The evalu-
ation has proven that both of our algorithms for data quality improvement allow
to reconstruct important structures, such as tool tips of endoscopic instruments
and organ boundaries, in the range domain that where not visible in the raw data.
The last preprocessing concept, introduced in Chapter |7, addressed the issue of
missing or invalid data due to specular reflections. Here, we also reconstructed
missing structures by exploiting a sequence of hybrid ToF/RGB data. Consider-
ing movements of the device within a sequence and thereby movements of the
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specular highlights, we replaced invalid regions of one frame with valid data of
another frame, after aligning both frames based on robust feature points. For a
reliable mask image, the highlights are detected in the HSV representation of the
color images by analyzing the saturation and value channel. Considering only the
effect of specular highlights, our approach reduced the mean absolute distance
error by 33% compared to a basic interpolation technique.

In the final part, this thesis introduced first medical applications that hold the
potential to improve and ease image guided minimally invasive surgery. The first
approach avoids the need for the surgeon to be able to interpret any acquired data
of the range sensor, see Chapter |8, The range data is utilized to automatically en-
sure a safety margin between the endoscope and the observed tissue. Based on the
range data, an additional hardware module adjusts the distance with a telescope
motor attached to an endoscope holder. Due to our generic composition of the
module, it is applicable to any endoscope holder. In Chapter[9|we described a hy-
brid tool tip localization framework based on the prior knowledge of endoscopic
instruments. Exploiting both the range and the color domain allowed to improve
the robustness of the framework especially for challenging scenarios. Conven-
tional instrument detection systems are based on color data only and thereby are
unreliable when color of the instrument is altered, e.g. by blood or occlusion. Our
hybrid approach compensates for the weaknesses of one sensor by the strengths of
the other sensor. In addition to this localization approach, we showed in another
feasibility study a basic segmentation framework for the entire tool based on hy-
brid range/RGB data. Here, we also demonstrated the advantage of our hybrid
super-resolution for improved image details compared to conventional prepro-
cessing. The last medical application is described in Chapter|10jand proposed the
use of a 3-D satellite camera that acquires range and grayscale images of the scene
simultaneously. The chapter introduced a framework to use a sequence of those
images from different field of views to reconstruct the entire situs in 3-D for better
navigation and orientation. The fusion of different range images was based on the
ICP algorithm applied in a frame-to-model manner to reduce the accumulation of
errors for successive frames. In a pig study, we evaluated that a sequence of range
images was fused correctly to show the entire situs and furthermore showed that
additional reliability weights based on photometric information improved the si-
tus reconstruction.

In its entirety, this work has given fundamental concepts to implement range
image acquiring systems for a medical environment. The three major steps for
novel assistance system in modern surgery were addressed: system calibration,
data preprocessing, medical applications. Although state-of-the-art ToF devices
are not yet capable of acquiring data with high accuracy, we have shown that in
a hybrid setup with complementary photometric information, these range image
acquiring sensors hold potential for future medical applications in minimally in-
vasive surgery. For preprocessing as well as for the final applications it is always
beneficial to make use of all available data of both sensors. Algorithms solely
based on 2-D color data or 3-D range data are often error-prone, as both modal-
ities exhibit strengths and weaknesses. Conveniently, in several scenarios those
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characteristics can be exploited in a joint framework to improve the final outcome
driven by the strengths of both modalities.

The overall message of this thesis is the idea of using complementary data of
different modalities in a joint manner to compose reliable medical assistance sys-
tems. The same idea is already in the focus of research regarding single photon
emission computed tomography (SPECT) and CT data or positron emission to-
mography (PET) and CT data, and was in this thesis shown for hybrid range and
photometric data acquiring systems.



CHAPTER 12

Outlook

As this thesis addressed the general question whether conventional color video
data driven minimally invasive procedures would benefit from complementary
metric range data, future work should build upon the conclusions drawn from
the previous chapters. The important topics for future research cover the general
assumption of similarity of structures in hybrid imaging, further investigations in
novel hardware devices and development of real-time capable medical software
solutions.

In all proposed algorithms augmented range data showed a beneficial effect on
the output data. However, the assumption of a direct congruence between struc-
tures in color images and complementary range images can not always be taken
for granted. A typical problem occurs if any texture information in the color im-
age appears that is not present in the range data, e.g. blood flow due to a surgical
cut, or vice versa, e.g. two organs at different distance with similar photometric
appearance. A first approach would be to utilize the mutual information, which
is an established distance metric for the similarity measurement of two datasets
acquired from different modalities. If applied patch wise the mutual information
could be considered as a confidence term that shows the agreement of the observed
structures in both images.

In terms of hardware, with the introduction of the Kinect One® new gener-
ations of range sensors are expected. Especially, the low image resolution and
data quality of ToF sensors will certainly be addressed by manufactures for future
devices. As a feasibility study, the proposed algorithms were only evaluated on
ToF data and simulated range images. However, future research should investi-
gate different acquisition techniques, e.g. stereo vision setups and structured light
setups, see Chapter 3| As shown in [Maie 14] all acquisitions techniques exhibit
certain benefits and should thereby be evaluated. With upcoming miniature range
acquiring devices, future work should also evaluate the proposed techniques on
more in-vivo datasets and analyze additional issues that may occur due to the
closed abdominal cavity, e.g. bad lighting conditions.

As a general outlook for all proposed algorithms, the requirement of real-time
capable frameworks should hereby be reinforced. With new GPUs and new SDKs
available, even the super-resolution approach is feasible to be performed in real-
time. Individual parts have already been shown to be implementable under real-
time restrictions [Wetz 13]. Especially in medical environments, the frame rate of
a software determines its value. Here, with the rising importance of the OpenCL
community, both OpenCL and CUDA should be investigated for real-time capable
medical solutions.
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