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Abstract

C-arm based flat-detector computed tomography (FDCT) is a promising approach for
neurovascular diagnosis and intervention since it facilitates proper analysis of surgical
implants and intra-procedural guidance. In the majority of endovascular treatments,
intra-procedural updates of the imaged object often are restricted to a small diag-
nostic region of interest (ROI). Such targeted ROI is often the region of intervention
that contains device/vessel specific information such as stent expansion or arterial
wall apposition. Following the principle of as low as reasonably achievable (ALARA),
it is highly desirable to reduce unnecessary peripheral doses outside an ROI by using
physical X-ray collimation, leading to substantial reduction of patient dose. However,
such a technique gives rise to severely truncated projections from which conventional
reconstruction algorithms generally yield images with strong truncation artifacts.

The primary research goal of this thesis, therefore, lies on the algorithmic de-
velopment of various truncation artifact reduction techniques that are dedicated for
different imaging scenarios. First, a new data completion method is proposed that
utilizes sinogram consistency conditions to estimate the missing sinogram. Although
it is only extended to a 2D fan-beam geometry, preliminary results suggest the method
is promising regarding truncation artifact reduction and attenuation coefficient re-
covery. Thereafter, three algorithms are presented, which either follow the analytic
filtered backprojection (FBP) frame or are by construction in an iterative manner.
They are capable of generating a 3D image from transaxially truncated data and
thus appear to be closer to clinical applications. The first approach is the refinement
of an existing truncation robust algorithm – ATRACT, which is implicitly effective
with respect to severely truncated data. In this thesis, ATRACT is modified to
more practically-useful reconstruction methods by expressing its expensive non-local
filter as an efficient 1D/2D analytic convolution. The second approach is targeted
to particular imaging applications that require an ROI with high image quality for
diagnosis, and also a surrounding region with the relatively low resolution for ori-
entation. To accomplish this task, an interleaved acquisition strategy that acquires
both a sparse set of global non-truncated data and a dense set of truncated data is
presented, along with three associated algorithms. The third approach is an attempt
to exploit low-dose patient-specific prior knowledge for the extrapolation of truncated
projections. The comparative evaluation clearly depicts the algorithmic performance
of all investigated 3D methods under a uniform evaluation framework. In general,
ATRACT appears to be more robust than the explicit water cylinder extrapolation
in severe truncation case. Contrary to the heuristic methods, the techniques that
come with either a sparse set of global data or prior knowledge achieve the ROI re-
constructions in a more accurate and robust manner. The decision on which method
should be selected relies on multiple factors, but the presented results could be used
as the first indicator for the ease of such selection.



Kurzfassung

C-Bogen-basierte Flachdetektor-Computertomographie ist ein vielversprechendes In-
strument für die chirurgische Behandlung sowie zur Diagnose neurovaskulärer Krank-
heiten. Hierbei erlaubt das Verfahren die Analyse chirurgischer Implantate, sowie die
Führung von Operationswerkzeugen noch während des Eingriffs. In der Mehrheit der
endovaskulären Behandlungen sind nur kleine Bereiche der Anatomie von Interesse,
sodass das Blickfeld, engl. Volume-of-Interest (VOI), in der Regel beschränkt ist.
Das VOI wird hierbei oft so gewählt, dass nur Objekt- und Gefäßspezifische Infor-
mationen wie z.B. die Ausdehnung eines Stents oder die arterielle Wandapposition
beinhaltet sind. Um dem Prinzip von “so niedrig wie angemessen erreichbar” zu
folgen, ist es nötig, Röntgendosis außerhalb des VOI mittels Kollimation abzuschir-
men, was zu einer deutlichen Reduzierung der Patientendosis führt. Jedoch sind die
daraus resultierenden Projektionsbilder eingeschränkt, was bei Verwendung gewöhn-
licher Rekonstruktionsalgorithmen typischerweise zu Trunkierungsartefakten führt.

Das hauptsächliche Ziel der Dissertation liegt in der algorithmischen Entwicklung
verschiedener Korrekturmethoden von Trunkierungsartefakten, die für gängige Auf-
nahmeverfahren geeignet sind. Zuerst wird eine neuartige Extrapolationsmethode
untersucht, die Konsistenzbedingungen des Sinograms benutzt um fehlende Daten
wiederherzustellen. Obwohl die Methode derzeit auf die 2D Fächerstrahlgeometrie
begrenzt ist, zeigen die Ergebnisse eine deutliche Reduzierung der Trunkierungsarte-
fakte. Außerdem werden drei Algorithmen vorgestellt, die entweder mit einer ana-
lytischen, gefiltereten Rückprojektion oder einer iterativen Rekonstruktion arbeiten.
Diese ermöglichen eine 3D Rekonstruktion von lateral trunkierten Projektionsdaten,
und sind deshalb vor allem für die klinische Anwendung geeignet. Die erste Meth-
ode ist eine Weiterentwicklung des ATRACT Algorithmus, welche vor allem bei stark
trunkierten Daten effektiv ist. Die rechenaufwendige, globale Filterung von ATRACT
wurde durch eine effiziente 1D bzw. 2D Faltung zu einem praktisch nutzbaren Algo-
rithmus erweitert. Die zweite Methode ist auf Bildgebungapplikationen ausgerichtet,
bei denen das VOI eine hohe Bildqualität aufweisen muss, z.B. für diagnostische
Zwecke. Gleichzeitig soll auch die Umgebung des VOI mit geringer Auflösung darge-
stellt werden um die Orientierung zu vereinfachen. Hierzu wird ein neuartiges Akqui-
sitionsprotokoll vorgestellt sowie drei dedizierte Rekonstruktionsalgorithmen welche
für die daraus resultierenden Projektionsdaten erstellt wurden. Die dritte Methode
zielt darauf ab, patienten spezifische Vorkenntnisse für die Expolation der trunkierten
Projektionen zu nutzen. In der Auswertung wird das algorithmische Verhalten der
untersuchten 3D Methoden in einem einheitlichen Evaluierungsrahmen dargestellt.
Im allgemeinen ist ATRACT robuster als die explizite Extrapolation, besonders bei
schwerer Trunkierung. Im Gegensatz zu heuristischen Methoden, führen Ansätze,
welche einen gewissen Anteil nicht-trunkierter Daten oder aber Vorkenntnisse über
den Patient zur Verfügung haben, zu einem genaueren und stabileren Ergebnis. Die
dargestellten Ergebnisse liefern einen Vergleich von verschiedenen trunkierungskor-
rigierten Rekonstruktionsverfahren und helfen somit die Auswahl für einen individuell
passenden Ansatz zu erleichtern.
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C H A P T E R 1

Introduction

1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Organization of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

An essential issue in radiology today is how to reduce patient dose without com-
promising image quality. In many clinical applications and workflows, such as follow-
up examination of deployed stents/flow-diverters, cochlear implants and needle biop-
sies, only a small portion of the patient may be of diagnostic interest. This enables
the idea of region of interest (ROI) imaging, utilizing an X-ray beam collimator to
transaxially and axially shield unnecessary radiation during image acquisition. In this
manner, only the diagnostic ROI is being irradiated by X-rays, resulting in a sub-
stantial reduction in patient dose. However, the resulting transaxially truncated pro-
jections pose a challenge to conventional reconstruction algorithms and could yield a
dramatic degradation of image quality if no effective counter-measures are performed
to rectify truncation artifacts. Therefore, the primary focus of this thesis lies on the
algorithmic development of various truncation artifact reduction techniques that are
suitable for different ROI imaging applications.

This chapter first presents the general motivation and remaining challenges of
ROI imaging in Section 1.1. Then, a summary of the major scientific contributions
of this thesis to the progress of research and an overview of the thesis chapters are
described in Sections 1.2 and 1.3, respectively.

1.1 Motivation

1.1.1 Radiation and Radiation Dose Reduction
Nowadays, even though the most frequent X-ray examinations are still conducted
by using two-dimensional (2D) fluoroscopy, the utilization of three-dimensional (3D)
cone-beam imaging systems, such as diagnostic Computed Tomography (CT) or an-
giographic C-arm Computed Tomography (C-arm CT), has increased immensely over
the years. 3D imaging has advantages of offering more precise anatomical informa-
tion and higher low-contrast resolution and is thus preferred by many clinicians for
complex imaging tasks [Miss 00, Hoch 02, Suga 02].

However, X-ray examinations through 3D imaging involve substantial radiation
dose and have already become the biggest medical contributor of annual collective

3



4 Introduction

C T
9 %

A n g i o g r a p h y
a n d  i n t e r v e n t i o n  
2 %

C o n t r i b u t i o n  o f  t o t a l  f r e q u e n c y
G e r m a n y

M a m m o g r a p h y
7 %

G I  a n d  u r o g e n
2 %

S k e l e t o n
3 0 %

T h o r a x
1 0 %

D e n t a l
3 9 %

O t h e r s
0 . 5 %

C T
6 3 %

C o n t r i b u t i o n  o f  c o l l e c t i v e  e f f e c t i v e  d o s e
G e r m a n y

A n g i o g r a p h y  
a n d  i n t e r v e n t i o n  

1 9 %

M a m m o g r a p h y
1 %

G I  a n d  u r o g e n
5 %

S k e l e t o n
8 . 2 %

T h o r a x
2 %D e n t a l

0 . 3 %

Figure 1.1: Contribution of various X-ray imaging procedures to total frequency
(left) and to collective effective dose (right) in Germany, 2012. Statistics are taken
from Umweltradioaktivität und Strahlenbelastung im Jahr 2013 [BMUB13].

Type of examination Effective dose E [mSv]
Radiographic examinations
Teeth ≤ 0.01
Extremities ≤ 0.01− 0.1
Skull 0.03− 0.1
Cervical spine (2 projections) 0.1− 0.3
Thorax (1 projection) 0.02− 0.08
Mammography (2 projections) 0.2− 0.6
Thoracic spine (2 projections) 0.5− 0.8
Lumbar spine 0.8− 1.8
Pelvis 0.5− 1.0
Abdomen 0.6− 1.2
Examinations with radiography/fluoroscopy
Stomach 6− 12
Intestine (small intestine or colon) 10− 18
Gall bladder 1− 8
Urinary tract 2− 5
Phlebography 0.5− 2
Arteriography and intervention 10− 30
CT examinations
Skull 2− 4
Spine 2− 11
Thorax 6− 10
Abdomen 10− 25

Table 1.1: Mean value of the effective dose E of X-ray relevant examinations on stan-
dard patients with a body weight of 70± 5 kg. Statistics are taken from [BMUB13].
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dose to the population [BMUB13]. As shown in Fig. 1.1, both interventional and
diagnostic CT cause large radiation doses compared with other traditional 2D X-ray
imaging procedures. It can also be argued that CT examinations and angiographic
interventions occupy only 9% and 2% of total examinations, but made contributions
of as high as 63% and 19% to the collective effective dose, respectively.

Effective dose E, that is calculated from the measured dose weighted by the or-
ganic tissue sensitivity, can be used as a measurement for potential radiation risk.
Table 1.1 presents standard values of E for various X-ray examinations published by
German Federal Ministry for the Environment, Nature Conservation, and Nuclear
Safety ([BMUB13]). We can see that the radiation dose levels from most of the CT
or fluoroscopy examinations are already higher than the annual natural background
radiation (e.g., caused by radon gas or cosmic radiation) of about 3.1 millisievert
(mSv) (according to Sources and Effects of Ionizing Radiation, UNSCEAR 2008 Re-
port [UNSC10]).

Base on these statistics, radiological examinations have been increasingly received
attention regarding radiation protection and reduction. Two general guiding princi-
ples of radiation protection of patients are developed by the International Commission
on Radiological Protection (ICRP)[ICRP07a, ICRP07b]:

1. Justification: The imaging procedure should be judged to do more good (e.g.,
diagnostic efficacy of the images) than harm (e.g., detriment associated with
radiation induced cancer or tissue effects) to the individual patient. Therefore,
all examinations using ionizing radiation should be performed only when neces-
sary to answer a medical question, treat a disease, or guide a procedure. The
clinical indication and patient medical history should be carefully considered
before referring a patient for any X-ray examination.

2. Optimization: X-ray examinations should use techniques that are adjusted to
administer the lowest radiation dose that yields an image quality adequate for
diagnosis or intervention (i.e., radiation doses should be As Low as Reasonably
Achievable (ALARA)). The technique factors used should be chosen based on the
clinical indication, patient size, and anatomical area scanned; and the equipment
should be properly maintained and tested.

The optimization principle suggests that the X-ray imaging process must be optimized
towards dose reduction and the examination is performed using radiation doses that
must be kept following ALARA, consistent with the interventional/diagnostic tasks.
These guidelines have driven radiologists, physicists, technologists and researchers
over the years to develop new methods of radiation dose reduction without compro-
mising the image quality.

So far, various strategies and technologies have been developed to reduce the ra-
diation dose. The first choice for modern scanners is to adjust the X-ray tube current
according to patient size and shape, to minimize the radiation dose (i.e., automatic
exposure control (AEC)). Using this method, a dose reduction of 20-40% can be
achieved, depending on the body region and the size of the patient [Gies 99, Mulk 05].
Further dose reduction strategies involve adjusting kilovoltage (kV) based on the pa-
tient size [McCo 09], noise control strategies in reconstruction or data processing
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[Wang 06, Bai 09], improving detector efficiency [Hsie 09] and adoption of iterative
reconstruction algorithms [Elba 02, Lasi 07].

Alternatively, an examination-specific dose reduction strategy is to employ X-ray
beam collimation so that only a diagnostic region of interest (ROI) is exposed to
X-rays and thus avoid unnecessary radiation doses in the peripheral region. This
method yields a dose reduction of up to 90%, depending on the size of the imaged
volume to be irradiated [Maie 13]. Since it is the foundation of this research, ROI
imaging will be elaborated in detail in the following.

1.1.2 ROI Imaging with X-ray Collimation
For both diagnostic CT and interventional C-arm CT, the dimensions of the imaged
field of view (FOV) primarily depends on the detector size, if no collimation is taken.
For instance, standard angiographic C-arm systems are typically equipped with a flat
detector in the size of 30 × 40 cm2 with a resolution of 2480 × 1920 pixels. Such a
detector allows the reconstruction of a non-collimated volume of 22 cm (in-plane)
and 16 cm (in the z-axis), with a spatial resolution of up to 0.1 × 0.1 × 0.1mm3.
Although the FOV is large, the surgeon/physician’s focus can be relatively small,
such as the region of the intervention, the cochlea in the inner ear, an implanted
stent or a coiled aneurysm in a vessel. Figure 1.2 shows four different clinical ap-
plications representing needle biopsy procedure (top-left), tumor therapy (top-right),
endovascular treatment of an intracranial aneurysm (bottom-left) and cochlear im-
plant (bottom-right), respectively. In each of the patient cases, a potentially optimal
FOV is selected and indicated by a white rectangle or circle. The suspected disease
presentation or the diagnostic ROI is recognized as the Kirschner wire (K-wire)(∼ 4
cm length), the targeted residual tumor (∼ 8 cm diameter), the deployed stent (∼ 3
cm length) and the right inner ear (∼ 3.5 cm depth), respectively. It can be seen
that in these clinical examples, the actual ROIs that the physician would target only
cover a small fraction of the total scan volume, thus imaging of the complete FOV
may not be necessary.

Following the ALARA principle, it is highly desirable to reduce these unnecessary
peripheral doses by using ROI imaging strategies. That means, X-ray beams need to
be collimated in both horizontal and vertical directions to image only the suspected
disease area or the diagnostic ROI and shield the radiation exposure outside the ROI.
Nowadays, a collimator is equipped on most of CT/C-arm CT scanners. It is a highly
attenuating metallic barrier (typically made of lead or tungsten) positioned between
the X-ray source and patient (prepatient collimation), with an aperture in the middle
to define the beam coverage. The collimator provides a mean to save patient dose
by limiting the irradiated field to fit the ROI. Figure 1.3 depicts a non-truncated
projection of the clinical data (left) and the corresponding medium truncated ROI
projection via a real collimation (right).

The reduction of the FOV in a 3D volume is approximately proportional to the
reduction of radiation dose. It has been demonstrated in [Maie 13] that the effective
dose E can be reduced dramatically using C-arm based ROI imaging. With non-
truncated data, i.e., an FOV of 30×40 cm2, the resulting effective dose E is up to 2.7
mSv in a standard head scan. When only a subregion of 5× 4 cm2 is irradiated, the
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Figure 1.2: Four different clinical examples representing needle biopsy proce-
dure (top-left), tumor therapy (top-right), endovascular treatment of an intracranial
aneurysm (bottom-left) and cochlear implant (bottom-right), respectively. The white
rectangle or circle indicates the potentially optimal FOV and the arrow indicates the
ROI in each case. Images courtesy of Siemens Healthcare GmbH, © Siemens Health-
care.

effective dose is dramatically reduced to 0.1 mSv, by a factor of 27. Note that even
this reduced FOV still covers the region of intervention, such as for cochlear implants
or stent/flow-diverters deployment etc., at a considerably low X-ray dose.

Although it is beyond the scope of this thesis, using collimation is also found to
improve image quality within the ROI, for instance, the reduction of X-ray scatter on
the detector. This is because the X-ray collimator limits the field of the patient being
exposed to radiation, and this will reduce the overall number of scattered photons
(more specifically, the ratio of scattered to primary photons is reduced). It has been
shown that scattered radiation is roughly proportional to the scan FOV [Dobb 00].
That means, if the area of the irradiated field is reduced by half, scattered radiation
is likewise reduced by 50%. Relevant research and investigation on using collima-
tion to reduce X-ray scatter in cone-beam breast CT can be found in [Chen 08b].
Furthermore, Cho et al. [Cho 07] showed that ROI imaging can be used not only
for reducing imaging radiation exposure to the patient and scatter to the detector
but also for potentially increasing the spatial resolution of reconstructed images in
microCT.
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Figure 1.3: Illustration of a projection image acquired from (left) full FOV scan
and (right) ROI scan. Images courtesy of CHI St. Luke’s Health - Baylor St. Luke’s
Medical Center, Houston, TX, USA.

1.1.3 Primary Application: Neurointervention with C-arm CT

Every year about 30,000 people in the United States suffer an intracranial aneurysm
rupture and the annual rate of aneurysm rupture is approximately 10 per 100,000
persons. Intracranial aneurysms are usually treated by endovascular embolization.
It is a surgical procedure primarily involving apposition of micro devices (e.g., coils
or stent) in the parent artery or aneurysm, to prevent blood flow into the aneurysm
sac over time. The utilization of intracranial stents has immensely increased after
self-expandable stents were developed specifically for the endovascular treatment. It
has been shown that full stent deployment and good apposition of the stent margins
to the arterial wall are of major importance for a successful embolization [Benn 05].
Thus, clear visualization of both the stent struts and their adaptions to arterial walls
and aneurysmal lumen presents a great need for imaging systems.

Angiographic C-arm Computed Tomography (C-arm CT) was initially targeted
at neuroendovascular imaging of contrast-enhanced vascular structures. Figure 1.4
shows two typical C-arm angiography scanners for different applications. Such scan-
ners are able to provide projection radiography, fluoroscopy, and digital subtraction
angiography (DSA) in a single setup, within the interventional radiological suite.
Moreover, C-arm systems can also generate CT-like 3D volumetric images that offer
both high low-contrast resolution and 3D spatial orientation of anatomical struc-
tures. This is particularly valuable for endovascular treatment since 3D images
could facilitate proper analysis of a surgical implant and intra-procedural guidance
[Akpe 05, Doel 08]. Technically, these imaging tasks may also be assigned to 2D
fluoroscopy on angiographic C-arm systems. However, some surgical devices, such
as stents or flow-diverters, often possess desirable material characteristics such as
low-profile and high flexibility, and thus are difficult to be visible in 2D fluoroscopic
images. Figure 1.5 gives an example to illustrate the superiority of 3D imaging over
conventional 2D fluoroscopy when localizing a low-profile stent with respect to the
treatment region.

Although 3D imaging facilitates the neurovascular diagnosis and intervention such
as endovascular embolization, it involves large cumulative radiation dose to the pa-
tient when repeated scans or follow-ups are performed over the same anatomical



1.1 Motivation 9

Figure 1.4: C-arm angiography systems (Siemens Healthcare GmbH, Forchheim,
Germany): (left) biplane system typically used in neurointervention and (right)
robotic monoplane system that is typically used in a surgical environment. Images
courtesy of Siemens Healthcare GmbH, © Siemens Healthcare.

Figure 1.5: Visualization of a deployed neurological stent with respect to the treat-
ment region in (left) view-aligned 2D fluoroscopic image, and (right) rendered volume
from 3D imaging. Images courtesy of CHI St. Luke’s Health - Baylor St. Luke’s Med-
ical Center, Houston, TX, USA.
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region. In the majority of endovascular treatments, intra-procedural updates of the
imaged object often are restricted to a small targeted ROI. Such an ROI is often the
region of intervention that contains device specific information such as stent expan-
sion, margin apposition, and aneurysm neck coverage, etc. Under such circumstances,
the X-ray beam can be collimated closely to the ROI only (e.g., stents, coils, or flow-
diverters) within the patient, reducing unnecessary radiation doses outside the ROI.
By doing so, a considerable reduction of radiation doses to the patient and higher
contrast due to reduced scatter can be achieved.

1.1.4 Challenges

In most angiographic C-arm systems, 3D volumetric images are obtained using ana-
lytical filtered-backprojection (FBP) reconstruction algorithms, such as the Feldkamp-
Davis-Kress (FDK) method [Feld 84]. The FDK algorithm is both efficient and ro-
bust, yielding superior reconstructions in practice. However, due to the non-local
property of the ramp filter within FDK, reconstruction of any point of an object
requires the knowledge of the projections even far away from the point at the same
transaxial position. This requirement, however, is not satisfied anymore if projections
are transaxially collimated during 3D ROI imaging. Therefore, the direct applica-
tion of FDK on truncated data leads to severe truncation artifacts. These artifacts
manifest as a bright ring/cupping at the edge of the 3D ROI images and noticeably
contaminate the reconstruction results.

As a counter-measure, heuristic extrapolation schemes, e.g., the water cylinder
extrapolation [Hsie 04], are usually applied, as a pre-processing step, to reduce trun-
cation artifacts. However, such methods primarily rely on techniques that complete
the truncated data by means of a continuity assumption at the truncation edge and
thus appear to be ad-hoc. It is of practical significance to develop an algorithm for
C-arm based ROI imaging that is of comparable accuracy to FDK reconstructions
from non-truncated projection data.

Furthermore, there also arises some imaging applications that require spatially
varying image quality, e.g., a high resolution inside an ROI for diagnosis and relative
low image quality outside the ROI for orientation. For these applications, informa-
tion outside the ROI yields rather adequate image quality but allows an overview
orientation such as locating other organs, catheters or surrounding landmarks. Both
the acquisition and reconstruction of such data also pose challenges to conventional
reconstruction algorithms.

1.2 Original Contributions

The scientific focus of this work lies on the algorithmic development of various trunca-
tion artifact reduction techniques that fulfill different imaging application scenarios.
This section provides an overview of the original contributions of this thesis along
with the corresponding scientific publications.
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ROI Imaging without Prior Knowledge

Reconstruction algorithms that require no prior knowledge are potentially suitable
for any clinical workflows. These algorithms pose little constraints on the availability
of prior image data such as preoperative scans and involve no additional dose to the
patient. The following research has been conducted in this category:

• An algorithm that uses neither prior knowledge nor explicit extrapolation is
developed. It follows the analytic FDK framework, but is by construction more
robust with respect to truncated data. Two variants are suggested to further
improve computational efficiency and image accuracy. Furthermore, several
steps that need to be undertaken to make the algorithm suitable for clinical
application are presented.

• A sinogram completion method based on data consistency conditions is pro-
posed. The consistency conditions are theoretically derived from the Helgason-
Ludwig conditions and can be efficiently evaluated via 2D FFT. The method
aims to reduce both high-frequency cupping artifacts as well as low-frequency
bias, in the reconstructed volume.

These original algorithmic developments were presented at three international con-
ferences [Xia 12, Xia 13a, Xia 13b]. Parts of the work have also been published in
two journal articles [Xia 14b, Xia 14c] and submitted to a journal [Xia 15a] (under
review).

ROI Imaging with Prior Knowledge

In C-arm CT, some specific applications indeed provide prior information, e.g., flu-
oroscopic images during an isocenter procedure. It is found that image quality can
be considerably improved with such information. In this thesis the following achieve-
ments have been made in this category:

• A concept of a new interleaved acquisition scheme is proposed, which would
allow acquiring both a high number of truncated data and a low number of
non-truncated data within one C-arm sweep. Moreover, three reconstruction
pipelines that are particularly dedicated to such data are developed. All meth-
ods are able to generate a 3D image with spatially varying image quality.

• A refined extrapolation scheme, based on the estimation of a 3D patient outline
model, is suggested. The method brings about a major improvement in image
quality for C-arm based ROI 3D imaging, with essentially low-dose, prior fluo-
roscopic images.

These original algorithmic contributions were presented at two international confer-
ences [Kaes 15, Xia 14a]. Parts of the work have also been published in a journal
article [Xia 15b].
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Image Quality Assessment

Reducing radiation exposure while retaining the high quality of images is the main
goal of this research. To this end, the following image quality assessments were
conducted:

• An ROI algorithm that requires no prior knowledge has been evaluated towards
clinical application in endovascular treatment.

• All proposed 3D algorithms have been comparatively evaluated in a uniform
framework. To validate the robustness of these methods for realistic problems,
we used 16 clinical datasets from different patients that were acquired in an
interventional suite.

Both points underline the practical relevance and impact of the current research.
Parts of the work were presented at two medical conferences [Chin 12, Ahme 14] and
have been submitted to a clinical journal [Chin 15].

In summary, the results of the thesis were presented at seven international confer-
ences [Chin 12, Xia 12, Xia 13a, Xia 13b, Kaes 15, Ahme 14, Xia 14a] and three journal
publications [Xia 14b, Xia 14c, Xia 15b].

1.3 Organization of the Thesis
This section presents an organization of the thesis with a brief description of each
chapter that provides a reading guide to this thesis. Furthermore, a graphical overview
of the thesis structure is also presented in Fig. 1.6.

Chapter 2 - Region-of-Interest Imaging: State of the Art

This chapter first introduces the traditional FDK reconstruction algorithm and ex-
plains why it fails at obtaining an accurate image from transaxially truncated data.
Then, a literature overview of previous related work is provided, including empir-
ical, approximated reconstruction methods, data completion methods using prior
knowledge, exact reconstruction schemes as well as ROI imaging-specific adaption
strategies.

Chapter 3 - Accurate Data Extrapolation using Data Consistency Conditions

This chapter suggests a new direction for data extrapolation scheme. The aim is
to take advantage of data consistency conditions to achieve superior image qual-
ity within an ROI. To this purpose, firstly the existing data consistency conditions
(Helgason-Ludwig) along with their variants are reviewed. Motivated by the previous
observations, a set of the consistency conditions in the Fourier space is theoretically
derived. Then, we propose a method that extrapolates the truncated sinogram with
data from a uniform ellipse of which the parameters are determined by optimizing
these consistency conditions. Finally, preliminary experimental results from a simu-
lated phantom are presented.
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Chapter 4 - Approximate Truncation Robust Computed Tomography - ATRACT

In this chapter, the original truncation robust algorithm, namely ATRACT, is first
derived in the Fourier domain. Although it is robust to data truncation, the method
involves performing 2D Radon transform and its inversion for each projection and
thus is computationally very expensive. For practical use, two variants of the original
ATRACT are proposed. One is based on expressing the 2D Radon-based filter as an
efficient 2D convolution with an analytically derived kernel. The second variant is
to adapt ATRACT in 1D to further reduce computational complexity. Both variants
lead to a noticeable computational speed-up and thus make ROI imaging applicable
to interventional workflows. Finally, several steps are presented that need to be
undertaken to make the algorithm suitable for clinical application.

Chapter 5 - Region-of-Interest Reconstruction Algorithms for Shutter Scan Ac-
quisition

This chapter presents a proof-of-concept study of a new interleaved acquisition,
namely shutter scan. That is, within one scan, to generate a high number of truncated
projections and a low number of full/non-truncated FOV projections simultaneously.
This technique would allow obtaining a 3D image with a particularly high-resolution
ROI while capturing the external anatomical structures by reconstructing a sparse
set of non-truncated projections. Even though that would involve the acquisition of
a sparse group of non-truncated projections, the overall applied dose still remains
considerably below the amount of a conventional scan. However, strong streaking
and cupping artifacts will arise in the reconstruction of shutter scan data. There-
fore, three reconstruction strategies are suggested that are capable of reconstructing
and combining such data and lead to a hybrid volume with spatially varying image
quality.

Chapter 6 - Patient Bounded Extrapolation Method using Patient-Specific Low-
Dose Priors

This chapter addresses a prior image-based extrapolation method that brings about
major improvements in the accuracy of 3D ROI imaging, even in the presence of
severely truncated data. The method utilizes two non-collimated fluoroscopic images
that are usually generated during the isocentering procedure before a 3D acquisi-
tion. It does not require any additional hardware and can be readily integrated into
the existing interventional workflow. First, a rough 3D patient shape is estimated
from two fluoroscopic projections, using per-slice ellipse fitting. Forward projecting
this 3D model for any projection angle acquired during the actual ROI scan gives
the patient bounded information for the corresponding projection. Then, improved
detruncated/extrapolated projection data could be obtained by adapting the extrap-
olated profile to fit the known profile boundary points.

Chapter 7 - Evaluation and Results

The reconstruction algorithms presented in Chapter 4 to Chapter 6 come with a dif-
ferent trade-off between image quality and radiation dose and may thus be suitable for



14 Introduction

different application scenarios. This motivates us to conduct a detailed comparative
evaluation of the proposed algorithms using a uniform framework in Chapter 7. At
the beginning of the chapter, the experimental setup is described that includes stud-
ied clinical datasets, truncation simulation as well as image quality metrics. Then,
each of proposed methods is evaluated individually/internally with its several vari-
ants/parameters. After this parametrization, the best candidate of each group of
the algorithms is picked for the following comparative evaluation. Finally, evaluation
results are discussed and conclusions are drawn.

Chapter 8 - Outlook

In this chapter, future research work and directions to address the remaining issues
of C-arm based 3D ROI imaging are discussed.

Chapter 9 - Summary

The final chapter gives an overview of the conducted research and the progress
achieved by the scientific work presented in this thesis.
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Tomographic ROI reconstruction from transaxially truncated projection data is
always challenging and can result in strong truncation artifacts. Such artifacts typi-
cally manifest as a high-frequency cupping effect and a low-frequency bias in the 3D
volumetric image. This chapter provides a thorough literature overview of previously
published work concerning the reduction of these truncation artifacts. Section 2.1
introduces the 3D imaging geometry and associated notations that are used in this
thesis. Section 2.2 provides a few examples to illustrate why the analytical FDK al-
gorithm cannot tolerate any data truncation. Thereafter, Section 2.3 reviews several
existing heuristic extrapolation methods as well as various data completion strate-
gies. Section 2.4 shows how the truncation problem can be partially solved using an
alternative Radon inversion – the differentiated backprojection method (DBP) and
presents its several variants and the associated sufficiency conditions. In Section 2.5,
two ROI imaging-specific modifications, namely filtered ROI imaging and offset de-
tector acquisition, are described. Furthermore, two alternative ROI reconstruction
techniques, wavelet based localization and lambda tomography, are introduced in
Section 2.6. Finally, Section 2.7 discusses the pros and cons of these state-of-the-art
methods and summarizes the chapter.

2.1 Geometry and Notations
This section introduces the imaging geometry and associated notations, which are
needed throughout this thesis. Let us denote the object density function f (x) with
x = (x, y, z). Focusing on the 3D cone-beam (CB) imaging geometry with a flat-

17
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Figure 2.1: Illustration of the circular cone-beam geometry with a flat-panel de-
tector. Notations: a (λ) = (R cosλ,R sin λ, 0) describes the trajectory of the X-ray
source, with the patient-detector distance R and the rotation angle λ. ew (λ) is
the unit vector orthogonal to the flat-panel detector, and eu (λ) and ev (λ) are the
orthogonal unit vectors at distance D from the source.

panel detector shown in Fig. 2.1, we assume that the X-ray source moves along a
circular trajectory a (λ) = (R cosλ,R sin λ, 0) during the scan with R indicating the
source-isocenter distance. The vector pair (u, v) denotes the detector coordinate and
the point (0, 0) is set to the orthogonal projection of a (λ) onto detector plane. Then,
the 2D projection g (λ, u, v) at the rotation angle λ obtained for all possible unit
vectors α (λ, u, v) can be written as

g (λ, u, v) =
∞̂

0

f (a (λ) + tα (λ, u, v)) dt, (2.1)

with
α (λ, u, v) = 1√

u2 + v2 +D2
(ueu (λ) + vev (λ)−Deω (λ)) , (2.2)

where D is the source-detector distance, eω (λ) = (cosλ, sin λ, 0) is the unit vec-
tor orthogonal to the detector plane and pointing toward the source, and eu =
(− sin λ, cosλ, 0) and ev = (0, 0, 1) are orthogonal unit vectors in the direction along
which u and v are measured.

2.2 FDK Algorithm and Truncation Artifacts

2.2.1 FDK Reconstruction Algorithm
The reconstruction problem is to restore f (x) from CB data g (λ, u, v) collected over a
suitable angular range, e.g., of π plus fan-beam angle in a short-scan acquisition. The
Feldkamp–Davis–Kress algorithm (FDK) [Feld 84], which is an effective extension of
the 2D fan-beam filtered backprojection (FBP), is commonly used for the circular
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cone-beam reconstruction due to its simplicity and efficiency. It approximately com-
putes an estimate f (FDK) of the real object function f by backprojecting the filtered
projection data g(FDK)

F . For a moderate cone-angle, the differences between f (FDK)

and f are small and often acceptable. More specifically, the standard FDK algorithm
consists of the following three steps:

• Step 1: Cosine- and Parker-like weighting of projection data to obtain pre-scaled
projection data g1 (λ, u, v):

g1 (λ, u, v) = Dm (λ, u)√
D2 + u2 + v2

g (λ, u, v) , (2.3)

where m (λ, u) denotes a weight which is constantly 0.5 for a full circular scan
but has to be determined to approximate the data redundancy for a short scan
[Park 82].

• Step 2 : 1D row-wise ramp filtering to obtain filtered projection data gF (λ, u, v):

g
(FDK)
F (λ, u, v) =

∞̂

−∞

hR (u− u′) g1 (λ, u′, v) du′, (2.4)

where hR (u) is the ramp filter kernel in the spatial domain that is defined as
follows

hR (u) =
1/2ˆ

−1/2

|ωu| exp (j2πωuu) dωu = 1
2

sin (πu)
πu

− 1
4

sin
(
πu
2

)
πu
2

2

(2.5)

with the Fourier representation of the ramp kernel |ωu|.

• Step 3: 3D cone-beam backprojection with a weighting function of the source-
detector distance to get the estimated object function f (FDK) (x):

f (FDK) (x) =
λ2ˆ

λ1

RD

[R− x · ew (λ)]2
gF (λ, u, v)dλ, (2.6)

where x = (x, y, z) and [λ1, λ2] is the short scan angular range.

Apart from its simplicity and efficiency, another important advantage is that FDK,
compared with the exact methods proposed in [Kats 03, Zou 04], nicely handles data
truncation in the axial direction benefiting from its row-wise filtering. However,
due to the non-local property of the ramp kernel, FDK is unable to accurately re-
construct transaxially truncated data and gives rise to severe truncation artifacts
in reconstructed images. A detailed explanation will be provided in the following
section.
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Figure 2.2: Illustration of the non-local property of the FDK algorithm: (left)
sinogram of the object with a single distorted pixel (pointed by the arrow), (middle)
reconstruction from the contaminated sinogram and (right) difference image with
respect to the reference.

2.2.2 Truncation Artifact
The data truncation is caused either by the limitation of the detector size or by
specifically obstructing the X-ray beams using a physical collimation primarily for
the reduction of the patient dose, as described in Section 1.1.2. This thesis focuses on
the latter case although both cases pose a challenge for the straightforward application
of the FDK algorithm.

For a long period of time, it is believed that accurate reconstruction of an object
of interest is impossible if projection data are truncated, since only an incomplete
set of the line integrals of the entire object is available in such scenarios. This belief
partly results from the non-uniqueness solution for the interior problem1, and partly
from the non-local property of analytic FBP/FDK algorithms.

Let us recall the filtering and backprojection steps in the FDK algorithm [Eqs. (2.4)
and (2.6)], which implicitly imply the non-local property of the algorithm: gF is com-
puted by an integral over the range [−∞,∞] with respect to u. Since the ramp filter
kernel hR (·) has an infinite support, each point in this interval is required. Even
a single point contamination or missing will degrade the complete projection after
filtering. In the following backprojection step, each filtered projection gF makes a
contribution of each single point in the reconstructed image [see Eq. (2.6)]. There-
fore, even a single pixel distortion in projection data will prevent FDK algorithm to
accurately reconstruct the original object. Figure 2.2 illustrates this case, where the
Shepp-Logan phantom was reconstructed from a complete sinogram with one pixel
being set to a singularity value (indicated by the black arrow). The difference image
shows that the errors from this single distorted pixel are distributed over the entire
image domain.

Thus, due to its non-local characteristic, the FDK algorithm cannot accurately
reconstruct the object from the truncated projection data, in which the unmeasured
data are replaced by 0. Specifically, the FDK ramp filtering of each truncated projec-
tion has a sudden change at the boundaries of the scan FOV, between the measured

1Later on, Noo et al. [Noo 04], Defrise et al. [Defr 06], Ye et al. [Ye 07] and Kudo et al.
[Kudo 08] proved that it is also possible to get the uniqueness of solution to ROI problem if some
data sufficiency conditions are satisfied. We describe these methods in more detail in Section 2.4.
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data and zeros (caused by truncation), introducing artificial frequencies and result-
ing in noticeably bright rim artifacts at the border of the ROI. Such artifacts are
often referred to as high-frequency cupping artifacts in literature. Figure 2.3 shows
an example of a typical truncation-induced cupping artifact in cone-beam truncated
data. This patient dataset was acquired on a C-arm CT system (Artis-Zee, Siemens
Healthcare, Forchheim, Germany) in a clinical environment. Note that although the
artifacts reduce towards the center of the ROI, a low-frequency bias/offset appears
everywhere in the reconstructed volume and the relative contrast is also modified.

Figure 2.3: Illustration of truncation artifacts in the FDK reconstruction of trun-
cated data: (left) sagittal slice, (middle) coronal slice and (right) transversal slice.
Images courtesy of CHI St. Luke’s Health - Baylor St. Luke’s Medical Center, Hous-
ton, TX, USA.

2.3 Heuristic Truncation Artifact Reduction Methods
This section provides an overview of several commonly-used heuristic extrapolation
methods and data completion schemes for ROI reconstruction.

2.3.1 Heuristic Extrapolation Schemes
It is intuitively expected that the artifacts caused by truncation of the projection
data can be dramatically reduced if the unmeasured part of these projections is ap-
proximately estimated by an appropriate mathematical extrapolation function. This
extrapolation function typically provides a smooth continuation at the truncation
transition region such that analytic FBP/FDK-type algorithms can be applied with
less artificial high-frequency artifacts (i.e., cupping artifacts). In general, such a
smooth continuation is applied row-wise by using 1D segments of a selected mathe-
matical function that are fitted to the projection line, leading to a combined projection
that consists of the originally measured truncated part and the extrapolated part.
Moreover, the extrapolation function also incorporates any available prior informa-
tion/estimation from the measured projection data, such as the assumption of the
object shape or texture, so that quantitative accuracy of reconstruction images can
be further restored.



22 Region-of-Interest (ROI) Imaging: State of the Art

Suppose gλ,v (u) is a truncated 1D projection line at the given detector row v and
rotation angle λ, measured in an interval [umin, umax]. Then, the complete projection
line yields

g
(extrap)
λ,v (u) =

gλ,v (u) umin ≤ u ≤ umax

e (u) else
(2.7)

with a selected extrapolation function e (u).
So far, various extrapolation functions have been used in the literature, such

as symmetric mirroring of projection images (Ohnesorge et al. [Ohne 00]), water
cylinder/ellipse extrapolation (Hsieh et al. [Hsie 04], Maltz et al. [Malt 07]), smooth
function estimation (Van Gompel et al. [Van 04]), square root function extrapolation
(Sourbelle et al. [Sour 05]), optimization-based extrapolation (Maier et al. [Maie 12])
and hybrid extrapolation scheme (Zellerhoff et al. [Zell 05]). Below we shortly de-
scribe three popular extrapolation schemes, along with the schematic illustration of
each principle shown in Fig. 2.4. For convenience, all extrapolation functions are
described only for the right portion of the truncated projection; the left portion is
extrapolated analogously.

The extrapolation scheme of Ohnesorge et al. [Ohne 00] uses a symmetric mirror-
ing of the measured data with a cosine weighting, to approximate the unknown part
of projection data:

emirror (u) = (2gλ,v (umax)− gλ,v (umax − u)) cos
(
u− umax

uext − umax

)
, (2.8)

where the interval [umax, uext] defines the extrapolated region. In the method of Hsieh
et al. [Hsie 04], the missing data are estimated by integrals along parallel rays through
a 2D water cylinder as follows:

ewater (u) = 2µ
√
r2 − (u− uc)2, (2.9)

where µ denotes the water attenuation coefficient, uc denotes the location of the fitted
cylinder with respect to the detector row and r denotes the radius. As described in
Hsieh’s work [Hsie 04], the parameters uc and r can be determined by

uc =
gλ,v (umax) g′λ,v (umax)

4µ2 , r =
√
gλ,v (umax)

4µ2 + u2
w, (2.10)

where g′λ,v (umax) denote the slope of the truncation projection boundary calculated
over several samples. Moreover, based on the observation that the cross-section
boundary of the patient can be locally approximated as an ellipse, Sourbelle et al.
suggested [Sour 05] the square root function can be a good extrapolation function for
estimating patient body:

esquare (u) =
√
a · u2 + b · u+ c. (2.11)

To determine the parameters a, b, and c, the following continuity equations are used:

gλ,v (umax) =
√
a · u2

max + b · umax + c, (2.12)

g′λ,v (umax) = b+ 2a · umax

2gλ,v (umax) , (2.13)

gλ,v (ubound) =
√
a · u2

bound + b · ubound + c = 0, (2.14)
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parallel beam

Figure 2.4: Schematic illustration of the principle of three commonly used heuristic
extrapolation schemes: (top) symmetric mirroring extrapolation emirror (u), (middle)
water cylinder extrapolation ewater (u) and (bottom) square root function extrapo-
lation esquare (u). For convenience, all extrapolation functions are described for the
right portion of the truncated projection; the left portion is extrapolated analogously.
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X-ray
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Figure 2.5: Schematic illustration of the principle of data completion method using
a sine curve S. The basic assumption is that the data are consistent and continuous
along S curves, so that the truncated parts of an S curve (dashed) can be estimated
using the measured parts (solid).

where ubound denotes the patient boundary information. This additional information
is generally not available but can be roughly estimated either using the zero-order
consistency condition (all projections yield the same projection mass [Hsie 04]) or
from attenuation values of the orthogonal projection according to a water-equivalent
thickness approximation [Malt 07].

The explicit extrapolation methods are usually preferred in ROI reconstruction for
three reasons: they can be applied as a pre-processing step before reconstruction and
thus are compatible with most existing image reconstruction algorithms; the methods
are computationally very efficient; they are capable of estimating the missing data
heuristically without the requirement of prior knowledge. However, it may be difficult
to apply these heuristic methods to severe truncation cases that are often encountered
in ROI scans.

2.3.2 Sinogram Recovery using Sinusoidal Trace
Contrary to a 1D row-wise extrapolation discussed in the previous section, Chityala
et al. [Chit 05] and Zamyatin et al. [Zamy 07] proposed a global data completion
scheme that utilizes angular interpolation along the sine curves S that represent the
sinusoidal paths traced by the projection of an object point while the X-ray source
rotates around the isocenter.

The key assumption is that, if the feature corresponding to the sine curve does not
overlay any other feature, it will directly give the attenuation coefficient corresponding
to that feature. Thus, every point in the peripheral region (PR), i.e. outside the
ROI, corresponds to a sine curve in the projection image and its intensity will be the
minimum attenuation value along that sine curve. Consider a 2D imaging geometry
and assume p (θ, s) is the truncated sinogram of a 2D image f2D (x, y). Let f (r, ϕ)



2.3 Heuristic Truncation Artifact Reduction Methods 25

Figure 2.6: Example of the sinogram completion using sine curve traces: (left) full
reconstruction from the non-truncated sinogram, (middle) ROI reconstruction from
restored sinogram using the water cylinder extrapolation proposed in [Hsie 04], (right)
ROI reconstruction from restored sinogram using the method proposed in [Zamy 07].
The region within the two dashed lines is the actually measured FOV.

be the polar representation of the object function outside the ROI, i.e., in the PR.
Then, based on Chityala and Zamyatin’s assumption f (r, ϕ) can be estimated by the
minimum value along the associated sine curve S as (also see Fig. 2.5 for a graphical
illustration):

f (r, ϕ) = pmin (r, ϕ)
L

(2.15)

with the minimum value pmin (r, ϕ) computed as

pmin (r, ϕ) = min
(θ,s)∈S

p (θ, s) , (2.16)

where L denotes the length of X-ray path through the object. Once f (r, ϕ) was
obtained, the extended region of the sinogram could be obtained by reprojecting
f (r, ϕ) back to the corresponding sine curve. However, the intensity outside the
ROI may be greater than that of the inside, if there is a superposition of sine curves
at some locations in the sinogram. Thus, intensities must be equalized prior to
back-projection [Zamy 07]. Figure 2.6 shows an example of the sinogram completion
using the sine curve traces, compared with the heuristic water cylinder extrapolation
proposed by Hsieh et al. [Hsie 04].

Later, Constantino et al. [Cons 09] proposed a similar idea in hard-field tomogra-
phy. The algorithm first uses the Hough transform to identify individual sinusoidal
signals in the 2D sinogram and then estimates missing sinogram samples along such
traces.
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2.3.3 Data Completion using Prior Scan
The data incompleteness caused by truncation in a collimated ROI scan can also
be handled in a more accurate manner if previous, non-truncated projections of the
complete object are available.

In microCT, it has been shown that increasing the spatial resolution can facilitate
improved accuracy in many assessment tasks. One strategy to increase the resolu-
tion is the exploitation of the geometric magnification in cone-beam CT. This can
be achieved by scanning the object positioned at a small distance from the source so
that the area of interest covers a larger part of the detector. However, due to limited
detector size, the method results in data truncation for a large geometric magnifica-
tion. Azevedo et al. [Azev 95] proposed a method that acquires a second full scan at
lower resolution by placing the object close to the detector such that it is able to fit
in the detector size. Then, a forward projection of the low resolution reconstruction
is performed, which is later used to estimate the missing data in the high resolution
scan.

Similarly, Ruchala et al. [Ruch 02], Wiegert et al. [Wieg 05] and Kolditz et al.
[Kold 10] proposed a method for projection data extension based on the exploitation of
prior knowledge. To this purpose, a previously acquired 3D reference image covering
the whole object (with fewer or no truncations) is combined with truncated ROI data
acquired during the intervention. This reference image may either be acquired earlier
during the intervention on the same interventional CT system or may be available
from a previous low-dose CT scan. Either an image-based registration or a camera-
based registration is performed due to the repositioning of the patient between two
acquisitions. Furthermore, a linear intensity transformation is applied to the forward-
projected data, to compensate the intensity mismatch between two datasets, due to
different beam quality and scatter radiation. Later, Kolditz et al. [Kold 12] resolved
the acquisition and registration problems by moving the interventional C-arm instead
of the patient.

Alternatively, Sen Sharma et al. [Sen 13] suggested acquiring an additional scan
but with only a small number of non-truncated projections. Then, interpolation
and extrapolation steps are applied on this sparse set of global projections, followed
by a combination with the subsequently acquired truncated ROI projection data in
the sinogram domain. However, the image quality of reconstructions highly depends
on the number of non-truncated projections. Yu et al. [Yu 09a] developed an ROI
reconstruction scheme that is able to use two global non-truncated projections to
cope with truncation artifacts. The method is based on compressed sensing iterative
techniques and thus comes with high computational effort, which may limit its use
in clinical applications.

2.4 Exact Reconstruction Algorithm from Truncated
Data

Although being sensitive to transaxial data truncation, the FBP-type algorithms,
for decades, were the only closed form analytic expression for image reconstruction.
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Inspired by the result from PI-line-based exact helical reconstruction [Zou 04], Noo
et al. proposed a new analytical reconstruction method, namely differentiated back-
projection method (DBP), based on the relationship between the backprojection of
the derivative of the projection data and the 1D finite Hilbert inversion along specific
lines of the object function [Noo 04]. It is proven that an exact reconstruction of the
object ROI can be obtained if some data sufficiency conditions are satisfied by the
imaging configuration. In the following, the DBP method and its variants are intro-
duced, and then the reason why DBP circumvents the non-locality issue encountered
by the FBP-type methods is explained.

2.4.1 DBP Reconstruction Algorithm
In this section, we shortly review the derivation of DBP that was presented in
[Noo 04], which consists of the following two steps.

Differentiated Backprojection

Let bφ (r) represents a 2D image that is the result of backprojecting the derivative of
the 1D projections p (θ, s) with respect to the variable s, i.e.

bφ (r) =
ˆ π

0
sgn (sin (θ − φ)) ∂p (θ, s)

∂s
dθ, (2.17)

where r = (x, y), s = r · α, α = (cos θ, sin θ) and φ is a constant angle. Then,
substituting the differentiated projection by its Fourier representation yields

bφ (r) = 2π
ˆ π

0

ˆ ∞
−∞

jξsgn (sin (θ − φ))P (θ, ξ) exp (j2πξ (r ·α)) dξdθ

= 2π
ˆ π

0

ˆ ∞
−∞

jsgn (sin (θ − φ) ξ)P (θ, ξ) exp (j2πξ (r ·α)) |ξ| dξdθ (2.18)

where P (θ, ξ) is the 1D Fourier transform of p (θ, s) with respect to the variable s,
i.e.:

P (θ, ξ) =
ˆ ∞
−∞

p (θ, s) exp (−j2πξs) ds. (2.19)

By using the Fourier slice theorem that links the 1D Fourier transform of the projec-
tion, i.e. P (θ, ξ), to the 2D Fourier transform of the object function, i.e. F (ξα), we
obtain

bφ (r) = 2π
ˆ π

0

ˆ ∞
−∞

jsgn
(
ξα · β⊥

)
F (ξα) exp (j2πξ (r ·α)) |ξ| dξdθ, (2.20)

where β = (cosφ, sinφ) and α · β⊥ = sin (θ − φ). Then, the polar coordinates are
converted into the Cartesian coordinates ν = (ν1, ν2) = ξα:

bφ (r) = 2π
ˆ ∞
−∞

ˆ ∞
−∞

jsgn
(
ν · β⊥

)
F (ν) exp (j2π (r · ν)) dν1dν2. (2.21)
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For now, it is readily noted that the differentiated backprojection bφ (r) relates to the
Hilbert transform of the original object Hφf2D (r) by

bφ (r) = −2πHφf2D (r) (2.22)

with

Hφf2D (r) =
ˆ ∞
−∞

ˆ ∞
−∞
−jsgn

(
ν · β⊥

)
F (ν) exp (j2π (r · ν)) dν1dν2. (2.23)

It should be emphasized that the direction of the Hilbert transform of an image,
i.e. with angle φ, can be controlled by rearranging the projection p (θ, s) using the
symmetry property p (θ, s) = p (θ + π,−s). It is desirable to select a direction in
which the truncation is not present. In the next section, we will show how this
selection subsequently circumvents the problem of non-locality.

Finite Hilbert Inversion

According to Eq. (2.22), it is intuitive that the object function can be recovered from
the differentiated backprojection bφ (r) by a 1D Hilbert inversion along parallel lines
specified by β, i.e. f2D (r) = H−1

φ (Hφf2D (r)) . Here particularly a weighted version of
the Hilbert transform, namely finite inverse Hilbert transform [Mikh 57], was applied
such that Hφf2D (r) only needs to be known in an interval that covers the object
support in the direction β. Finally, the 2D object function f2D (r) can be recovered
by this finite Hilbert inversion for all s and t ∈ [Ls + ε, Us + ε, ]:

f2D (r) = f2D
(
sβ⊥ + tβ

)
= −1√

(t− Ls) (Us − t)ˆ Us

Ls

√
(t′ − Ls) (Us − t′)

Hφf2D
(
sβ⊥ + tβ

)
π (t− t′) dt′ + Cs

 , (2.24)

where s = r · β⊥, t = r · β and the bounds Ls, Us, ε are searched such that
f2D

(
sβ⊥ + tβ

)
is zero outside [Ls + ε, Us + ε, ] and Hφf2D

(
sβ⊥ + tβ

)
is known in

the interval [Ls, Us].
The benefit of considering this two-step DBP algorithm is two-fold: First, the

derivative is a pure local operator and can thus be accurately computed even in the
presence of data truncation. That means the backprojected image is not influenced
by the truncation. Second, although the resulting inverse Hilbert transform is a
non-local operator, the object function can still be accurately recovered through the
entire line, if certain conditions are satisfied. Figure 2.7 presents some examples of
the reconstruction using the DBP method from truncated data. The red circle or
ellipse indicates the region where the backprojected image bφ (r) is not affected by
data truncation. The subsequent finite Hilbert inversion [Eq. (2.24)] is performed
along each vertical line within the white boundaries.

2.4.2 Data Sufficiency Condition
Now we elaborate the data sufficiency conditions that the DBP method depends on.
Suppose A and B are two disjoint regions of the object. Region B consists of the
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Figure 2.7: Examples of the DBP reconstruction from (top row) the complete data,
and (middle and bottom rows) the truncated data. From left column to right column:
the sinogram, differentiated backprojection bφ (r) and the final reconstruction using
the finite Hilbert inversion [Eq. (2.24)]. The red circle or ellipse indicates the ROI.
Note that the finite Hilbert inversion is performed along each vertical line within the
white boundaries.
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Noo et al.

Defrise et al.

Kudo et al.

Figure 2.8: Schematic illustration of the data sufficiency conditions of Noo et al.
[Noo 04] (top row), Defrise et al. [Defr 06] (middle row) and Kudo et al. [Kudo 08]
(bottom row). The gray areas indicate reconstructable regions in each method.

points that are truncated in some projections while Region A is never truncated;
see Fig. 2.8 for an illustration. Then, the sufficiency condition can be summarized
as: DBP can be applied to recover an ROI inside Region A, which lies with the
union lines that do not contact Region B. Figure 2.8 (top row) exemplarily shows
the reconstructable region (indicated as a gray area) of three different truncation
scenarios when using the DBP method proposed by Noo et al. [Noo 04].

Based on the results of Noo et al. [Noo 04], Defrise et al. [Defr 06] enlarged
the reconstructable region from a given dataset by investigating the possibility of a
truncated Hilbert inversion, i.e., recovering a real variable from its Hilbert transform
along a segment that only partially covers the object support but with at least one
ending point outside the support. This study leads to a new sufficiency condition:
DBP can be applied to recover an ROI inside Region A, which lies with the union
lines that contact Region B mostly at one side [Defr 06]. Figure 2.8 (middle row)
illustrates the enlarged reconstructable region (indicated as a gray area) from the
same dataset given in the first row.

It is noted that neither of these methods can reconstruct an ROI that is entirely
embedded in the object support, as shown in the third column of Fig. 2.8. This
problem is often referred to as interior problem and is proven to be solvable if prior
knowledge regarding the reconstructed ROI is available. Two types of prior informa-
tion that are commonly used in practice, namely a known subregion in an ROI and
a sparsity model of an ROI, are introduced below.
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2.4.3 DBP with Prior Knowledge
Known Subregion

The first prior knowledge can be used to solve interior problem is a known subregion
in an ROI, which could be obtained in advance in some scenarios, such as air in
airways or images from prior scans. Inspired by the results of Noo and Defrise, Ye
et al. [Ye 07], Kudo et al. [Kudo 08] and Courdurier et al. [Cour 08] used a similar
DBP approach and investigated the truncated Hilbert inversion based on a known
subregion. They demonstrated that the interior problem can be exactly and stably
solved if a tiny subregion in the ROI is known. That means, the remaining problem
in the previous sufficiency conditions, as shown in the third column of Fig. 2.8, can
be completely solved using their approach.

Due to the absence of corresponding analytic inversion formula for these extended
uniqueness theorems, iterative algorithms, such as the projection onto convex sets
(POCS) method [Defr 06, Kudo 08], or maximum likelihood expectation maximiza-
tion (ML-EM) [Zhan 07], were used to reconstruct interior images from fully trun-
cated data. Although these algorithms are computationally expensive, they have the
advantage to be applicable to various types of truncation problems.

Piece-wise Constant Assumption

Using a known subregion as prior knowledge has its limitations since there are a lot of
situations where no precise information is available on any subregion. Therefore, the
second kind of prior knowledge was proposed based on the heuristic assumption that
an ROI is piecewise constant or piecewise polynomial [Yu 09b, Yu 09c, Yang 10]. Sim-
ilarly, no closed form analytic formula is available in this case. Thus, the compressed
sensing (CS)-based iterative algorithms, such as the total variation (TV) minimiza-
tion or high order total variation (HOT) minimization were suggested, coupled with
the data discrepancy minimization, to stably solve the interior problem [Kats 12].

2.5 ROI Imaging-Specific Adaption Strategies
This section discusses two ROI imaging-specific modifications in the acquisition strat-
egy, which involve either deploying additional hardware, i.e., a non-uniform X-ray
beam filter or adapting of current acquisition settings, i.e, shifting the detector dur-
ing acquisitions.

2.5.1 Filtered ROI Imaging
Rather than fully truncating CT data, several techniques have been suggested to use
a physical X-ray filter to shield significantly (but not completely) the portion of the
X-ray beam that does not intersect the ROI. By doing so, a substantial reduction of
the total dose can be achieved, while the patient information outside the ROI is still
roughly captured. In this manner, the truncation problem is circumvented and the
standard FDK algorithms can be applied again. These techniques are often referred
to as filtered ROI imaging in literature.
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The idea was first proposed in 2D fluoroscopy imaging by Rudin et al. [Rudi 92].
The purpose was to use an X-ray attenuating filter to reduce the patient dose during
interventional endovascular procedures. Later, Chityala et al. [Chit 04] extended
the filtered ROI concept to 3D tomographic imaging. The results were acceptable
but artifacts and considerable intensity differences arose in the reconstruction. Chen
et al. [Chen 08a] applied the filtered ROI imaging in cone-beam breast CT and
demonstrated that by using filter mask not only dose levels were noticeably reduced
both inside and outside the ROI, but also the contrast-to-noise ratio within the
ROI was improved due to less scatter radiation. However, due to low energy in
mammography, structural information outside the ROI was barely visible. Schafer
et al. [Scha 10] proposed the corresponding filtered ROI imaging technique in a
rotational angiographic system and addressed two technical issues: significant spatial
movements of the ROI during gantry rotation and large intensity differences in the
transition region. Similarly, Bier et al. [Bier 13a, Bier 13b] suggested a truncation
artifact reduction method based on the observation that weak scattered radiation
still reaches the detector and is detected outside the measured FOV, even if axial or
transaxial collimation is employed. They demonstrated that such information can be
used to estimate the truncated part of the object.

2.5.2 Offset Detector Acquisition
The standard angiographic C-arm system is equipped with a flat-panel detector, in
which the size of the FOV yields 220mm in diameter for regular circular scans. This
size is smaller than the typical patient body diameters of 300 − 500mm. Also, in
microCT, placing the object close to the X-ray source yields high geometric mag-
nification, leading to a higher spatial resolution but a smaller FOV. In these cases,
the object appears larger than the FOV, unavoidably resulting in data truncation.
In order to increase the FOV to circumvent the truncation problem, several authors
[Cho 96, Wang 02, Greg 03, Scha 11, Herb 15] proposed to offset the detector in the
direction tangential to the acquisition trajectory. This offset detector acquisition,
also termed as displaced detector acquisition, provides an asymmetric coverage of
the object at different projection angles, so that the transaxial extent of the object
can be fully covered. However, the resulting asymmetric acquisition gives rise to se-
vere shading artifacts or high deviation of pixel values, which need to be accounted
for during reconstruction.

2.6 Other Truncation Artifact Reduction Techniques

2.6.1 Wavelet-based ROI Reconstruction
The non-local property of the ramp filtering stems from the Hilbert transform, which
is discontinued in the derivative of the Fourier transform of an object function at
the origin. Berenstein et al. [Bere 93] and Olson et al. [Olso 94] showed that these
non-local filtering procedures will not increase the essential support of a function,
if the Fourier transform of this function vanishes to high order at the origin (or,
equivalently, the function itself has many vanishing moments). It was also noted that
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wavelets that are in general constructed with a large number of zero moments are
the good candidate for these functions.

The wavelet-based ROI reconstruction was first introduced by Olson et al. [Olso 94].
This algorithm follows the FBP framework and reconstructs an ROI image directly
from the 1D wavelet transform of the sinogram at each angle. However, their ap-
proach is only essentially local, because a sparse set of non-truncation projections is
needed. Later, Delaney et al. [Dela 95] and Rashid-Farrokhi et al. [Rash 97] proposed
a multiresolution tomographic reconstruction algorithm that only requires truncated
data. In this method, instead of reconstructing the original object function from its
projections, the decomposition of the object function on a 2D wavelet basis is first
recovered. The standard ramp filter is replaced by two pairs of scaling and wavelet
ramp filters, and the filtering step is conducted in the Fourier domain. Finally, the
original function is recovered through a conventional multiresolution reconstruction
filterbank from the filtered coefficients. Rashid-Farrokhi et al. [Rash 97] demon-
strated that by particularly designing wavelets that have both compact support and
a large number of vanishing moments, rapid decay after ramp filtering is observed
in both scaling and wavelet functions. This suggests that the discrete wavelet and
scaling coefficients of an object function can be computed locally using its truncated
projections. Based on these previous studies, Zhao et al. [Zhao 00] formulated the
FDK cone-beam reconstruction from the wavelet perspective and derived a formula
for 3D ROI reconstruction. The authors observed that both severe cupping artifacts
and significant constant bias could be reduced in experimental results.

2.6.2 Lambda Tomography
In contrast to standard ROI reconstruction algorithms, lambda tomography focuses
on boundary information only. Consider a 2D geometry, let f (r) be a 2D object
function with r = (x, y). Then, an approximate function Λf is reconstructed from
its local projections as

Λ̂f (ξ) = ‖ξ‖ f̂ (ξ) (2.25)

with ξ = (ξ, η) and f̂ (ξ) being the 2D Fourier transform of the function f (r) defined
as

f̂ (ξ) =
ˆ
R2
f (r) · e−jξrdr, (2.26)

where Λ is the Calderon operator that corresponds to the square root of the negative
Laplacian −4 : Λ = (−4)1/2. Lambda tomography is to reconstruct a gradient-like
function Λf (r) only from truncated projection data. However, Λf (r) is cupped in
regions where f is constant. Faridani et al. [Fari 92] studied the properties of the
Calderon operator and its adjoint, stated that a linear combination could considerably
neutralize such cupping artifacts. Due to its pure local characteristic, several authors
further developed the lambda tomography, such as computing it from a generalized
Radon transform, an extension for limited angle and cone-beam geometry, etc.; see,
among others [Kats 97, Kats 06, Yu 06b, Yu 06c].

In general, although it is unable to provide quantitative assessment, lambda to-
mography is mathematically important. Typically, the method is commonly used for
visualization of the object due to enhanced boundary information.
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2.7 Discussion and Summary
This chapter reviewed the current state of the art in ROI imaging from truncated data.
We firstly provided an overview of commonly-used heuristic extrapolation schemes
that typically target to reduce high-frequency artifacts by providing a smooth con-
tinuation at the truncation transition region. These methods include symmetric
mirroring of projection images (Ohnesorge et al. [Ohne 00]), water cylinder/ellipse
extrapolation (Hsieh et al. [Hsie 04], Maltz et al. [Malt 07]), smooth function estima-
tion (Van Gompel et al. [Van 04]), square root function extrapolation (Sourbelle et
al. [Sour 05]), optimization-based extrapolation (Maier et al. [Maie 12]) and hybrid
extrapolation scheme (Zellerhoff et al. [Zell 05]). Although these methods can be car-
ried out without prior information, they rely on heuristics. The degree of accuracy of
these extrapolations highly depends on the level of truncation. They may be difficult
to correct for the severe truncations that are often encountered in ROI scans because
the large missing portion of projection data is almost unpredictable and hard to be
empirically extrapolated in an accurate manner.

The sinogram recovery method by tracing sinusoidal sinogram curves proposed by
Chityala et al. [Chit 05], Zamyatin et al. [Zamy 07] and Constantino et al. [Cons 09]
could outperform the 1D row-wise “blind” extrapolation schemes. However, they may
also fail in severe truncation cases since less reliable measured data is available for
angular interpolation along the sine curves. Besides, the basic assumption of these
methods, i.e., assuming the feature corresponding to a sine curve does not overlay any
other feature, may also be invalid when restoring an object with complex structures.

The data completion using a prior scan proposed by Ruchala et al. [Ruch 02],
Wiegert et al. [Wieg 05], Kolditz et al. [Kold 10] and Sen Sharma et al. [Sen 13]
can extend the collimated regions in an accurate manner. These methods, how-
ever, require a certain clinical workflow, on which we cannot always rely. Also, the
additional scans may interrupt the interventional workflow and increase additional
radiation exposure to the patient.

The DBP method developed by Noo et al. [Noo 04], Defrise et al. [Defr 06],
Kudo et al. [Kudo 08] and Ye et al. [Ye 07] can achieve a stable and exact ROI
reconstruction from laterally truncated data. However, such reconstruction schemes,
either depend on the certain data sufficiency conditions or come with rather high
computational demand, may also prohibit their practical use in interventional clinical
routines.

Chityala et al. [Chit 04], Chen et al. [Chen 08a] and Schafer et al. [Scha 10]
deployed an X-ray attenuating filter between the X-ray source and the patient such
that the truncation problem can be circumvented. However, the method may com-
plicate data acquisition due to the deployment of additional hardware and also is
at a cost of reducing the impact of dose reduction. The difference in dose reduction
compared with a pure ROI scan can be even considerable in the field of neurointerven-
tion, when only a micro device, e.g. an implanted stent, is required to be examined
multiple times.

In summary, the review of current state of the art in ROI imaging reveals the
open problems that remain to be investigated. Therefore, this thesis focuses on the
technical development of various improved truncation artifact reduction techniques,
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particularly for an interventional clinical setting. The contribution towards high
quality images from laterally truncated data is several-fold, which is reflected in the
following chapters of the thesis. In the next chapter, a new sinogram extrapolation
method is firstly proposed that uses sinogram consistency conditions to estimate the
missing sinogram data in a more robust manner.
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The main goal of ROI imaging is to reduce dose without compromising image qual-
ity. Each of the truncation artifact reduction methods addressed in the previous chap-
ter has its advantages and disadvantages to these two aspects. This chapter presents
a novel sinogram completion method that improves image quality without exposing
additional dose to the patient. To estimate the missing data more precisely, the ap-
proach makes use of the Fourier-based Helgason-Ludwig (HL) consistency conditions,
which mathematically express the overlap of information between the projection im-
ages. The organization of this chapter is as follows. In Section 3.1, we introduce the
HL consistency conditions and describe how these consistency conditions have been
exploited so far. Section 3.2 first reviews the HL consistency conditions in their orig-
inal formulation as well as the modified Chebyshev-Fourier representation, followed
by a theoretical derivation of the 2D Fourier-based conditions and an extension to
the fan-beam geometry. In Section 3.3, we design a cost-function that incorporates
the newly derived consistency conditions into an extrapolation framework. In Sec-
tion 3.4, experiments using the Shepp-Logan phantom are conducted, and results are
presented. Eventually, we discuss relevant issues and draw conclusions in Section 3.5.

3.1 Introduction and Motivation
It has been demonstrated that any physically consistent sinogram has a strong restric-
tion in its functional form [Loui 83]. This restriction is expressed by Helgason-Ludwig
(HL) consistency conditions [Helg 65, Ludw65], which are mathematical expressions
to describe precisely the overlap of information between different projections [Clac 13].
The HL consistency conditions play an important role in image reconstruction from

37
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imperfect projection data (e.g., due to noise, motion or truncation) since these projec-
tions no longer satisfy the HL conditions. Related works involve using the HL condi-
tions to estimate motion parameters directly from a sinogram [Yu 06a, Yu 07, Berg 14]
or solving the problem of limited angle tomography using a variational formula-
tion that incorporates the HL conditions [Prin 90]. In positron emission tomography
(PET), the HL consistency conditions were also used for attenuation correction if no
transmission data is available [Welc 97].

This chapter addresses a consistency-based sinogram completion method, which
also has been exploited in the literature. The methods proposed in [Hsie 04] and
[Sour 05] implicitly used the zeroth-order HL consistency condition, i.e., the direct
current (DC) term is the same for all projections, as a constraint for data extrap-
olation. The first-order condition, which corresponds to the first moment of the
projections and describes the so-called “center of mass”, was also used to facilitate
the extrapolation procedure [Star 05]. Later, the elliptical extrapolation suggested in
[Gomp06] explicitly used a small subset of the consistency conditions in the origi-
nal HL formulation (projection moment theorem) so that large numerical instability
can be avoided when computing the moment terms. The approach in [Kudo 91]
modified this original formulation by expanding the Radon transform in terms of its
basis functions and incorporated not only one or two HL consistency conditions, but
theoretically an infinite number of such constraints. However, the HL consistency
conditions proposed in [Kudo 91] were represented in the Chebyshev-Fourier domain,
which increased computational complexity for practical applications. To simplify the
computation, the method in [Xu 10] refined the Chebyshev-Fourier representation of
HL conditions using an FFT with an additional cosine transform along the detector
channel. Furthermore, a fan-beam to parallel-beam rebinning is required since the
consistency conditions were only derived for a parallel-beam geometry.

In this chapter, we first derive the HL consistency conditions in the 2D Fourier
domain from their original formulation. The Fourier representation shows that there
is a zero energy region appearing in the Fourier transform of the sinogram (symmetry
for a parallel-beam and asymmetry for a fan-beam geometry). This property was also
demonstrated in [Edho 86, Mazi 10], which is referred to as the Fourier property of
the sinogram and which was approximately arrived at using the parallel-/fan-beam
sinogram of a delta point object. Several applications using this Fourier property can
be found in [Karp 88, Xia 95, Bai 13, Berg 14, Pohl 14]. In this chapter, we theoret-
ically prove the equivalence between the HL consistency conditions and the Fourier
property of the sinogram. Then, we show the advantages of applying these Fourier-
based consistency conditions: first, an infinite number of conditions are considered;
and second, 2D Fourier transform via FFT is computationally more efficient than
the Chebyshev-Fourier transform [Kudo 91] or Lagrange-Fourier transform [Prin 90].
These features allow us to develop an efficient data extrapolation method by opti-
mization of a cost-function based on the Fourier-based HL conditions.

3.2 Consistency Conditions
This section first reviews the HL consistency conditions in the original formulation
as well as the modified Chebyshev-Fourier representation, followed by a theoretical
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derivation of the 2D Fourier-based consistency conditions and an extension to the
fan-beam geometry.

3.2.1 Helgason-Ludwig (HL) Consistency Conditions
The original formulation of HL consistency conditions we review in this section is also
referred to as the projection moment theorem in the literature [Kudo 91]. Suppose
the object is supported on the unit disk centered at the origin. Let an (θ) be the n-th
moment of the sinogram p (θ, s) with respect to the detector bin s, which is defined
as

an (θ) =
ˆ 1

−1
snp (θ, s) ds. (3.1)

Then, the function an (θ) does not change arbitrarily when the rotation angle θ varies.
The Fourier series expansion of an (θ) can be written as follows

an (θ) =
∞∑
k=0

ank exp (jkθ) , (3.2)

with Fourier coefficients ank given by

ank = 1
2π

ˆ 2π

0
an (θ) exp (−jkθ) dθ. (3.3)

Then, it is readily proven [Natt 01] that all ank necessarily satisfy

ank = 0, for |k| > n. (3.4)

3.2.2 Chebyshev-Fourier Representation
The derivation of the Chebyshev-Fourier version of HLCC is similar to the one in
[Kudo 91]. But the difference is that we use the Chebyshev polynomial of the first
kind to replace the monomial term sn, instead of the Chebyshev polynomial of the
second kind as shown in [Kudo 91].

Inserting (3.1) into (3.3) yields:

ank = 1
2π

ˆ 2π

0

ˆ 1

−1
p (θ, s) sn exp (−jkθ) dsdθ. (3.5)

Note that the functions sn exp (−jkθ) do not form a set of orthogonal basis functions
on L2(Z, (1− s2)−1/2)1, where −1 ≤ s < 1. In the following we show that the
monomial sn can be replaced by a nth-order orthogonal polynomial, such that the
HL consistency conditions are tractable to use in reconstruction. The sinogram p (θ, s)
can be expanded in a series as:

1The Radon transform maps the Hilbert space L2(Ω2) consisting of finite norm objects f (x, y)
to the Hilbert space L2(Z,

(
1− s2)−1/2) consisting of finite norm sinograms p (θ, s).
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p (θ, s) = 1
π

∞∑
n=−∞

∞∑
k=0

bnk
(
1− s2

)−1/2
Tn (s) exp (jkθ) , (3.6)

where bnk denote the expansion coefficients and Tn (·) denotes the nth-order Cheby-
shev polynomial of the first kind, which is defined by

Tn (s) = n

2

[n/2]∑
i=0

ci (2s)n−2i = cos (n arccos (s)) (3.7)

with

ci = (−1)i (n− i− 1)!
i! (n− 2i)! . (3.8)

Let p1, p2 ∈L2(Z, (1− s2)−1/2), we define the inner product of p1 and p2 as follows:

〈p1, p2〉 =
ˆ 2π

0

ˆ 1

−1
p1 (θ, s) p2 (θ, s)

√
(1− s2)dsdθ. (3.9)

From Appendix A.1 we show that Tn (s) (1− s2)−1/2 exp (jkθ) form an orthogonal
basis of L2(Z, (1− s2)−1/2). Then, we can obtain an expression of the expansion
coefficients bnk as a scalar product

bnk =
〈
p,

1
π
Tn (s)

(
1− s2

)−1/2
exp (−jkθ)

〉
= 1
π

ˆ 2π

0

ˆ 1

−1
p (θ, s)Tn (s) exp (−jkθ) dsdθ (3.10)

By comparing Eq. (3.5) with (3.10), it is noted that the coefficients bnk are related
with ank by the following combination

bnk = n

2

[n/2]∑
i=0

ci2n−2ian−2i,k. (3.11)

Then, we obtain Chebyshev-Fourier representation of the HL conditions as

|k| > n

=⇒ |k| > n− 2i (i = 0, 1, .., n/2)
=⇒ an−2i,k = 0 (see Eq.(3.4))

=⇒ bnk = 0. (3.12)

In sum,
bnk = 0 , for |k| > n. (3.13)
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3.2.3 2D Fourier-based HL Consistency Conditions
We perform the 2D Fourier transform to both sides of Eq. (3.6)

P (η, ξ) = 1
π

ˆ 2π

0

ˆ 1

−1

∞∑
n=−∞

∞∑
k=0

bnk
(
1− s2

)−1/2
Tn (s)

× exp (jkθ) exp (−j (ηθ + ξs)) dsdθ. (3.14)

Because the term
∞∑

n=−∞

∞∑
k=0

bnkTn (s) exp (jkθ) exp (−j (ηθ + ξs))

is uniformly convergent, the order of the integral operators and the sum operators
can be changed:

P (η, ξ) = 1
π

∞∑
n=−∞

∞∑
k=0

bnk

ˆ 2π

0

ˆ 1

−1

(
1− s2

)−1/2
Tn (s)

× exp (jkθ) exp (−j (ηθ + ξs)) dsdθ

= 1
π

∞∑
n=−∞

∞∑
k=0

bnk

ˆ 1

−1

(
1− s2

)−1/2
Tn (s) exp (−jξs) ds

×
ˆ 2π

0
exp (−j (η − k) θ) dθ (3.15)

Because the orthogonality of complex exponential, we know
ˆ 2π

0
exp (−j (η − k) θ) dθ =

 0,
2π,

η 6= k

η = k
(3.16)

Then, we obtain

P (η, ξ) = 2
∞∑

n=−∞
bnη

ˆ 1

−1

(
1− s2

)−1/2
Tn (s) exp (−jξs) ds

= 2
∞∑

n=−∞
bnη

Jn (−ξ)
2 (−j)n (see Appendix A.2) (3.17)

where Jn is the first kind Bessel function of order n. According to Debye’s relation,
we know that Jn (ξ) decays exponentially for |n| > |ξ|. From Eq. (3.13) we also know
that bnη = 0 for |η| > n. Thus, we get 2D Fourier representation of the HL conditions
as follows:

P (η, ξ) ≈ 0 , for |η| > ξ. (3.18)
So far, we only assume that the object is supported on the unit disk. If the object is
supported by a disk with a radius r, then we replace s by s′ = s/r (where|s′| ≤ 1) in
Eqs. (3.14) and (3.17) such that we finally obtain the following conditions

P (η, ξ) ≈ 0 , for |η| > rξ, (3.19)
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Figure 3.1: Illustration of zero coefficients in the 2D Fourier transform of a sinogram:
(left) Shepp-Logan phantom, (middle) the corresponding sinogram and (right) the 2D
Fourier transform of the sinogram.

where r is the largest object support. Note that this property was also found in
[Edho 86] by investigating the parallel-beam sinogram of a point object. Figure 3.1
illustrates a double wedge region of zero coefficients in the 2D Fourier transform of a
sinogram, for |η| > rξ.

3.2.4 HLCC in Fan-beam Geometry
With variable substitution, i.e., θ = β + α, s = R sinα (β is the rotation angle in
the fan-beam geometry, α is the opening fan angle and R is the source-to-isocenter
distance), the projection moment theorem (i.e. Eq. (3.5)) in fan-beam notation can
be expressed as

ank = 1
2π

ˆ 2π

0

ˆ π/2

−π/2
pFan (β, α) (R sinα) n exp (jk (β + α)) dβd (R sinα) (3.20)

where
ank = 0, for |k| > n. (3.21)

Similar to the parallel-beam case, we consider the object support is r and expand
pFan (β, α) in the Chebyshev-Fourier space as:

pFan (β, α) = 1
π

∞∑
n=−∞

∞∑
k=0

bnk
Tn (R sinα/r)√
1− (R sinα/r)2

exp (jk (β + α)) . (3.22)

Also, we readily obtain the relation bnk = 0, for |k| > n. Then, 2D Fourier transform
of both sides of Eq. (3.22), along with the simplification according to Eq. (3.16) yields

PFan (η,m) = 1
π

ˆ 2π

0

ˆ π/2

−π/2

∞∑
n=−∞

∞∑
k=0

bnη
Tn (R sinα/r)√
1− (R sinα/r)2

× exp (jk (β + α)) exp (−j (ηβ +mα)) dαdβ

= 1
π

∞∑
n=−∞

bnη

ˆ π/2

−π/2

Tn (R sinα/r)√
1− (R sinα/r)2

× exp (j (η −m)α) dα. (3.23)
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According to Eq. (9.3) in Appendix A.2, the innermost integral with respect to α
becomesˆ π/2

−π/2

Tn (R sinα/r)√
1− (R sinα/r)2

exp (j (η −m)α) dα

= 1
2 (−j)n

ˆ π/2

−π/2

[ˆ
R1

exp (−jξR sinα) Jn (rξ) d (rξ)
]

exp (j (η −m)α) dα

= r

2 (−j)n
ˆ
R1
Jn (rξ)

ˆ π/2

−π/2
exp (−jξR sinα + j (η −m)α) dαdξ

= r

2 (−j)n
ˆ
R1
Jn (rξ) Jη−m (Rξ) dξ. (3.24)

It is known that the Weber-Schafheitlin’s integral Jn (rξ) Jη−m (Rξ) decays very fast
for R |n| > r |η −m| [Natt 01]. Together with the relation bnη = 0, for |η| > n, we
finally arrive at

PFan (η,m) ≈ 0 , forR|η| > r |η −m| . (3.25)
For an equally-spaced fan-beam geometry, we apply the 2D Fourier transform to
Eq. (3.22) with respect to β and u:

PFan (η, l) = 1
π

ˆ 2π

0

ˆ 1

−1

∞∑
n=−∞

∞∑
k=0

bnk
Tn (R sinα/r)√
1− (R sinα/r)2

ejk(β+α)e−j(ηβ+lu)dudβ (3.26)

where u = D tanα and D denotes the source-detector distance. Since D is large
compared to u (for a small fan angle), we can make an approximation u ≈ Dα.
Then, we follow a similar derivation as for Eq. (3.24):

ˆ 1

−1

Tn (R sinα/r)√
1− (R sinα/r)2

exp (j (η − lD)α) d (Dα)

= rD

2 (−j)n
ˆ
R1
Jn (rξ) Jη−lD (Rξ) dξ. (3.27)

Finally, we obtain the HL conditions for an equally-spaced fan-beam geometry:

PFan (η, l) ≈ 0 , forR|η| > r |η − lD| . (3.28)

Note that both Eqs. (3.25) and (3.28) were approximately arrived at in [Mazi 10]
when investigating the fan-beam sinogram of a delta function point.

3.3 Data Extrapolation Using HLCC
The HL consistency conditions play an important role in image reconstruction as they
can be used as a measure to restore consistency of imperfect projection data (e.g.,
due to noise, motion or truncation). In this work, we take advantage of the theory
derived before for data extrapolation with truncated projection data. A flowchart of
our proposed projection completion algorithm can be described as follows (also see
Fig. 3.2 for an illustration):
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Figure 3.2: Flowchart of the proposed sinogram completion scheme: Set up an
ellipse model for sinogram completion and optimize model parameters (here the two
ellipse radii) by enforcing the Fourier constraints.
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Step 1: Detect the double-wedge region from the 2D Fourier transformed trun-
cated sinogram and calculate the object support (i.e., solve for r in Eq. (3.28)).

Step 2: Set up a shape model for sinogram completion (de-truncation) and fit
the model to the measured (truncated) data with a de-truncation opti-
mization algorithm that enforces the constraint that the values within the
double-wedge region of the Fourier transformed sinogram are zero.

a) Set up a uniform ellipse model with the initialized two radii. For rea-
sons of simplicity, we assume a uniform density of the measured object.
The density can be determined by two ways: 1) heuristic preset, e.g.,
water density; 2) extrapolate the sinogram up to the object support, re-
construct using an FBP framework and use the mean of the reconstructed
object as the density value.

b) Complete the truncated sinogram using forward projections of the
ellipse model. Here, the forward projections only need to be computed
for the regions outside the scan FOV.

c) Optimize (adapt/smooth) the transition region of the completed sino-
gram by adding/subtracting an offset to each row of the forward projected
sinogram. The offset values are computed by comparing two neighbor-
ing pixels from the forward projected and the measured sinogram. Note
that this re-scaling / intensity adjustment of the forward projected sino-
gram also weakens the impact of the ellipse density such that it is not
mandatory to set the density as an additional optimization parameter.

d) Perform 2D Fast Fourier transform (FFT) of the combined sinogram.

e) Generate a double-wedge mask.

f) Minimize the energy in the double-wedge region by optimizing the
ellipse parameters.

g) Based on the estimated ellipse parameters, perform the sinogram com-
pletion and apply transition smoothing, as already described in c).

h) Perform 2D FFT, set the residual energy in the double-wedge region
to zero (hard constraint) and perform an inverse 2D FFT. To improve the
reconstruction result, this step can be performed in an iterative manner.

Step 3: The resulting completed (detruncated) sinogram (being optimized in the
Fourier domain) is reconstructed using any reconstruction algorithm that
can be applied on the non-truncated projection data, e.g. the standard
FBP framework.

3.4 Experiment and Results
The proposed method was validated and evaluated on the Shepp-Logan phantom.
The dataset was virtually collimated (by setting the area outside of the scan FOV to
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Figure 3.3: Reconstruction results of the Shepp-Logan phantom (radius of the ROI:
60 pixels, display window [0, 0.35]). From left to right: reference from non-truncated
data, proposed correction method, and water cylinder extrapolation (cf. Hsieh et al.
[Hsie 04]). The difference images with respect to the reference image are presented in
the bottom row. The white circle in the reference indicates the ROI.

zero) to a medium ROI and a small ROI. The sinogram of the Shepp-Logan phantom
consists of 720 channels and 360 views over 360◦ rotation angle (full scan). Then,
the phantom was reconstructed in a 256 × 256 matrix. The radius of the medium
ROI is 60 pixels and the radius of the small ROI is 30 pixels. We also investigate
the performance of the state-of-the-art water cylinder extrapolation method [Hsie 04]
and compare it with our proposed method.

The detection of the wedge region in Step 1 can be performed using model-based
segmentation techniques with known properties such as line-symmetry for a parallel-
beam sinogram and point-symmetry for a fan-beam case. For proof of concept, in
current work we assume that the object support r is known and thus the wedge
region can be directly computed using Eq. (3.28). Then, in e) we set up a binary
double wedge mask with zero entries outside the double-wedge region and one within
the double-wedge region. After applying the mask (element-wise multiplication) on
the Fourier transformed completed sinogram from d) we sum up the energy in the
double-wedge region.

For the task of minimization in f), we use a Differential Evolution (DE) optimiza-
tion [Stor 97] to search large spaces of candidate solutions and avoid local minima. It
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Figure 3.4: Reconstruction results of the Shepp-Logan phantom (radius of the ROI:
30 pixels, display window [0, 0.35]). From left to right: reference from non-truncated
data, proposed correction method, and water cylinder extrapolation (cf. Hsieh et al.
[Hsie 04]). The difference images with respect to the reference image are presented in
the bottom row. The white circle in the reference indicates the ROI.

is a stochastic, population-based global optimization method that appears fairly fast
and robust for non-differentiable and nonlinear objective functions. It uses a fixed
number N of parameter vectors as a population for each iteration (also referred to
as a generation). Firstly, the trial parameter vectors are initialized on an interval
which defines upper and lower bounds of parameters. At each iteration/generation,
new parameter vectors are generated by adding a weighted difference vector (with
a weighting factor F ) between two population members to a third member. These
newly generated vectors are mixed with a predetermined target vector with probabil-
ity CR, generating the new trial vector. Finally, the new trial vector is admitted for
the next iteration/generation if and only if it yields a lower value of the objective func-
tion. These aforementioned steps continue until some stopping criterion is reached.
In this work, we choose Scheme DE 1 proposed in [Stor 97] with parametrization:
N = 20, F = 0.8 and CR = 0.7. We stop the optimization procedure if a preset
maximum iteration number is reached.

Shown in Figs. 3.3 and 3.4 are the reconstruction results from the Shepp-Logan
phantom with different degrees of truncation (medium/small FOV). Difference images
with respect to the reference FBP reconstruction from the original non-truncated data
are also presented. As expected, in the medium truncation case, both methods are
able to effectively reduce truncation-induced cupping artifacts and yield the visually
comparable results to that of non-truncated FBP. Only fairly small errors within
the ROI of the difference images confirm this observation. We also found that for
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Figure 3.5: Plots of the line profile through the central vertical line for each algo-
rithm in the medium truncation case (left) and in the severe truncation case (right).
Here, SCC denotes the proposed sinogram-based consistency condition method and
WCE denotes the conventional water cylinder extrapolation method.

the Shepp-Logan phantom with a simple structure, the proposed method is able
to accurately estimate the outline of the object. In contrast, the water cylinder
extrapolation scheme only yields inferior shape estimation due to 1D “blind” row-
wise extrapolation that aims to fulfill the continuity assumptions. Figure 3.4 shows
the case of severe truncation, where in general the reconstruction bias becomes larger
as fewer data can be used for extrapolation. This case is thus more challenging for
truncation correction algorithms. In this case, the reconstruction from the proposed
method clearly outperforms the water cylinder extrapolation in terms of reduction
of both the high frequency cupping and low frequency bias. Line profiles depicted
in Fig. 3.5 basically confirm the visual observation above. Moreover, it is found that
the proposed method still yields a relatively accurate shape estimation in such severe
truncation.

Figure 3.6 shows values of the cost function with respect to two ellipse radii during
the optimization procedure for the medium truncation and severe truncation cases.
After five iterations, the best evaluation values are obtained from the coordinates
(94, 120) for the medium truncation case and at (91, 111) for the severe truncation
case, compared with the original object size (87, 117).

3.5 Discussion and Conclusions

3.5.1 Discussion
The Fourier-based Helgason-Ludwig consistency conditions are derived for both the
parallel-beam and fan-beam geometry, as described in Eqs. (3.19), (3.25) and (3.28).
The derivation outcomes indicate the Fourier property of the physically consistent
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Figure 3.6: The values of the cost function with respect to two ellipse radii during
the optimization procedure for (top) the medium truncation case and (bottom) the
severe truncation case. After 5 iterations, the best evaluation values are obtained
at the coordinates (94, 120) for the medium truncation case and at (91, 111) for the
severe truncation case, compared with the original object size (87, 117).

sinogram: there are zero coefficients forming a double wedge region (symmetry for
parallel-beam and point-symmetry for fan-beam geometry) in its 2D Fourier trans-
form. The same property was also observed previously in the literature by investi-
gating the parallel-/fan-beam sinogram of a delta point object [Edho 86, Mazi 10]. In
[Mazi 10], the authors clarify that the approximation to a Bessel function (see Eq. (8)
in [Mazi 10]) was arrived at intuitively and is validated empirically.

Motivated by these previous practical observations, we present the theoretical
derivation in this chapter. Our derivation stems directly from the original formulation
of the HL consistency conditions and is theoretically exact for the parallel-beam
geometry and the equal-angle fan-beam geometry. In the case of the equally-spaced
fan-beam geometry, such a derivation is not straightforward. To derive a similar
property, we made an approximation that u ≈ Dα under an assumption that the
opening fan-angle is small. Therefore, there could potentially be a misestimation of
the zero-energy region for large fan angles, as also observed in [Mazi 10].
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The benefits of the Fourier-based consistency conditions are: First, rather than
using a small subset of the consistency conditions as proposed in [Hsie 04, Sour 05,
Star 05, Gomp06], an infinite number of conditions are implicitly considered in the
Fourier representation. And second, the 2D Fourier transform via FFT is computa-
tionally more efficient than other transforms, such as the Chebyshev-Fourier trans-
form [Kudo 91] or Lagrange-Fourier transform [Prin 90]). This allows us to develop
more efficient sinogram recovery schemes, as demonstrated in this chapter.

The sinogram-based extrapolation scheme we proposed in this work estimates
the truncated sinogram with data from a uniform ellipse of which the parameters are
determined by optimizing the HL consistency conditions. Experiments on the Shepp-
Logan phantom yielded promising results. There are some limitations to this Fourier
constrained extrapolation method applied to ROI reconstruction. First, the current
derivation only involves the sinogram of a centered object. It is not clear how the
zero energy region will change for off-centered cases. Second, for evaluation we used a
full scan fan-beam geometry. We observed that for a short scan acquisition, in which
projection data is acquired only over a range of π plus the fan angle, some non-zero
values also appear in zero-energy region, which may affect the optimization procedure.
Thus, corresponding consistency conditions that also account for off-centered objects
and short scan acquisitions would be interesting for future work.

3.5.2 Conclusions
In this chapter, we theoretically derived the 2D Fourier-based HL consistency con-
ditions that can be evaluated very efficiently via FFT. Then, we proposed a method
that extrapolates the truncated sinogram with data from a uniform ellipse of which
the parameters are determined by optimizing these consistency conditions. The for-
ward projection of the optimized ellipse can be used to complete the truncation data.
The reconstruction results indicate that the proposed approach substantially outper-
forms the conventional water cylinder extrapolation approach [Hsie 04], particularly
for severe truncation, regarding both image quality and residual artifacts.
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As described in Chapter 2, heuristic extrapolation methods typically rely on tech-
niques that complete the truncated data using a continuity assumption and thus are
ad-hoc in the presence of severe truncation. In this chapter, we present a new trunca-
tion artifact reduction method, namely Approximated Truncation Robust Algorithm
for Computed Tomography (ATRACT), for 3D ROI imaging that is implicitly more
robust with respect to severely truncated data. It follows the analytic FDK frame-
work, but achieves the non-local filtering in an alternative, more robust manner with
respect to data truncation. This chapter starts with a general introduction of several
variants of ATRACT in Section 4.1. In Section 4.2, we present the derivation of 2D
Radon-based ATRACT that is mathematically important but appears computation-
ally expensive. For practical use, we present two variants of the original ATRACT.
One is based on expressing the non-local filter as an efficient 2D convolution with an
analytically derived kernel. The second variant is to apply ATRACT in 1D to further
reduce computational complexity. These two variants are presented in Section 4.3.
Section 4.4 discusses two empirical correction techniques to compensate remaining
artifacts from the ATRACT results. Eventually, we summarize the content of this
chapter in Section 4.5.

Parts of this work have already been published in Dennerlein et al. [Denn 11,
Denn 13], and Xia et al. [Xia 12, Xia 13a, Xia 14b, Xia 14c].

4.1 Introduction and Motivation
It is known that a reduction of the field of view (FOV) in 3D X-ray imaging is approx-
imately proportional to a reduction of the radiation dose. The resulting truncation,
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however, poses a challenge to conventional reconstruction algorithms. Explicit heuris-
tic extrapolation methods described in Section 2.3 are usually preferably applied to
tackle the truncation problem because they are compatible with most conventional
reconstruction algorithms, computationally efficient and capable of estimating the
missing data heuristically without the requirement of prior knowledge. However,
these explicit extrapolation methods may be difficult to apply in severe truncation
cases that are often encountered in ROI scans (e.g., imaging surgical stents or coils
during endovascular treatment), due to less reliable measured data. Thus, it is of
practical significance to develop an algorithm for severe truncation tasks that is of
comparable accuracy to reconstructions from non-truncated data. In addition to high
image quality, we are also interested in an algorithm that is suitable for any clinical
workflow. The algorithm should pose as little constraints as possible on the avail-
ability of prior image data such as preoperative scans and prior image information
collected during the intervention. Any such constraint would immediately imply a
restriction of the applicability of the algorithm to a workflow that provides exactly
the required data. Furthermore, no additional low-dose scan should be required, as
the delay caused by patient repositioning and the acquisition itself introduces another
burden on the interventional operator and impairs the ease of use of the method.

In this chapter, we present a new truncation artifact reduction method (ATRACT)
for 3D ROI imaging that is implicitly more robust with respect to severely truncated
data than those of explicit extrapolation schemes. The proposed method follows the
analytic FBP framework and can be carried out without explicit extrapolation or
prior knowledge. The method was originally derived in [Denn 11] using solely spatial
domain reformulation of an alternative 2D Radon inversion. The intuitive idea was
to reformulate the standard FDK algorithm into a reconstruction scheme that is by
construction less sensitive to lateral data truncation. To this end, the non-local ramp
filtering was decomposed into a 2D Laplace filtering and a 2D Radon-based residual
filtering step. We thus refer to this method as 2D Radon-based ATRACT throughout
this thesis. This algorithm, however, involves performing the 2D Radon transform
and its inversion on each 2D projection image and thus appears computationally ex-
pensive. Also, as demonstrated in [Denn 13], ATRACT yields a global scaling/offset
issue in the reconstructed ROI volume, compared with the reference FDK recon-
struction from non-truncated data. Furthermore, we found that a linear gradient-like
artifact arises in the ATRACT results when reconstructing an off-centered ROI from
asymmetrically collimated data.

Therefore, it is our goal to refine the original Radon-based ATRACT method to
a more practically-useful reconstruction algorithm, in terms of both computational
efficiency and image quality.

4.2 2D Radon-based ATRACT Algorithm
In this section, the Radon-based ATRACT algorithm is analytically derived using the
Fourier slice theorem. Note that this derivation is intuitively conducted in the Fourier
domain and the reformulation steps, therefore, differ from the original derivation in
[Denn 11] that uses solely spatial domain reformulation of an alternative 2D Radon
inversion. However, both derivations arrive at an identical two-step filtering algo-
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FOV

Figure 4.1: Geometry and associated notations: u and v denote the projection
coordinates; s and θ denote the Radon domain coordinates. Suppose the projection
is truncated to the FOV of Ωλ = [umin, umax]× [vmin, vmax].

rithm, as will be shown below. For further interest of the spatial domain derivation,
we refer to [Denn 11, Denn 13].

Specifically, the main idea is to find an equivalent of the 1D ramp filter within
FDK so that the filtering procedure is intrinsically less sensitive to data truncation.
Consider the circular cone-beam geometry shown in Fig. 2.1, along with the detector
coordinates defined in Fig. 4.1, the standard ramp filtering [see Eq. (2.4)] can be
expressed in the 2D Fourier domain as

gF (λ,u) =
∞̈

−∞

G (λ,ω) |ωu| exp (j2πu·ω) dω, (4.1)

where G represents the 2D Fourier transform of the pre-weighted projection g1 and
ω = (ωu, ωv) are the corresponding Fourier coefficients with respect to u = (u, v).
Converting the Cartesian coordinates (ωu, ωv) to the associated polar coordinates
(ω, θ) yields

gF (λ,u) =
2πˆ

0

∞̂

−∞

G (λ, ωθ) |ω cos θ| exp (j2πωu · θ)ωdωdθ, (4.2)

where θ = (cos θ, sin θ). Further using trigonometric function identities (i.e. cos θ =
− cos (θ + π) and sin θ = − sin (θ + π)) to Eq. (4.2) gives

gF (λ,u) =
πˆ

0

∞̂

−∞

G (λ, ωθ) |ω cos θ| exp (j2πωu · θ) |ω| dωdθ. (4.3)

An important step of the derivation is to decompose the ramp filter kernel |ω cos θ|
as follows
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gF (λ,u) =
πˆ

0

∞̂

−∞

−1
4π2 |ω|

|cos θ|
[
(j2πω)2G (λ, ωθ)

]
exp (j2πωu · θ) |ω| dωdθ. (4.4)

With rearrangement of some integrands and the use of the Fourier slice theorem
that relates the 2D Fourier transform of the projection image G (λ, ωθ) to its Radon
transform in the 1D Fourier domain, we obtain

gF (λ,u) = −1
4π2

πˆ

0

|cos θ|
∞̂

−∞

(j2πω)2 P (λ, θ, ω) exp (j2πωs∗) dωdθ, (4.5)

where s∗ = u · θ and P (λ, θ, ω) represents the 1D Fourier representation of the Radon
transform of g1 with respect to s, i.e.,

P (λ, θ, ω) =
∞̂

−∞

∞̈

−∞

g1 (λ,u) δ (u · θ − s) exp (−j2πωs) duds. (4.6)

For now, it is noted that by inserting Eq. (4.6) into (4.5), the Fourier transform
of g1 cancels out its subsequent inversion and the only remained term is the inverse
Fourier transform of (j2πω)2, which corresponds to the Laplace operator in the spatial
domain, i.e., the second-order derivative with respect to s. Since the Radon transform
and its dual are intertwining operators for the Laplace operation, we can exchange
the Laplace operation and Radon transform as follows

∂2

∂s2R (g1) (λ, θ, s) |s=s∗ =
∞̈

−∞

∂2

∂s2 g1 (λ,u) δ (u · θ − s) du

=
∞̈

−∞

(
∂2

∂u2 + ∂2

∂v2

)
g1 (λ,u) δ (u · θ − s) du (4.7)

where R (g1) denotes the Radon transform of g1. Finally, by combining Eqs. (4.5)
and (4.7), along with Eqs. (2.3) and (2.6) in the FDK algorithm, we arrive at the 2D
Radon-based ATRACT algorithm that comes with a two-stage filtering:

• Step 1: Cosine- and Parker-like weighting of projection data to obtain pre-scaled
projection data g1:

g1 (λ, u, v) = Dm (λ, u)√
D2 + u2 + v2

g (λ, u, v) (4.8)

• Step 2 : 2D Laplace filtering to obtain projection data g2:

g2 (λ,u) =
(
∂2

∂u2 + ∂2

∂v2

)
g1 (λ, u, v) (4.9)
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• Step 3: 2D Radon-based filtering to get filtered projection data g(ATRACT)
F :

g3 (λ, θ, s) =
∞̈

−∞

g2 (λ,u) δ (u · θ − s) du , (4.10)

g
(A2D)
F (λ, u, v) = −1

4π2

πˆ

0

| cos θ|g3 (λ, θ, s∗) dθ (4.11)

• Step 4: 3D cone-beam backprojection to get the estimated object function
f (ATRACT):

f (A2D) (x) =
λ2ˆ

λ1

RD

[R− x · ew (λ)]2
gF (λ, u, v)dλ . (4.12)

The advantages of this two-step filtering can be summarized as follows: 1) The local
2D Laplace operation only introduces errors at the boundaries of the FOV, where
outer neighboring values are unknown due to truncation, but nowhere else inside the
FOV. In the numerical implementation, we remove any incorrect values at the FOV
boundaries by setting them to zeros after Laplace filtering. With the FDK method,
such a removal is not straightforward, due to the non-local character of the ramp filter;
2) Implicit extrapolation with zeros beyond the FOV boundaries in the second-order
derivative domain yields a better approximation for the missing data than an explicit
extrapolation on g or g1, i.e. before differentiation; 3) Although the 2D Radon-based
filtering is a non-local operation, it is less sensitive to data inconsistencies than the
1D ramp filtering (we explain this point in Section 4.3.1); 4) Furthermore, as the 2D
filtering is performed for all detector elements simultaneously, this reduces outliers
that may be caused by individual 1D processing of detector lines. Consequently,
even though no explicit extrapolation is used during the filtering steps in ATRACT,
the filtered result gF will not contain a noticeable artificial structure at the edge of
transaxial truncation compared with that of the FDK method.

4.3 Analytic Convolution Formulation
This section discusses two variants of the original Radon-based ATRACT. One is
based on expressing the residual filter as an efficient 2D convolution with an ana-
lytically derived kernel. The second variant is to apply ATRACT in 1D to further
reduce computational complexity. Both lead to a noticeable computational speed-up
and thus make ATRACT-based ROI imaging applicable to interventional routines.

4.3.1 2D Convolution-based ATRACT
A numerical implementation of ATRACT that directly adopts Eqs. (4.10) and (4.11)
for the non-local residual filtering is computationally very expensive, because the 2D
Radon transform and Radon inversion have to be executed once for each projection
image. Moreover, Eqs. (4.10) and (4.11) require frequent interpolations, so a loss
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of the spatial resolution in the reconstruction is unavoidable. For practical use of
ATRACT, an implementation of the non-local filtering operation using a 2D convo-
lution with respect to u and v is suggested to increase computational efficiency. Now
we analytically derive the convolution formula that replaces the 2D Radon-based fil-
ter in the original ATRACT algorithm. Note that this analytical formula has the
potential to increase the spatial resolution in the ATRACT reconstructions and sig-
nificantly increases computational performance (due to FFT-based computations)
compared with a direct implementation using Eq. (4.10) and (4.11). We refer to the
new method as 2D ATRACT in the following. With a small modification, Eq. (4.10)
can be rewritten as follows:

g3 (λ, θ, s) =
∞̂

−∞

g2
(
λ, sθ + tθ⊥

)
dt, (4.13)

where θ = (cos θ, sin θ) and θ⊥ = (− sin θ, cos θ). Inserting (4.13) into (4.11) yields

g
(A2D)
F (λ, u, v) = C1

πˆ

0

| cos θ|
∞̂

−∞

g2
(
λ, s∗θ + tθ⊥

)
dtdθ, (4.14)

with C1 = −1/ (4π2). The inner line integral can be further modified as follows

g
(A2D)
F (λ, u, v) = C1

πˆ

0

| cos θ|
∞̂

−∞

g2
(
λ, (u · θ)θ − t̂θ⊥

)
dt̂dθ,

= C1

πˆ

0

| cos θ|
∞̂

−∞

g2
(
λ,u− t̂θ⊥

)
dt̂dθ. (4.15)

Let u′ = (u′, v′) = t̂θ⊥ with u′ = −t̂ sin θ and v′ = t̂ cos θ. Then, the area element
dt̂dθ can be replaced by |J|du′dv′, where |J| is the determinant of the Jacobian, i.e.,

|J| = 1
|J|−1 = 1/det

 ∂
(
t̂, θ
)

∂ (u′, v′)

 = 1/
∣∣∣∣∣ ∂t̂
∂u′

∂θ
∂u′

∂t̂
∂v′

∂θ
∂v′

∣∣∣∣∣ = 1/
∣∣∣∣∣ − sin θ cos θ
t̂ cos θ −t̂ sin

∣∣∣∣∣ = 1/|t̂|.

(4.16)

Also, it is easy to obtain the following equalities

|t̂| =
√
u′2 + v′2 and cos θ = v′√

u′2 + v′2
. (4.17)

Now, inserting u′ = t̂θ⊥, dt̂dθ = |J| du′dv′, Eqs. (4.16) and (4.17) into (4.15), we
finally obtain the 2D convolution formula:

g
(A2D)
F (λ, u, v) =

u2ˆ
u1

v2ˆ
v1

g2 (λ, u− u′, v − v′)h2D (u′, v′) du′dv′, (4.18)
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Figure 4.2: Illustration of the 2D convolution kernel in (left) spatial domain and
(right) Fourier domain. Note that the frequency response implies that the 2D ker-
nel possesses a low-pass character, which is able to provide a regularizing effect to
suppress inconsistencies introduced in truncated data.

where the analytical 2D kernel h2D (u′, v′) is determined as follows:

h2D (u′, v′) = C1| cos θ||J| = C1
|v′|

u′2 + v′2
. (4.19)

The plot of the 2D analytical kernel is given in Fig. 4.2. A similar kernel has been
also found in the field of phase contrast CT [Bron 06]. The frequency representation
of the analytical 2D kernel is given as

H2D (ωu, ωv) = C1
|ωu|

ω2
u + ω2

v

, (4.20)

where H2D (ωu, ωv) denotes the 2D Fourier transform of h2D (u, v).
The newly derived analytic kernel allows us to explain why the non-local ATRACT

residual filtering is less sensitive to data inconsistencies. As shown in Fig. 4.2 (right),
the residual filter is a low-pass filter. This is beneficial since the data function g2
contains inconsistencies due to implicit constant extrapolation to 0 outside the FOV,
the filtering provides a regularizing effect that is able to suppress these introduced
inconsistencies in the projection image. Figure 4.3 exemplarily shows the impact of a
truncated projection image on the 1D ramp filtering and 2D ATRACT filtering. As
can be seen, the two-step ATRACT filtering can produce more robust results than
that of the ramp filtering in terms of cupping artifact reduction. However, from the
error image we found that 2D ATRACT filtering suffers an offset or bias-like artifact.
This problem will be further addressed in Section 4.4.

4.3.2 ATRACT with 1D Row-wise Filtering
For further improvements in filtering speed, we will derive and investigate a 1D
version of ATRACT. It is known that the computational complexity of a 2D FFT
for a N × N image is proportional to N2 log2N

2, i.e. 2 · N2 log2N . Applying a 1D
FFT to each row of the same image yields a complexity of N ·N log2N , which implies
a reduction of a factor of 2. Moreover, additional padding in the axial direction, as
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Figure 4.3: Illustration of different impacts of truncation on ramp filtering and
2D ATRACT filtering. Top row from left to right: A projection of a clinical head
scan (Images courtesy of CHI St. Luke’s Health - Baylor St. Luke’s Medical Center,
Houston, TX, USA) with the actually measured homogeneous region indicated by
the white rectangle, ramp filtering of the measured region, 2D ATRACT filtering
of the measured region. Bottom row: Visualization of filtering errors (logarithmic
scale) in corresponding filtered projections with respect to a reference filtering of the
non-truncated projection. Note that the errors in 2D ATRACT are almost evenly
distributed while a cupping-like error distribution appears in the 1D ramp filtering.

would be required for the 2D FFT-based filtering, is avoided. This contributes to
further reduction of computation time when using 1D row-wise filtering.

We will derive the 1D ATRACT method starting with an alternative decomposi-
tion of the ramp filter as follows

g
(A1D)
F (λ, u, v) = ∂g1 (λ, u, v)

∂u
∗ 1

2π2u
, (4.21)

where the symbol * denotes the 1D convolution operation. To derive the 1D ATRACT
algorithm, Eq. (4.21) can be modified as

g
(A1D)
F (λ, u, v) =

uˆ
−∞

∂2g1 (λ, u′, v)
∂u′2

du′ ∗ 1
2π2u

. (4.22)

Using the property of convolution, we can move the anti-derivative operator to the
Hilbert kernel

g
(A1D)
F (λ, u, v) = ∂2g1 (λ, u, v)

∂u2 ∗
uˆ

−∞

1
2π2u′

du′. (4.23)

The first part of (4.23) is the 1D Laplace operation, i.e. the second-order derivative
with respect to u (detector row) and the second operation can be computed as a 1D
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convolution with the kernel ln|u|/2π2. The expression of the 1D analytical kernel in
the Fourier domain can be obtained by using Fourier transform of ln|u|, which yields

H1D (ωu) =
−∞ˆ
−∞

1
2π2 ln|u| exp (−j2πuωu) du = − 1

4π2
|ωu|
ω2
u

. (4.24)

It can be observed that analogous to the 2D kernel, the 1D residual kernel possesses
a low-pass property and its plot in the Fourier domain is consistent to the horizontal
line profile in Fig. 4.2. Fundamentally, the 1D version of ATRACT fulfills the three
reasons that ATRACT is robust to data truncation: 1) 1D Laplace is a local operation
and can thus be computed accurately on the truncated data ; 2) All values after
Laplace are closer distributed around 0, which enables implicit zero extrapolation be
a good approximation; 3) Also importantly, the 1D residual kernel shown in Eq. (??)
or (4.24) possesses a low-pass property and thus is less sensitive to data truncation.
However, compared with the 2D version, 1D ATRACT coming with a single row-
wise processing may lose the consistency along the axial direction. This somewhat
degrades the image quality as we will see in the evaluation section.

4.4 Empirical Residual Artifact Reduction Methods
In general, ATRACT provides reconstructions of high quality even in the presence
of severe data truncation. However, several remaining artifacts can still be observed
in the reconstructed volume. In this section, we suggest two empirical correction
techniques to respectively compensate for these artifacts.

4.4.1 Bias/Offset Correction
As mentioned before, the 2D and 1D ATRACT filtering suffer from an offset or bias-
like artifact in the projection domain, compared with ramp filtering of non-truncated
data. This is because after the filtering process the mean value of the truncated
projection data is removed. Thus, subsequent backprojection will be only correct
up to an offset. Depending on the calibration information available, one of two
procedures is used to deal with this problem.

Offset Correction

If two non-truncated projections are available in the related acquisition scenario or
the parameters were initially calculated, then we can more effectively compensate
the offset problem by calibrating the projection-related parameters in the projection
domain. The correction scheme is simply accomplished by adding a rotation angle-
related constant ε (λ) to after ATRACT filtering and ε is estimated through the
following model:

ε (λ) = a1 ·
umax∑
umin

vmax∑
vmin

g (λ, u, v) + a2 + a3 · (umax − umin) · (vmax − vmin) , (4.25)
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where a1, a2 and a3 represent the model coefficients that need to be calibrated. As
mentioned above, the offset problem can be considered as the mean value loss in the
projection image by ATRACT filtering. We empirically found that such information
is related to the attenuation summation and truncation size. It is an interesting
observation because we can approximately recover this information, i.e. ε (λ), by set-
ting the attenuation-related linear parameters a1 and a2 and truncation size-related
parameter a3. All these parameters are calibrated by measuring the differences (off-
sets) between homogeneous subregions inside two ATRACT filtered ROI projections
g

(ATRACT)
F and the associated reference projections g(FDK)

F (non-truncated).

Min-Max Scaling

If neither non-truncated projections nor the calibration parameters in offset correction
[Eq. (4.25)] are provided in the given scenario, then a simple min-max scaling method
is applied in the volume domain, to roughly align the total intensity values to a
reasonable range (−1024 ∼ 3072 HU). This approach is used to avoid clamping the
over-saturated values caused by an incorrect offset in the last stage of the imaging
pipeline and should only be used when offset correction cannot be applied.

f (x)aligned = f (x)−min (f (x))
max (f (x))−min (f (x)) · 4096− 1024. (4.26)

Normally, the min-max scaling can only enable a linear relationship, rather than
an exact HU value match, between the FDK reconstruction from a full data and
ATRACT-based ROI reconstruction inside the ROI. The offset correction, on the
other hand, is able to provide a more accurate match to that of FDK from non-
truncated data.

4.4.2 Gradient Artifact Reduction for Off-Centered ROI
The artificial high frequencies can be effectively eliminated by removing the high
spikes at the borders of the scan FOV, after Laplace filtering. However, when the
magnitudes of the spikes at both sides differ a lot, which typically occurs when ac-
quiring an off-centered ROI, there is a gradient appearing in the ATRACT filtered
projections. After backprojection, such a gradient artifact also propagates into the
volume domain.

To compensate this gradient, the magnitude difference between two sides of spikes
(after Laplace filtering) is first extracted before removing them. Then, we incorporate
such information into ATRACT filtered projections, to compensate for the resulting
gradient. More specifically, for each projection, the following steps are performed.

Firstly, heights of the spike from the left and right borders (denoted as h1 and h2)
are extracted from projections after Laplace filtering. Note that for a 2D projection
image, the average values along the boundary column (where the spike arises) are
computed as:

h1 (λ) =
vmax∑
vmin

g2 (λ, umin, v) , and h2 (λ) =
vmax∑
vmin

g2 (λ, umax, v) . (4.27)
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Secondly, the increment slope n of the two spikes can be computed as:

n = h1 (λ)− h2 (λ)
umax − umin

. (4.28)

Finally, we estimate a linear line from the increment slope and add/subtract (depend
on the sign of the slope) it over original filtered 2D projection images as:

ğ
(ATRACT)
F (λ, u, v) = g

(ATRACT)
F (λ, u, v) + τn · u (4.29)

where τ is the coefficient of this linear model and can be empirically estimated by
comparing ğ(ATRACT)

F (λ, u, v) to the ramp-filtered non-truncated data g(FDK)
F .

4.5 Summary
In this chapter, we investigated a new truncation artifact reduction method, namely
ATRACT, that is intrinsically more robust with respect to severely truncated data.
It follows the analytic FDK framework but replaces the ramp filter with the Lapla-
cian and a non-local residual filter. We presented two variants of ATRACT, which
are more practically-useful, particularly in terms of computational efficiency. The
first one, 2D ATRACT, aims to express the non-local filter as an efficient 2D convo-
lution with an analytically derived kernel. The second variant is an attempt to apply
ATRACT in 1D to further reduce computational complexity. As will be shown in
Chapter 7, both variants lead to a noticeable computational speed-up compared with
the original ATRACT method, while still retain reconstructions of high quality. Fur-
thermore, we suggested two empirical correction techniques to compensate remained
artifacts from the ATRACT results, which bring ATRACT-based ROI imaging closer
to clinical application.
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In some clinical applications, such as cancer or tumor treatments, reconstruct-
ing an image inside the ROI alone may be sub-optimal, since the outer region, i.e.,
the peripheral region (PR), may also contain useful information, such as surround-
ing landmarks or so-called organs-at-risk. This chapter presents a novel interleaved
acquisition strategy that would utilize a fast collimator to acquire both truncated
and non-truncated projection data within a single sweep. Using this technique, it is
possible to image a particular ROI with relatively high image quality while simul-
taneously capturing the external anatomical structures, i.e., the PR information, by
reconstructing a sparse set of full projections. Even though this would involve the
acquisition of a sparse set of non-truncated projections, the overall applied dose still
remains considerably below the amount of a conventional scan. This chapter is orga-
nized as follows. In Section 5.1, we explain why the shutter scan is practically useful
in clinical applications and discuss the related work, followed by introducing the con-
cept and possible realization of shutter scan in Section 5.2. Since the data acquired
from shutter scan are not compatible with conventional reconstruction methods, in
Section 5.3, we suggest three reconstruction algorithms that are capable of dealing
with shutter scan data. These algorithms are either in an analytic formulation or in
an iterative manner, or in a hybrid form. At last, Section 5.4 summarizes the content
of this chapter.

Parts of this work have already been published in Kaestner et al. [Kaes 15].

5.1 Introduction and Motivation
Three-dimensional (3D) region-of-interest (ROI) imaging has been shown to be a
valuable tool in cone-beam CT by providing 3D anatomical information at a pre-
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defined target region at a considerably low dose. Since the physical collimation is
narrowed in both transaxial and axial direction such that only a diagnostic ROI is
exposed to the X-ray beam, little information is available outside the ROI. However,
in some clinical applications reconstructing an image inside the ROI alone may be
sub-optimal, since the outer region, also referred to as the peripheral region (PR), may
also be advantageous in image-guided therapy and interventional procedures. One
of such potential applications involves applying 3D ROI imaging in cancer or tumor
treatments. Although the tumor region can be visualized in an ROI image, the so-
called organs-at-risk may not, which also need to be identified in the treatment region
to prevent further damage. Also, surrounding landmarks that are usually required to
assist patient positioning are desired to be visualized for facilitating treatment setup.
Another example is to employ C-arm based ROI imaging to detect interventional
micro devices, such as stents, coils or cochlea implants. In these cases, the PR
may contain relevant information that is helpful for orientation in order to reach the
desired location of a stenosis where the stent is deployed. In general, these clinical
applications do not require a highly reliable or high resolution PR but rather adequate
image quality that allows an overview orientation such as locating other organs or a
catheter. Conventionally, to obtain an image with spatially varying image quality, two
consecutive scans were usually acquired and combined. At first, a low-dose overview
scan of the whole patient was acquired, followed by a high-dose ROI acquisition at
a target ROI using an X-ray physical collimator [Kold 10]. This method, however,
may require an additional registration step to align projections from both scans due
to the repositioning of the patient.

In this chapter, a proof-of-concept study of a new acquisition scheme, namely the
shutter scan, is conducted. That is, within one scan, to generate a high number of
truncated projections to image only the ROI and a low number of full FOV projections
covering the PR. Using this technique, we would be able to image a particular ROI
with relatively high resolution while simultaneously capturing the external anatom-
ical structures, i.e., the PR information, by reconstructing a predetermined sparse
set of full projections. Even though that would involve the acquisition of a sparse
group of non-truncated projections, the overall applied dose still remains consider-
ably below the amount of a conventional scan. However, various artifacts will arise
in the reconstruction of shutter scan data. First, the acquired subset of truncated
projections is not compatible with conventional reconstruction algorithms. As a con-
sequence, the reconstructed volume will be impaired by severe truncation artifacts.
Furthermore, a sparse set of full projections also gives rise to the reconstruction of
strong streaking artifacts that may distract the observer from relevant structures.
Therefore, it is of practical importance to develop such an algorithm that copes with
acquired shutter scan data. In this work, we propose three algorithms that are ca-
pable of reconstructing and combining such data and lead to a hybrid volume with
spatially varying image quality.

So far, only a small number of research groups investigated in this direction. Lu
et al. [Lu 14] proposed a method using a similar scan protocol that acquires two
groups of X-ray projections with different mAs levels and collimation, depending
on projection angles. Although their objective is also to reconstruct an image that
has a high quality inside the ROI and a relatively low quality in the PR, the two
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groups of data were acquired in an independent manner. Firstly, a dense set of
low-dose non-truncated projections was acquired to yield an additional estimation
outside the ROI, followed by a sparse group of high-dose truncated projections. These
sparsely acquired truncated projections were detruncated using forward projections
of the first group and then reconstructed using a tight-frame (TF)-based iterative
algorithm to achieve a high-quality ROI image. Alternatively, a nested ROI imaging
acquisition was suggested by Leary et al. [Lear 14], which is similar to the proposed
shutter scan method. By deploying a dynamic multileaf collimator (MLC), data
acquisition aims to image two nested ROIs (instead of an ROI and a PR in our case),
namely inner ROI and outer ROI, simultaneously. The dose and contrast noise ratio
(CNR) to an outer ROI relative to an inner ROI can be controlled by defining several
different MLC sequence ratios with a preset number of inner to outer collimator
apertures. Furthermore, during acquisition the authors selected to keep at least two
consecutive MLC shapes from the inner or outer ROI sequences. The reconstruction
was carried out using the FDK algorithm and by performing a data extrapolation
scheme proposed in [Kadr 95, Roba 12]. However, this approach cannot preserve HU
values compared with the FDK reconstruction from non-truncated data.

5.2 Interleaved Data Acquisition Scheme – Shutter
Scan

In this section, we elaborate the principle of the shutter scan data acquisition that is
dedicated to enriching ROI imaging. The concept of the shutter scan is schematically
illustrated in Fig. 5.1. The acquisition is interleaved as a function of rotation angle
to generate two groups of different projections at a single sweep. The first group
of projections is acquired at sparsely located projection angles (e.g., every tenth of
the angulation) without collimating the X-ray beam. The benefit of acquiring a low
number of non-truncated projections is two-fold: First, we can obtain a reconstructed
image that has an adequate image quality in the PR such that a relatively reason-
able estimation of regions outside the ROI is allowed. Second, these non-truncated
projections, which yield a large FOV, could potentially improve the accuracy of the
ROI reconstruction. The second group consists a large number of truncated projec-
tions and is acquired at a densely located projection angles (all except non-truncated
projection angles). These projections are sufficient to reconstruct an ROI image of
high quality, if an efficacious truncation correction step is applied.

In order to acquire both the non-truncated projections and truncated projections
within a single scan, the shutter scan would need a fast dynamic collimator to transax-
ially and axially block radiation to the patient body during the gantry rotation. The
collimator should be capable of changing its position and size dynamically over the
entire possible range, while the C-arm is rotating from one angular position to an-
other. For a detailed investigation of the translation speed of the collimator leaves
during the gantry rotation, we refer to the work in [Heus 11]. While the X-ray beams
are collimated to the ROI for most projection angles, at every n-th frame the colli-
mator opens completely to acquire a full FOV non-truncated projection. We hereby
introduce the term “sparsity” indicating the frequency of acquired full projections.
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Figure 5.1: Schematic illustration of the concept of the shutter scan. The acquisition
is interleaved as a function of rotation angle to generate two groups of different
projections (truncated and non-truncated projections) during a single sweep.

For instance, a sparsity of k = 10 corresponds to an acquisition protocol where every
10-th projection is a non-truncated full projection. It is expected that the different
sparsity levels in a shutter scan are meant to maintain a constant dose and image
quality within the ROI, while relatively altering both aspects in the PR.

It should be emphasized that even though the shutter scan involves the acquisition
of a sparse set of non-truncated projections, the overall applied dose would remain
considerably below the amount of a conventional scan. Assume that a full FOV scan
corresponds to 100% radiation dose, then an ROI scan where, for example, 70% of the
FOV is collimated, will result in only about 30% of the radiation dose to the patient.
In comparison to that, a shutter scan acquisition where, e.g., 50 non-truncated and
446 truncated projections are acquired (496 in total), leads to an additional radiation
dose of roughly 7%. In this manner, information of both, the ROI and PR, can be
incorporated into a single volume.

5.3 Shutter Scan Reconstruction Algorithms

As discussed in the previous chapter, the shutter scan simultaneously produces a
sparse set of non-truncated projections and a dense set of truncated projections.
However, neither of these projection data is directly compatible with the standard
FDK algorithm. In this section, we suggest three reconstruction algorithms that are
capable of dealing with shutter scan data. These shutter scan algorithms, which
combine two sets of acquired data either in the projection domain or in the volume
domain, in general show a similar performance within the ROI but yield noticeably
distinct image quality/characteristics in the PR. In the following, we start with a
straightforward approach, namely joint weighted FDK/ATRACT method, that pro-
cesses the two groups of projection data in the projection domain.
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5.3.1 Joint Weighted FDK/ATRACT Reconstruction
This subsection addresses a straightforward approach, as shown in Fig. 5.2, that
separately pre-processes the two groups of data in the projection domain. That is, the
sparse acquired non-truncated projections are filtered via the conventional FDK ramp
filtering, while the dense set of truncated projections are filtered via the ATRACT
algorithm to reduce truncation artifacts. Finally, both groups of projections are
backprojected into a single volume by using a standard 3D voxel-driven cone-beam
backprojection. However, two scale/offset-related issues still need to be addressed
before we obtain the combined reconstructed volume.

Scaling and Offset Correction

Since the non-truncated projections are only sparsely acquired at a low number of
rotation angles, the resulting image intensity in the PR region may be relatively lower
compared with the intensity within the ROI that is reconstructed from a dense set
of data. To counteract the scale/offset issue, we introduce a weighting factor that
is applied to the ramp-filtered full projections. The region that relates to the PR
(outside scan FOV) is weighted by a sparsity-related factor k, whereas the region
inside the scan FOV is weighted by a constant 1.

Also, filtering of a truncated projection with the ATRACT algorithm yields a
different scaling and offset issue on projection intensity values compared with the
standard ramp filtering of a non-truncated projection. Therefore, we propose a fully
automated correction scheme in this work. This correction model is based on a
patient-specific regression model, which is applied to the filtered truncated projec-
tions. More specifically, firstly, the linear regression parameters (i.e., the mean µ(FDK)

and standard deviation σ(FDK)) are computed from a homogeneous subregion in the
reference FDK projections, i.e. the ramp filtered non-truncated projections. Then,
all following ATRACT filtered truncated projections gATRACT (λ, u, v) are aligned to
a same intensity/noise level, based on this pre-computed linear regression model, as
follows

ğ(ATRACT) (λ, u, v) = g(ATRACT) (λ, u, v)− µ(ATRACT)

σ(ATRACT) σ(FDK) + µ(FDK), (5.1)

where ğ(ATRACT) denotes the corrected ATRACT projection, µATRACT and σFDK de-
note the mean and the standard deviation from a homogeneous subregion of gATRACT.

We repeat the correction process until the next non-truncated projection is reached
and then the linear regression parameters will be updated according to the first step.
As a consequence, a continuous update of these correction parameters is performed
and the scaling and offset artifacts in ATRACT filtered projections are corrected by
a reference nearby.

Discussion

The joint weighted FDK/ATRACT method has advantages of being easy to imple-
ment and computationally very efficient. Its computational complexity is comparable
to that of FDK, if 1D ATRACT is adopted. However, severe streaking artifacts will
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Figure 5.2: Flowchart of the first approach: Non-truncated projections are filtered
with the ramp filter and are locally weighted by a sparsity-related factor k outside
the ROI. The truncated projections are filtered using ATRACT and an offset/scaling
correction is applied after the filtering. Both sets of filtered projection data are then
backprojected into a single volume to obtain the final result.

appear in the PR due to the direct implementation of FDK on sparse projection data.
Particularly in a high sparsity level, these streaks may be too strong to identify the
relevant anatomical structures of the patient.

5.3.2 Parallel Reconstruction with Volumetric Combination
The second approach involves a volumetric combination of two initial reconstruc-
tion images obtained by backprojecting two parallel processed projection data. The
combined volume is a hybrid one, containing both the relatively low-resolution PR
reconstructed from the sparse set of non-truncated data and the high-resolution ROI
from the dense set of truncation data. The flowchart of this algorithm is depicted in
Fig. 5.3. Further details are elaborated in the following.

The group of truncated projections is independently filtered and backprojected
using ATRACT so that we obtain a high quality ROI image. For the sparse set of
full FOV projections, to reduce streaking artifacts, we use an iterative reweighted TV
minimization method that consists of a SART (simultaneous algebraic reconstruction
technique) data fidelity term and a weighted TV regularization.

Reweighted TV Minimization

In the following we elaborate this iterative algorithm in detail. As frequently ad-
dressed in the literature [Yu 09b, Yu 09c, Yang 10], the general process of an iterative
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Figure 5.3: Flowchart of the second approach: The set of non-truncated projections
is reconstructed using the wTV minimization algorithm to obtain an overview volume.
The set of truncated projections is processed with the ATRACT algorithm to obtain
an ROI reconstructed volume. An offset correction of the ROI is performed before
both volumes are combined. This is followed by a cosine smoothing of the transition
region to create the final reconstructed volume.

image reconstruction from incomplete data involves the following constrained opti-
mization problem:

min
f
‖f‖TV subject to ‖Rf (x)− g‖2

2 ≤ κ, (5.2)

where R describes the X-ray transform, f (x) denotes the reconstructed image with
x = (x, y, z), g denotes the measured projection data and κ characterizes the raw
data consistency. The data fidelity term is minimized using the standard SART.
To ensure a minimization of the TV term ‖·‖TV, we used in this thesis an itera-
tive reweighted total variation (wTV) minimization algorithm proposed in [Cand 08],
which is formulated as follows:

min
f

Nx,Ny ,Nz∑
x,y,z=1

ωx,y,z ‖∇fx,y,z‖ , and ωx,y,z = 1
‖∇fx,y,z‖+ ε

, (5.3)

where fx,y,z denotes the value in f assigned to the voxel with index (x, y, z) in a volume
of size Nx × Ny × Nz, ∇fx,y,z denotes the gradient of the image, ωx,y,z denotes the
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Region 

Figure 5.4: Illustration of the transition region ΩT and inner ROI region ΩI that
are used to define the cosine smoothing function ωcos (x).

weighting matrix, and ε is a parameter that influences the image quality. Note that
the weights are chosen to be inversely proportional to the image gradient magnitude,
so that ωx,y,z ‖∇fx,y,z‖ is approximately equal to 0, if the image gradient ‖∇fx,y,z‖ is
0 or close to 1, if the image gradient ‖∇fx,y,z‖ is nonzero. In other words, the whole
optimization term minimizes the number of nonzero image gradient values that is
actually the L0-Norm. This method is able to efficaciously enhance the data sparsity
and was proven to be able to restore the Shepp-Logan phantom with only 10 pseudo-
radial lines [Cand 08]. A detail implementation of the wTV minimization algorithm
will be provided in Section 7.3.1 in the evaluation part.

Transition Smoothing

When simply combining both reconstructed volumes, i.e. the full volume and the ROI
volume, an abrupt transition region will be clearly visible. Therefore, it is desirable
to realize a smooth transition region without a noticeable boundary between the
ROI and the full volume. This can be done by performing a cosine smoothing of
the intensity values at the boundary of the ROI. Suppose the ROI volume center is
located at xc = (xc, yc, zc). The inner ROI region ΩI and the transition region ΩT

surrounding the inner boundary at slice z = zc are defined as (also see Fig. 5.4 for a
graphical illustration):

ΩI =
{

x |
√

(x− xc)2 + (y − yc)2 ∈ [0, rin]
}

(5.4)

ΩT =
{

x |
√

(x− xc)2 + (y − yc)2 ∈ [rin, rin + rtran]
}

(5.5)
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where rin denotes the radius of inner boundary circle and rtran denotes the transition
length in the radial direction. Then, the cosine smoothing weights ωcos (x) can be
applied slice-wise in a radial manner as follows:

ωcos (x) =


1
2 + 1

2 cos
(
π
‖x−xc‖2−rtran

rtran

)
x ∈ ΩT

1 x ∈ ΩI

0 else
(5.6)

To obtain the final reconstruction volume f (x), the weighted ROI volume fROI (x)
is combined with the wTV volume fwTV (x) as follows:

f (x) = ωcos (x) fROI (x) + (1− ωcos (x)) fwTV (x) . (5.7)

Discussion

Although wTV reconstruction yields noticeably less streaking artifacts than that of
FDK, independently processing of two groups of projection data is also problematic.
Firstly, two volumetric images, before a combination, may also yield different intensity
levels. That means, additional image processing for equalization of relative image
intensity between the ROI volume and the overview volume is required. Secondly,
truncated projections also contain some information outside ROI, which may help to
improve image quality in the PR. This information, however, was discharged during
the combination procedure.

5.3.3 Prior Image Driven Projection Detruncation
This section presents an approach that utilizes an iteratively reconstructed initial
volume as prior image served for a subsequent detruncation/extrapolation process.
Inspired by the work of Ritschl et al. [Rits 13], the approach in total involves three
steps. First, an initial volume is reconstructed from the measured sparse set of non-
truncated projections. To avoid strong streaking artifacts, here again we use the
iterative wTV minimization algorithm as described in the previous section. Then, we
forward-project the initially reconstructed volume to complete the group of truncated
projections that was also acquired in the shutter scan. This step is also referred to
as detruncation. By doing so, we obtain a complete set of hybrid projection data
that consists of originally measured projection data and artificially forward projected
data inside and outside the measured FOV, respectively. The last step in this pipeline
involves the standard FDK reconstruction that will lead to a final output volume with
spatially varying image quality. The flowchart of the method is shown in Fig. 5.5.
Further details are elaborated in the following sections.

Forward Projection

To perform the second reconstruction with improved image quality, it is necessary to
complete the measured truncated projections outside the ROI with the information
from the initial wTV volume. To this end, we need to forward-project the initial
volume to the original imaging geometry with the same detector size. The forward
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Figure 5.5: Flowchart of the third approach: An initial reconstruction is obtained
by using an iterative wTV algorithm on the sparse set of non-truncated projections.
Then, the initial reconstruction is forward projected to complete the measured trun-
cated projections from the shutter scan. An offset/scaling correction is applied on
these forward projections before the actual detruncation step of the truncated pro-
jections is taken. A smoothing of the transition region is further performed and all
projections are reconstructed into the final volume via FDK.
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Figure 5.6: Illustration of how to compute two parameter masksA (u, v) andB (u, v)
for each projection that contain all transformation parameters for a single pixel (u, v).
To obtain A (u, v) for instance, we calculate the standard deviations over the whole
column in u-direction and over the row in v-direction in the transition regions for both
the forward projections gFP (λ, u, v) and the truncated projections gTrun (λ, u, v).

projection step was performed by a ray-driven algorithm. This algorithm calculates
each ray, described by the source position and a detector pixel position, through the
wTV reconstructed volume while accumulating the line integral values. In practice,
the forward projection is only necessary to be performed on the angulations that
correspond to truncated projections and also outside the measured FOV.

Projection Adjustment and Smoothing

The original collimated data and the forward projected data are combined in the
projection domain. Here, some adjustments are needed to handle incorrect forward
projection values, especially in the transition region. These adjustments are very
crucial for the subsequent pre-processing steps. Our correction strategy follows the
method proposed in [Wieg 05, Kold 10]. That is, additional overlapping regions on
both sides of the measured projection (truncated) are also forward-projected. Values
are compared with the corresponding overlapping regions of measured data such that
the transformation parameters can be obtained. More specifically, we define two
transformation parameters A and B indicating the scale and offset as follows

A = σTrun

σFP
, and B = µTrun − A · µFP, (5.8)
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where σTrun, σFP correspond to the standard deviations and µTrun, µFP correspond to
the mean values of the transition region for the truncated projections gTrun (λ, u, v)
and the forward projections gFP (λ, u, v), respectively.

In the following, for each projection we compute two parameter masks A (u, v)
and B (u, v) that contain all transformation parameters for a single pixel (u, v); also
see Fig. 5.6 for a graphical illustration. To do so, we first calculate the mean values
and the standard deviations over the whole column in u-direction and over the row
in v-direction in the transition regions for both the forward projections and the mea-
sured projections (truncated). Then, the individual transformation parameters are
calculated based on these values [Eq. (5.8)] and then filled in the parameter masks
A (u, v) and B (u, v) at the corresponding rows and columns. In order to obtain val-
ues of the masks outside the transition region, the outermost values of the parameter
masks are constantly extrapolated to the borders of the detector in both directions.
Finally, the actual transformation of each pixel of the forward projection is achieved
according to:

˘gFP (λ, u, v) = A (u, v) · gFP (λ, u, v) +B (u, v) (5.9)
where ˘gFP (λ, u, v) represents the adjusted forward projection at rotation angle λ.

With an additional cosine weighting, we ensure a smooth transition region in the
combined projection data, such that abrupt changes of the values at the boundary of
the ROI can be avoided. The cosine smoothing weights are calculated following the
principle of Eq. (5.6) but rather row-wise along the detector line (u-direction).

Discussion

The prior image based detruncation we proposed in this section fully utilizes two
groups of projection data from a shutter scan and thus appears more promising than
those of separately processing strategies under investigation. However, using itera-
tive reconstruction scheme requires frequent forward- and back-projection procedures,
which seems computationally not very efficient. As an alternative, a non-linear edge
preserve filters, such as bilateral filter, could be potentially applied to generate a
compromised result.

5.4 Summary
In this part of the thesis a novel concept of data acquisition, namely shutter scan,
was introduced. It would acquire both a high number of truncated projections and
a low number of full FOV projections within one C-arm sweep. This data acquisi-
tion is advantageous in various clinical applications that require imaging a particular
ROI with relatively high image quality while simultaneously capturing the external
anatomical structures, i.e., the PR information, with a relatively low image quality.
Along with acquired shutter scan data, we suggested three reconstruction algorithms
that are capable of dealing with such data. These newly proposed algorithms involve
either pre-processing projection data in a separate manner and backprojecting them
in a single volume, or a straightforward volumetric combination of two individually
reconstructed images or even a projection merge via forward projection of an ini-
tial iteratively reconstructed volume. Although all methods lead to a hybrid volume
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with spatially varying resolution, the resulting image quality and characteristics, par-
ticularly in the PR, will noticeably differ from one to another. The corresponding
evaluations of different algorithmic performances of the shutter scan are presented in
Chapter 7.



78 ROI Reconstruction Algorithms for Shutter Scan Acquisition



C H A P T E R 6

Patient Bounded
Extrapolation Method using

Low-Dose Priors

6.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Patient Boundary Estimation with Priors . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Adaptive Extrapolation Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Three-dimensional (3D) C-arm based ROI imaging is a valuable tool in interven-
tional radiology for therapy planning and guidance. A necessary initial step prior to a
3D acquisition is to isocenter the patient with respect to the target to be scanned. To
this end, low-dose fluoroscopic X-ray acquisitions are usually applied from anterior-
posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered
by repositioning the table. In this chapter, we propose a robust extrapolation method
that makes use of these non-collimated fluoroscopic images to improve image quality
in 3D ROI reconstruction. Section 6.1 explains the practical importance of the pro-
posed method. Sections 6.2 and 6.3 present the investigated two-step extrapolation
pipeline. The first step, as described in Section 6.2, involves the estimation of a rough
3D patient shape based on two orthogonal prior images and then re-projecting the 3D
model in any given C-arm rotation angle to obtain patient boundary information in
the associated projection. Section 6.3 discusses the second step that incorporates the
estimated patient boundary information into existing extrapolation schemes. Finally,
the last section summarizes the whole chapter.

Parts of this work have already been published in Xia et al. [Xia 14a, Xia 15b].

6.1 Introduction and Motivation

Three-dimensional ROI imaging with C-arm systems provides anatomical information
in a predefined 3D target region at a considerably low X-ray dose. As described in
Chapter 1, in neurointervention some applications only require a small ROI to be
imaged, e.g., examination of a deployed stent or coil, resulting in severe truncation
of the projection data. However, conventional reconstruction algorithms generally
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yield images with heavy truncation artifacts from these laterally severely truncated
projections [Herm81].

Although various previous approaches concerning the truncation artifact reduc-
tion were proposed, as discussed in Chapter 2, only few meet our requirement. Pop-
ular heuristic extrapolation techniques [Ohne 00, Hsie 04, Van 04, Sour 05] aim to
estimate the missing data using a smooth continuation assumption at the trunca-
tion edges. Although these methods can be carried out without prior information,
they rely on heuristics and thus may be difficult to correct for the severe truncations
that are often encountered in ROI scans. The sinogram recovery by tracing sinu-
soidal sinogram curve (Chityala et al. [Chit 05] and Zamyatin et al. [Zamy 07]) may
also fail since less measured data is available for angular interpolation along the sine
curves. Maltz et al. [Malt 07] estimated the thickness of the patient by calculating
water-equivalent thicknesses from the measured attenuation profiles, so that the un-
known patient boundary can be approximated. However, in practice, the presence
of any non-water tissue (air, bond or metal implants) might result in a substantial
over/under-estimation of the actual object thickness. The differentiated backpro-
jection method (DBP) investigated by Noo et al. [Noo 04], Defrise et al. [Defr 06],
Kudo et al. [Kudo 08] and Ye et al. [Ye 07] could potentially achieve a stably and
exact ROI reconstruction. However, such reconstruction schemes, either need certain
data sufficiency conditions or come with rather high computational demand, may
prohibit their use in interventional clinical routines. The data completion using prior
scan proposed by Ruchala et al. [Ruch 02], Wiegert et al. [Wieg 05], Kolditz et al.
[Kold 10] and Sen Sharma et al. [Sen 13] can extend the collimated regions in an
accurate manner. These additional scans, however, may interrupt the interventional
workflow and cost extra radiation dose to the patient.

In this chapter, we present a patient-bounded extrapolation method that leads to
significant improvements in the accuracy of 3D ROI imaging, even in the presence
of severely truncated data. The method does not require any additional hardware
and can be readily integrated into the existing interventional workflow. Moreover,
the proposed method only involves small vector/matrix multiplications on boundary
points and thus are computationally comparable to heuristic extrapolation schemes.
It is based on the fact that prior to a 3D scan, two fluoroscopic X-ray acquisitions
are generally performed from anterior-posterior (AP) and medio-lateral (ML) views,
to isocenter the patient with respect to the target to be scanned; see Fig. 6.1. These
fluoroscopic acquisitions require considerably low X-ray dose. The fundamental idea
of the proposed method is to estimate a 3D shape model of the patient from these
low-dose non-truncated fluoroscopic images and then exploit this patient-specific a
priori shape knowledge for the extrapolation of truncated projections.

6.2 Patient Boundary Estimation with Priors
This section starts with an overview of the proposed patient-bounded extrapolation
method, which consists of the following steps. First, we estimate the rough 3D
patient shape based on two fluoroscopic projections, using per-slice ellipse model
fitting. Forward-projecting this 3D model for any projection angle acquired during
the actual ROI scan gives the patient bounded information for the corresponding
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Figure 6.1: Illustration of fluoroscopic X-ray projections from medio-lateral view
and anterior-posterior view from an anthropomorphic head phantom. They require
considerably low X-ray dose and are usually acquired prior to a 3D scan, to examine
if the diagnostic VOI is optimally centered. The red outlines indicate the extracted
boundary information.

ROI Selection
Fluoro AP view
(non-truncated)

Auto 2D outline extraction

Fluoro ML view
(non-truncated)

Auto 2D outline extraction

3D shape estimation

Shape forward pro-
jection for all angles

Detruncation of
ROI projection data

Reconstructed volume

Truncated ROI projections

Figure 6.2: Flowchart of the proposed patient boundary extrapolation procedure.
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Figure 6.3: Illustration of the patient-bounded extrapolation scheme. (Left)
Contour-bounded slice-wise ellipse fitting. (Right) Forward-projection of the bound-
aries of the previously estimated patient shape model at a given C-arm rotation view
provides the patient boundary in the projection domain.

projection. Then, detruncated projection data could be obtained by adapting the
extrapolated profile to fit the known profile boundary points. The flowchart of the
algorithm is illustrated in Fig. 6.2. The details are elaborated in the following sections;
also see Fig. 6.3 for notations.

6.2.1 Patient Shape Model Estimation using Slice-wise Ellipse
The first step is to extract the boundaries from fluoroscopic images shown as the red
outlines in Fig. 6.1. Here we can readily detect the edges by using an empirically
pre-set air/tissue threshold. Suppose uAPlb =

(
uAPlb , vi, 1

)
, uAPrb , uML

lb , and uML
rb are the

homogeneous coordinates of the segmented left and right boundary points at detector
row vi of the 2D fluoroscopic images from AP and ML view. Let Pλ ∈ R3×4 be the
projection matrix at the C-arm rotation angle λ that maps position x = [x, y, z] in
the C-arm coordinate frame to a position u = [ωu, ωv, ω] in the 2D projection plane:

u = Pλ

[
x
1

]
. (6.1)

The matrix Pλ can be decomposed as follows:

Pλ =
[
Pλ

13 | pλ4
]

= [AR | At] , (6.2)

where R ∈ R3×3 denotes the rotation matrix, t ∈ R3 denotes the translation vector,
and A ∈ R3×3 the intrinsic parameter matrix. Then, we can compute the direction
unit vector eAPm , eML

m of the ray that connects the source to the middle point of the
two boundaries, i.e., uAPm =

(
uAPlb + uAPrb

)
/2 and uML

m =
(
uML
lb + uML

rb

)
/2, as:

eAPm = (PAP
13 )−1uAPm

‖(PAP
13 )−1uAPm ‖2

, eML
m = (PML

13 )−1uML
m

‖(PML
13 )−1uML

m ‖2
, (6.3)

where P−1 denotes the pseudo-inverse of the matrix P. Now the ray equations can
be expressed as

lAPm (t) = sAP + teAPm , and lML
m (l) = sML + leML

m , (6.4)
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where sAP and sML denote the X-ray source positions at AP and ML views, which
can be computed using s = −P−1

13 p4, and t, l ∈ R.
Then, the center of the fitted ellipse x0 is estimated by computing the intersec-

tion of the two rays lAPm and lML
m . Here, we confine to breaking the problem down

to a 2D line intersection by setting the third component of the 3D lines to zero, i.e.,
sAP Iz = sMLIz = 0 and eAPm Iz = eML

m Iz = 0, where Iz =
[

0 0 1
]T
. The reason to

make such an approximation is that we only need to compute the u−axis coordinates
of the object boundary in the forward projection procedure. The v−axis coordinates
are already given as the detector row indexes where we extracted the outline infor-
mation, i.e., vi. Then, the problem is to solve the intersection of the following 2D
line equations: y = ax+ b

y = cx+ d
(6.5)

with

a = eML
m Iy

eML
m Ix

, b = sMLIy − asMLIx

c = eAPm Iy
eAPm Ix

, d = sAP Iy − asAP Ix (6.6)

where Ix =
[

1 0 0
]T

and Iy =
[

0 1 0
]T
. So far, we computed the first two

components of the intersection point x0. To establish a 3D model in the volume
domain, the third component of x0 can be approximated by the third component of
the closest point between the two 3D lines lAPm and lML

m , which is given by

x0Iz := xcloIz (6.7)

with the closest point determined by:

xclo = sAP +

((
sML − sAP

)
× eML

m

)
·
(
eAPm × eML

m

)
‖eAPm × eML

m ‖
2 eAPm . (6.8)

Now we need to determine the radii Rx, Ry of the ellipse. The line equation of
the rays from AP view that connects the patient boundary and source can also be
expressed as (e.g. right boundary) lAPr (h) = sAP + heAPr , where eAPr is computed
using uAPrb similar to Eq. (6.3). Suppose xr is the point located on the line lAPr that
satisfies xrIy = x0Iy, i.e., with the same y-axis coordinate as x0; also see Fig. 6.4 for
illustration. Then, the radius along the x-axis Rx can be approximated as follows:

Rx = (xr − x0) Ix. (6.9)

In analogy, we can use the boundary from ML view to determine the radius of the
ellipse along the y-axis Ry.

So far, for each detector row vi we computed an associated ellipse that is used
to approximate a slice of the patient outline in the volume domain. This ellipse is
parametrized by the center x0 and two radii Rx and Ry.
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Figure 6.4: Illustration of how to approximate the ellipse radii Rx and Ry. To
estimate Rx for instance, we need to compute the x-axis distance between x0 and xr
(a point located on the line lAPr that has the same y -axis coordinate as x0). Such an
approximation is valid due to the small fan angle in C-arm system.

6.2.2 Patient Boundary Estimation for Arbitrary Projections
With the estimated ellipse in the volumetric image domain, we can compute the left
and right patient boundaries of that ellipse for any given C-arm rotation angle λ as
follows:

xλlb = x0 − reu, (6.10)
xλrb = x0 + reu, (6.11)

where r =
√

(Ry cosλ)2 + (Rx sin λ)2 and eu denotes the unit vector in detector row
direction. Then, we forward-project these voxel positions onto the 2D projection
plane using Eq. (6.1), also cf. Fig. 6.3:

uλlb = Pλ

[
xλlb
1

]
, and uλrb = Pλ

[
xλrb
1

]
. (6.12)

The estimated patient left and right boundaries at the detector row vi and rotation
angle λ, i.e.,

(
uλlb, vi

)
and

(
uλrb, vi

)
, can be obtained with uλlb = uλlbIx/uλlbIz and uλrb =

uλrbIx/uλrbIz.

6.3 Adaptive Extrapolation Schemes

6.3.1 Patient Bounded Water Cylinder Extrapolation
Based on the estimated patient boundaries in the VOI scan projection data, we are
in the position to apply any extrapolation technique and adapting it according to the
restriction that the extrapolated profile must end at the known patient boundaries.
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In this paper, we adapt the water cylinder approach of Hsieh et al. [Hsie 04] by
expanding or compressing the initial extrapolated lines to fulfill this restriction. Let
gλ,v (u) be the projection data at the given detector row v and rotation angle λ. Then,
extrapolation is carried out row-wise as

ẽwater (u) = 2µ
√
r2 − κ2 (u− uc)2 (6.13)

where µ denotes the water attenuation coefficient, uc denotes the location of the fitted
cylinder with respect to the detector row and r denotes the radius. As described in
Hsieh’s work [Hsie 04], the parameters uc and r can be determined by

uc =
gλ,v (ut) g′λ,v (ut)

4µ2 , r =
√
gλ,v (ut)

4µ2 + u2
c (6.14)

where ut and g′λ,v (ut) denote the truncation boundary position and slope of the
truncation projection boundary samples, respectively. In contrast to the formulation
by Hsieh et al., in Eq. (6.13) we introduce κ that serves as a scaling factor to stretch
or shrink the extrapolated profiles. The values of κ can be computed by using the
boundary index ub (here we do not distinguish the left or right boundary. Both are
denoted as ub) that we obtained in the previous section:

κ2 = r

ub − uc
. (6.15)

6.3.2 Patient Bounded Square Root Extrapolation
As an alternative, we also investigate the square root function extrapolation that was
proposed by Sourbelle et al. [Sour 05]. For a given detector row v and rotation angle
λ, the extrapolation function is provided as

ẽsquare (u) =
√
a · u2 + b · u+ c. (6.16)

To determine the parameters a, b, and c, the following continuity equations are used:

gλ,v (ut) =
√
a · u2

t + b · ut + c, (6.17)

g′λ,v (ut) = b+ 2a · ut
2gλ,v (ut)

, (6.18)

where ut and g′λ,v (ut) denote the position and slope of the truncation edge, respec-
tively. We integrate the patient boundary information into (6.16) such that the
extrapolated profile ends at ub:

gλ,v (ub) =
√
a · u2

b + b · ub + c = 0. (6.19)

Thus, the three parameters a, b, and c can be determined using these three equations.
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6.3.3 Cosine-based Transition Smoothing
To enforce the smoothness of the transition region, the measured data gλ,v (u) and
the extrapolation data ẽ (u) are combined by a cosine-like smooth weighting function
in a predefined transition interval. The range of the transition interval is empirically
determined by using 1/30 of number of the pixels at the measured detector row. For
the right side of truncated image for instance, the transition interval is [utrans, ut] and
the extrapolated values in this transition interval can be computed as follows

gtrans
λ,v (u) = gλ,v (u) · (1− ω (u)) + ẽ (u) · ω (u) , (6.20)

with the weight function ω (u) given by

ω (u) = 1
2 + 1

2 cos
(
π

u− ut
ut − utrans

)
(6.21)

where ẽ (u) indicates the extrapolated data by using either method proposed above.

6.4 Summary
In this chapter, we investigated a patient-bounded extrapolation method that poten-
tially leads to significant improvements in the accuracy of 3D ROI imaging, even in
the presence of severely truncated data. The method does not require any additional
hardware and can be readily integrated into the existing interventional workflow. It
is based on the fact that prior to a 3D scan, two fluoroscopic X-ray acquisitions are
generally performed from two orthogonal views, to isocenter the patient. These flu-
oroscopic acquisitions require considerably low X-ray dose and have to be acquired
anyway during an isocentering procedure. The fundamental idea of the proposed
method is to estimate a 3D shape model of the patient from these low-dose non-
truncated fluoroscopic images and then exploit this patient-specific a priori shape
knowledge for the extrapolation of truncated projections. The proposed method is
well-suited for neurointerventions since: 1) The ellipse is a good model for the head;
2) the low-dose fluoroscopic images are usually non-collimated and cover the entire
object of interest. This also implies the limitation of this method. That is, the imaged
object should be fully covered in the fluoroscopic images from both views. Note that
this requirement may not be fulfilled for a body scan due to limited size of the flat de-
tector in a C-arm system. In this chapter, we only incorporated the exploited patient
boundary information into the water cylinder extrapolation [Hsie 04] and the square
root function extrapolation [Sour 05]. But, theoretically, this information can also be
applied to other extrapolation schemes such as proposed in [Ohne 00, Zell 05, Malt 07].
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The reconstruction algorithms presented in Chapter 4 to Chapter 6 come with a
different trade-off between image quality and radiation dose and may thus be dedi-
cated for various application scenarios. In this chapter, a detailed comparative evalu-
ation of all proposed algorithms for 3D ROI reconstruction is presented. This chapter
is organized as follows. In Section 7.1, we describe the experimental setup including
the studied clinical datasets, truncation simulation as well as image quality metrics.
Section 7.2 to Section 7.4 present the algorithm-specific evaluation and parametriza-
tion for each of three proposed methods, individually. After this internal comparison
and parametrization, the best candidate of each group is picked out for the compar-
ative evaluation of different categories. This is presented in Section 7.5. Finally, we
discuss the evaluation results and draw the conclusions in Section 7.6.

7.1 Experimental Setup
In this section, the clinical datasets used for assessing the quality of the developed
algorithms are presented, followed by the definition of eight ROIs differing from each
other either by the size or position. Thereafter, we introduce the assessment metrics
for qualifying the reconstruction quality of the clinical data, which will later on be
used for the evaluation.

7.1.1 Clinical Dataset and Scan Configuration
To validate the robustness for realistic applications, the proposed methods were ret-
rospectively evaluated on 16 clinical datasets from different patients (data courtesy
of CHI St. Luke’s Health - Baylor St. Luke’s Medical Center, Houston, TX, USA).
All datasets were acquired in an interventional suite equipped with a biplane flat-
panel detector angiographic C-arm (Axiom Artis Zee, Siemens Healthcare GmbH,
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Figure 7.1: An overview of all 16 clinical datasets that were used for the comparative
evaluation.

Forchheim, Germany). The detector dimension is 40× 30 cm2 with a full resolution
of 2480× 1920 pixels and thus is capable of acquiring the full patient head. All scans
were routinely conducted using the typical configuration for head therapy control
or complication management: 20-second short scan circular rotation over an angu-
lar range of 200◦, containing 496 projection images in a 2 × 2 pixel binning mode
(i.e., 1240× 960 pixels with 0.308 mm/pixel). The source-isocenter and the source-
detector distance of the imaging geometry are about 75 cm and 120 cm, respectively.
In the following results, all clinical data sets were reconstructed onto a Cartesian grid
(512× 512× 350) with a sampling spacing 4x = 4y = 4z = 0.4 mm.

The studied datasets are comprised of 16 different patients with intracranial
aneurysms treated using either flow-diverter devices or stents. These acquisitions
were acquired without contrast medium, immediately after stent or flow-diverter
placement to examine parenchymal enhancement. Figure 7.1 gives an overview of
transversal slice reconstructed from all acquired datasets. It can be seen that all pa-
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Table 7.1: Definition of the four centered FOV sizes in the projection domain and
the associated volume of interest size in the volume domain.

Scan FOV [px2] Scan FOV [cm2] VOI [px2] VOI [cm2]
ROI 1 580× 580 17.8× 17.8 d:280 × h:280 d:11.2 × h:11.2
ROI 2 480× 480 14.7× 14.7 d:230 × h:230 d:9.2 × h:9.2
ROI 3 380× 380 11.6× 11.6 d:180 × h:180 d:7.2 × h:7.2
ROI 4 280× 280 8.62× 8.62 d:130 × h:130 d:5.2 × h:5.2

tients were approximately aligned inside the FOV, which potentially reduces outlier
occurrence when designing a uniform evaluation framework on the large datasets.
Also, no actual truncation is observed on these datasets. This allows us to generate
the associated reference images for quantitative image quality assessment.

7.1.2 Truncation Simulation

The strategy used to evaluate the proposed algorithms in Chapter 4 to Chapter 6
was to truncate clinical projection data virtually. We simulate the transaxial and
axial data truncation by cutting off a specific number of detector columns and rows
from the fully measured clinical data, depending on the ROI size and position. The
benefit of using this virtual collimation is two-fold: First, this allows that correspond-
ing non-truncated FDK reconstructions are always available for comparison; Second,
this avoids introducing different levels of physical effects, such as X-ray scatter or
polychromatic effects in the projection, which make a direct quantitative comparison
impossible.

To quantify the impact of different truncation types on the proposed algorithms,
we design two groups of the collimation involving overall eight different types of
simulated truncation. The first group consists of several centered ROI cases, in which
we virtually cropped the non-truncated projection data to four different degrees, as
shown in Fig. 7.2. We denote these centered ROIs as ROI 1 (17.8 cm × 17.8 cm),
ROI 2 (14.7 cm×14.7 cm), ROI 3 (11.6 cm×11.6 cm) and ROI 4 (8.62 cm×8.62 cm),
respectively. An overview of the configuration parameters in the centered ROI group
is presented in Table 7.1.

In the second group, four off-centered ROIs with different positions are defined
in the volume domain. Due to the fact that the size and shape of patient head may
vary from one to another, we define these ROIs using a relative position with respect
to each patient outline. Such outline information was created by a binary mask from
the central slice of the reference reconstruction volume (non-truncated). As shown
in Fig. 7.3, ROI 5, ROI 6 and 8 are defined inside the patient outline with a fixed
diameter 52 mm (130 pixels), located at 32 mm (80 pixels), 50 mm (125 pixels) and 32
mm (80 pixels) away from the patient boundary, respectively. The position of ROI 7
is chosen intentionally closer to the patient boundary (24 mm) with a larger diameter
(76 mm), such that it also partially contains the patient-air transition. The aim is to
investigate how algorithms perform in such partially truncated data, in which either
only the left portion or the right portion of the projection image is truncated.
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Figure 7.2: Illustration of the four centered ROI/FOVs used in the evaluation. The
virtual collimation for these four centered ROIs was simulated by cutting off a specific
number of detector columns and rows in the projection domain.
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Figure 7.3: Illustration of the four off-centered ROIs used in the evaluation. These
ROIs are defined in the volume domain and then the corresponding truncation win-
dows are calculated using projection matrices.
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Once the ROIs are defined in the volume domain, we re-project the ROI bound-
aries to obtain the associated FOV in the projection domain and perform virtual
collimation as the centered case. Note that here we actually simulate asymmetric
collimation. That means dependent on the location of the ROI, the position of trun-
cation window may vary from one projection to the other. If the target ROI was
repositioned through an isocentering procedure, then symmetric collimation can be
applied.

7.1.3 Image Quality Metrics
To quantify reconstruction accuracy achieved by the proposed algorithms, two quan-
titative metrics were used in this thesis. The first image quality metric, the root
mean squared error (RMSE), was measured within the entire 3D ROI as:

RMSE(f (x) , f (Ref) (x)) =
√√√√ 1
N

∑
x∈Ω

(f (Ref) (x)− f (x))2, (7.1)

where f (Ref) (x) represents the reference FDK volume reconstructed from non-truncated
data, f (x) represents the evaluated reconstructed volume from virtually truncated
data, N indicates the number of voxels within the investigated ROI and Ω indicates
the domain of the volume of interest.

As addressed in Section 1.1.3, a particular interest of C-arm based 3D ROI imaging
is to identify low-profile micro-devices, such as flow-diverters or stents. Thus, accu-
rate restoration of the structural information seems more relevant than attenuation
coefficients or Hounsfield unit (HU) values. Besides, incorrect attenuation coefficients
and HU values caused by a scaling/bias can also be compensated for in the volume
domain by manual re-windowing. The second metric, correlation coefficient, would
deliver the more useful quantitative information for this need. It is defined as the
covariances of the two variables divided by the product of their individual standard
deviations:

CC(f (x) , f (Ref) (x)) =
1
N

∑
x∈Ω((f (x)− µ)(f (Ref) (x)− µRef)√

1
N

∑
x∈Ω(f (x)− µ)2

√
1
N

∑
x∈Ω(f (Ref) (x)− µRef)2

, (7.2)

where µ and µRef denote the mean values of f (x) and f (Ref) (x). The resulting value
ranges from -1 to +1. Large positive values represent good agreement in terms of
correlation.

7.1.4 Standard FDK Reconstruction
The standard FDK reconstruction [Feld 84] of non-truncated data is used as the ref-
erence for both the qualitative and quantitative evaluation in each clinical case. It is
also interesting to see how the FDK algorithm performs on truncated data from the
evaluated datasets. Figure 7.4 shows correlation coefficients of FDK reconstruction
directly from truncated clinical data on the investigated ROIs. The results confirm
that the direct application of FDK on truncated data will dramatically degrade image
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Figure 7.4: Summary of the quantitative evaluation of FDK from virtually trun-
cated data through eight ROIs.

quality, which is reflected by fairly low average values of the correlation coefficient.
Note that the image quality degradation increases with higher levels of data trun-
cation. In addition, reconstructions from partially truncated data yield a relatively
high accuracy due to less truncation in the transaxial direction.

7.2 ATRACT Specific Evaluation and Parametrization
The ATRACT algorithm that requires neither prior knowledge nor explicit extrap-
olation is suitable for any clinical workflow and thus can be considered as a base-
line reconstruction. In this section, we present ATRACT specific evaluation and
parametrization, in which the original 2D Radon-based ATRACT, 2D convolution
based ATRACT (2D ATRACT) as well as 1D ATRACT are compared in terms of
both runtime and reconstruction accuracy.

7.2.1 Implementation Details
This subsection describes the details of the implementation of the ATRACT algo-
rithm. The Laplace operation was computed using the finite difference method with
either a 3 × 1 kernel (1D Laplace) or a 3 × 3 kernel (2D Laplace) and thus filtering
can be efficiently performed in the spatial domain. The convolution-based residual
filtering was achieved using FFT in the Fourier domain. The kernel size was deter-
mined by the effective FOV size in the first projection: we chose the next power of 2
from the larger dimension of the FOV. Once the size was determined, the convolution
kernel was created and applied to all projection images. To avoid singularities in the
central values of the kernels, we estimated the central values by computing the mean
value at (u = ±0.1, v = ±0.1) in 2D ATRACT and u = ±0.1 in 1D ATRACT. Recon-
struction resolution can be controlled for 2D/1D ATRACT by applying a Gaussian
distribution function on the convolution kernel. For the evaluation, the resolution
was matched by computing the modulation transfer functions (MTF) of the 2D/1D
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ATRACT reconstructions and the FDK reconstruction with a Shepp-Logan filter us-
ing a simulated bead phantom (created by DRASIM, Siemens Healthcare GmbH,
Forchheim, Germany). We applied the offset correction proposed in Eq. (4.25) and
chose one of the investigated clinical datasets as the reference to calibrate the model
coefficients. Note that for all evaluations the parameters were determined only once
using this reference.

7.2.2 Computational Performance
An open-source reconstruction benchmark framework (RabbitCT [Rohk 09]) was em-
ployed to analyze the computational efficiency of the proposed methods. In this
framework, the reconstruction performance is evaluated using a specific high-resolution
dataset of a rabbit, which was acquired at the Department of Neuroradiology, Uni-
versity of Erlangen, Germany.

The execution time spent on processing all 496 projections with ATRACT algo-
rithms was measured, and compared to that of a standard CPU based ramp filtering
operation. Note that the Radon-based filtering in the original ATRACT used 1024
angular and 1024 of radial samples in Eqs. (4.10) and (4.11), so as to match the
spatial resolution.

The runtimes of the filtering process for each of the algorithms are shown in
Fig. 7.5 (top). A more comprehensive comparison is represented in Fig. 7.5 (bottom)
by using speed-up factors with respect to the 2D Radon-based ATRACT.

As expected, the 2D Radon-based implementation of ATRACT filtering is very
time-consuming (computation time is 25110 ± 116 s) due to the penalty of enormous
interpolations in the non-local operation. The 2D ATRACT method, which uses an
analytically derived 2D Cartesian kernel and FFT-based convolution, reduces run-
time to 2.2% of the original version. 1D ATRACT delivers optimal computational
performance, achieving an additional 5.5 times speed-up with respect to 2D ATRACT
due to less computational complexity and avoidance of additional padding. We found
that the 1D ATRACT filtering is only 10% slower than the ramp filtering, because it
has only one additional pre-filtering step — the Laplace filtering, which is computa-
tionally inexpensive.

Further improvement in computational performance is gained by using a high-
parallel graphic processing unit (GPU), the NVIDIA Quadro FX 5800. GPU versions
(implemented using CUDA 4.0) of the three ATRACT methods generally reduce the
runtimes to 5-6% of their CPU versions. It should be noted that the GPU version of
the 2D Radon-based ATRACT is 60 times faster than its CPU version, due to the
beneficial utilization of texture memory which is able to implicitly handle fast linear
and bi-linear interpolations.

7.2.3 Image Quality Assessment
In this subsection we present evaluation results for both 1D ATRACT and 2D
ATRACT that include visual inspection of image quality as well as quantitative
analysis. The original 2D Radon-based ATRACT is mathematically identical to the
2D convolution-based ATRACT method, yielding the same robustness with respect
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Figure 7.5: Runtime (top) and speed-up factor (bottom) of filtering 496 projections
(1240×960) for each algorithm. “Original” indicates the direct implementation of the
Radon-based filtering in the original ATRACT algorithm. “A1D” and “A2D” repre-
sent the CPU implementations of 1D ATRACT and 2D ATRACT, respectively. The
results of corresponding GPU implementations of these algorithms are also presented.
A NVIDIA Quadro FX 5800 was used for GPU implementations, CUDA version 4.0.
CPU implementations were based on a single-threaded Intel® Xeon X5570.
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to data truncation and hence will not be evaluated here. Note that even with the
offset correction, accurate reconstruction of the attenuation coefficient is not always
guaranteed (particularly in off-centered ROI cases). For a better quantitative inter-
pretation, in this subsection we only present results evaluated using the correlation
coefficient. For the associated RMSE results, we refer to the complete comparative
evaluation in Section 7.5.2. In the following, we first start by analyzing the four
centered ROI cases, followed by the off-centered truncation scenarios.

Centered ROI Case

We start with the visual assessment of image quality. First, the transversal, sagittal
and coronal slices of a reconstructed volume from the medium truncated data (ROI
2) are depicted in Figs. 7.6 and 7.7, respectively. It can be seen that the straightfor-
ward application of FDK on truncated data suffers from the typical cupping artifacts
manifesting as a radial gradient in the presented slices. The artifacts become in-
creasingly stronger close to the truncation edge and mask the actual intensity of
anatomical structures, as indicated by the gray arrows. In contrast, both ATRACT
methods are able to effectively reduce truncation-induced cupping artifacts and yield
visually identical image quality compared with that of the reference reconstruction
from complete data. This indicates that the two-step filtering clearly outperforms
the conventional one-step ramp filtering in the presence of data truncation.

Figure 7.8 depicts an example of the most severe truncation cases (ROI 4). For this
visual inspection, we particularly chose a narrow grayscale window [-200HU, 400HU],
which allows us to assess the capability of the proposed algorithms to restore the
homogeneous soft tissue. Surprisingly, we found that even in this challenging case,
both 1D ATRACT and 2D ATRACT still maintain reconstructions of high quality.
No noticeable truncation artifacts are observed inside the ROI and the results are
visually comparable to the FDK full data reconstruction in terms of the resolution
and noise.

In addition to visually inspecting the reconstructed images, we also quantify recon-
struction accuracy using the correlation coefficient. An overview of the quantitative
comparison of the 1D ATRACT and 2D ATRACT algorithms using all 16 clinical
datasets on the four centered ROI cases are presented in Fig. 7.9. Consistent with
qualitative analysis, in general both methods are able to produce the ROI reconstruc-
tions of high accuracy, which is reflected in high correction coefficients of up to 0.98
for 1D and 0.97 for 2D ATRACT. This implies that the structural information within
the ROI was nicely restored. As expected, the average values and the standard de-
viations of the correlation coefficient are clearly superior over the uncorrected FDK
reconstructions (see Fig. 7.4).

It is also interesting to see that the 1D ATRACT and 2D ATRACT algorithms re-
spond similarly to the four different centered ROIs, although 2D ATRACT is slightly
better than its 1D counterpart in some cases. Moreover, from quantitative results, we
found a phenomenon that with increasing degree of data truncation, image quality
gradually degrades, accordingly. This particularly applies for ROI 2, 3 and 4. The
phenomenon is also in good agreement with the observation from the investigation of
explicit extrapolation schemes [Hsie 04, Hopp 08]. However, this observation does not
apply to ROI 1, in which both 1D ATRACT and 2D ATRACT appear even slightly
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Figure 7.6: Transversal slice through the reconstruction results of different algo-
rithms, in the grayscale window [-1000 HU,1000 HU]. Top left: FDK reference recon-
struction from non-truncated data; Top right: FDK reconstruction from truncated
data; Bottom left: 1D ATRACT reconstruction from truncated data; Bottom right:
2D ATRACT reconstruction from truncated data.
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Figure 7.7: Sagittal and coronal slices through the reconstruction results of differ-
ent algorithms, in the grayscale window [-1000 HU,1000 HU]. From top to bottom:
FDK reference reconstruction from non-truncated data, FDK reconstruction from
truncated data, 1D ATRACT and 2D ATRACT reconstruction from truncated data.
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ROI

Figure 7.8: Transversal slices through the ATRACT results of a clinical dataset,
in the grayscale window [-200 HU, 400 HU]. From left to right: FDK reference re-
construction from non-truncated data, zoom-in FDK reference reconstruction, 1D
ATRACT based ROI reconstruction and 2D ATRACT based ROI reconstruction.
The regions outside the FOV are indicated in black.
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Figure 7.9: Summary of the quantitative evaluation of the 1D ATRACT and 2D
ATRACT algorithms for the four centered ROI cases. Note that the given correlation
coefficients are computed over all 16 clinical datasets.
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Figure 7.10: Illustration of the edge gradient artifact in ATRACT reconstruction.
Left: FDK reference reconstruction from non-truncated data; Right: 2D ATRACT
based ROI reconstruction.

inferior to the results from ROI 2. We observed that this degradation in ROI 1 occurs
in the case when a significant dense object (e.g., skull in this case) is truncated in
the transaxial direction. This is a typical behavior for data extrapolation schemes
(we consider ATRACT as an implicit extrapolation scheme) since the continuation
assumption which these methods reply on is violated because of confounding high
dense objects at the truncation edge. Figure 7.10 illustrates such an edge gradient
artifact that manifests as a noticeable intensity increase at the position where the
skull bone is truncated.

Off-centered ROI Case

In off-centered ROI cases, we additionally investigated the performance of the corre-
sponding ATRACT algorithms with the gradient compensation (denoted as ATRACT
Plus below). Figure 7.11 visually demonstrates the effectiveness of the associated
ATRACT Plus algorithms. The reconstructed coronal slices are selected from an ex-
ample of clinical datasets on ROI 7. The slices are displayed using a narrow grayscale
window to emphasize image gradient. As expected, due to asymmetric collimation a
ramp/gradient is introduced in the ATRACT filtered projections and further propa-
gates in the reconstructed volume, if no effective counter-measure is performed. Fig-
ure 7.11 (second row) and (third row) clearly indicates the gradient-like artifact that
unbalances the intensity of the homogeneous region between left boundary (higher)
and right boundary (lower). On the other hand, the corrected ATRACT Plus al-
gorithms robustly reduce this gradient artifact and yield the improved results that
are closer to the reference image; see Fig. 7.11 (fourth row) and (last row). Pro-
files through the presented slices are given in Fig. 7.12 for a quantitative comparison
between these algorithms, which basically confirm our observation.

Quantitative results of the investigated algorithms are provided in Fig. 7.13. We
found that the ATRACT Plus methods achieve higher accuracy in ROI 5 and ROI 7.
Particularly for ROI 7, in which the partial data truncation is applied, the average
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Figure 7.11: Coronal slices through the reconstruction results of different algo-
rithms, in the grayscale window [-400 HU, 400 HU]. From top to bottom: FDK
reference reconstruction from non-truncated data, 1D ATRACT, 2D ATRACT, 1D
ATRACT Plus and 2D ATRACT Plus based ROI reconstructions. Reconstructed
values along the central profiles indicated as a dashed-white line are given in Fig. 7.12.
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Figure 7.12: Comparison of the central profiles indicated as a dashed-white line in
Fig. 7.11.

value and standard deviation of the correlation coefficient improve substantially, for
instance for 2D ATRACT, from 0.93 ± 0.02 to 0.98 ± 0.01. These results suggest
that the further improvement of reconstruction accuracy could be obtained, if the
gradient appears large in the truncated projections.

For ROI 6 and 8, where the slope between two sides of the projection is less
steep (since head’s frontal length is typically smaller than its lateral width), an only
subtle difference is observed between ATRACT with and without gradient correction.
Furthermore, 2D ATRACT in general shows better reconstruction results than 1D
ATRACT in off-centered cases. This can be explained by the benefit of its 2D filtering
that is performed for all detector elements simultaneously. This reduces outliers that
may be caused by individual 1D processing of detector lines.

7.3 SSR Specific Evaluation and Parametrization
While the shutter scan reconstruction (SSR) acquires information of both the ROI
and PR, it requires a relatively low additional radiation dose to the patient. In
this section, the three proposed reconstruction algorithms that are tailored for the
shutter scan acquisition are comparatively evaluated on both the ROI and PR. For
convenience, in the following we refer to these methods as the SSR-A, SSR-B and
SSR-C method, corresponding to the joint weighted FDK/ATRACT method, the
simple parallel volumetric combination and prior image driven detruncation method,
respectively.

7.3.1 Implementation Details
The SSR-B and SSR-C methods involve an iterative wTV minimization [see Eq. (5.2)]
to restore an initial image from a small number of non-truncated projections. This
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Figure 7.13: Summary of the quantitative evaluation of the 1D ATRACT/1D
ATRACT Plus, 2D ATRACT/2D ATRACT Plus algorithms for the four off-centered
ROI cases. Note that the given correlation coefficients are computed over all 16
clinical datasets.

wTV method follows the conventional iterative TV minimization framework, in which
each iteration basically consists of a general iterative reconstruction (i.e., SART), fol-
lowed by a steepest descent TV minimization. In order to accelerate the convergence
speed, an ordered subset (OS) method [Huds 94] was applied in the SART method.
The total 496 projections in one SART iteration are partitioned into ten subsets.
The initial image was set to zero. After the SART update, a positivity constraint
is applied to remove the negative pixel values, which corresponds to the projection
over convex sets approach [Sidk 08]. Also, we found that a proper number of the
TV iterations can get a balance between data fidelity and image smoothness. In
this evaluation, eight iterations of TV gradient descent are performed in each inner
iteration. At each TV gradient descent iteration, we first calculate the wTV gradient
as follows

∂
∑Nx,Ny ,Nz
x,y,z=1 ωx,y,z ‖∇fx,y,z‖

∂fx,y,z

≈ ωx,y,z
3fx,y,z − fx−1,y,z − fx,y−1,z − fx,y,z−1√

ε+ (fx,y,z − fx−1,y,z)2 + (fx,y,z − fx,y−1,z)2 + (fx,y,z − fx,y,z−1)2

− ωx+1,y,z
fx+1,y,z − fx,y,z√

ε+ (fx+1,y,z − fx,y,z)2 + (fx+1,y,z − fx+1,y−1,z)2 + (fx+1,y,z − fx,y,z−1)2

− ωx,y+1,z
fx,y+1,z − fx,y,z√

ε+ (fx,y+1,z − fx−1,y+1,z)2 + (fx,y+1,z − fx,y,z)2 + (fx,y+1,z − fx,y+1,z−1)2

− ωx,y,z+1
fx,y,z−1 − fx,y,z√

ε+ (fx,y,z+1 − fx−1,y,z+1)2 + (fx,y,z+1 − fx,y−1,z+1)2 + (fx,y,z+1 − fx,y,z)2
,

(7.3)
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where fx,y,z denotes the value in f assigned to the voxel with index (x, y, z) and
ε = 0.1. After obtaining the wTV gradient, we normalize it by the maximal value.
Next, we use a backtracking line search algorithm [Boyd 04] to find the proper step
size to ensure the minimization. After all TV iterations, the weight matrix ω (x) is
updated according to Eq. (5.3). More importantly, we observed that ε in Eq. (5.3)
noticeably influences the reconstructed image quality. It typically lies in the range of
[0.0001, 0.1]. In this evaluation, we empirically chose ε = 0.001.

The wTV volume in the second method was reconstructed in a Cartesian grid of
512 × 512 × 350 with a sampling spacing 4x = 4y = 4z = 0.4 mm. For the third
method, wTV was used to generate an initial volume with a size of 256× 256× 256
with a spacing 4x = 4y = 4z = 1 mm. To handle truncated data encountered in
the SSR-A and SSR-B approaches, 1D ATRACT is used to generate the associated
ROI volume.

To assess how image quality depends on the sparsity level of full projections,
we define three full projection ratios, which contain 10, 50 and 100 non-truncated
projections, respectively.

7.3.2 Image Quality Assessment

In this subsection, we present the evaluation results of the three shutter scan re-
construction algorithms in both qualitative and quantitative manner. We follow the
same outline as before, by first visually assessing the reconstruction results, followed
by quantitative analysis.

The visual inspection relates to the images shown in Figs. 7.14, 7.15 and 7.16.
Figure 7.14 exemplarily depicts the reconstructions of all three approaches from one
patient data. The projection data consists of 100 non-truncated projections and 396
truncated projections with a scan FOV of 8.62 cm× 8.62 cm (ROI 4). Together with
a closer investigation of Region 1 and 2 shown in Fig. 7.15, we observe that the
overall reconstruction results of all methods are visually close to the reference within
the ROI but appear to be fairly different in the PR. The SSR-A and SSR-B methods
adopt ATRACT to handle data truncation and thus effectively reduce the truncation-
induced cupping artifact within the ROI. In the PR of the SSR-A method, although
suffering from severe streaking artifacts (due to the straightforward application of
analytic FDK on the sparse projection data), fine details of high contrast regions
(e.g., bones) are well preserved; see Region 2. This is also partially because when
backprojecting the two separate sets of projections into a single volume, the PR
obtains additional information from the truncated projections. In contrast, the SSR-
B approach yields less streaking artifacts in the PR. However, an overall smooth
appearance is observed as a side effect of the TV regularization. This affects low
contrast as well as high contrast objects in the PR.

The SSR-C method yields the most visually comparable result to the reference
reconstruction within the ROI. Also, the transition between the ROI and PR is well
handled, suggesting the projection-based transition smoothing seems more efficacious
than the transition smoothing in the volume domain. Regarding the PR, it shows a
compromised result between the other two approaches. However, due to the initial
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Figure 7.14: Reconstructions of all three SSR approaches from a simulated shutter
scan data that consists of 100 non-truncated projections with a full FOV and 396
truncated projection with a scan FOV of 8.62 cm × 8.62 cm (ROI 4). (Top-left):
reference reconstructed from non-truncated data, (top-right) the SSR-A approach,
(bottom-left) the SSR-B approach and (bottom-right) the SSR-C approach.
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1

2

Figure 7.15: A close investigation of Region 1 (ROI) and 2 (PR) shown in Fig. 7.14.
From left to right: the reference, the SSR-A, SSR-B and SSR-C approach.

wTV volume, the SSR-C method also yields a smooth appearance of the PR, with a
structural information loss.

Figure 7.16 demonstrates how image quality of the PR degrades with decreasing
full projection ratio. From top to bottom row, the non-truncated projection numbers
are 100, 50 and 10, respectively. With 100 non-truncated projections, we can see
that all methods are in line with the previous observation. However, when the non-
truncated projection ratio decreases, e.g. to 50, the strength of streaking artifacts
increases noticeably in the SSR-A approach but slightly in other two methods. In
the case of only ten non-truncated projections, the SSR-A approach yields the worst
image quality: almost no details of the soft tissue are preserved and visual inspection
of image content seems difficult. The SSR-B approach, although yields less streaking
than the SSR-A approach, suffers from a severe oversmooth effect and information
loss. Contrary to these observations is the result from the SSR-C method, which
appears in the robustness of image quality with respect to both the low and high
contrast structure restoration in a low full projection ratio.

A quantitative assessment of all these algorithms with three full projection ratios
(10, 50 and 100) is summarized in Fig. 7.17. The evaluation was conducted for
the four centered ROI cases and image quality was analyzed in both the ROI and
PR. The obtained metric values within the ROI quantitatively confirm our previous
visual observations (the first two rows of Fig. 7.17). The SSR-C method achieved the
best image quality in all ROI cases. The correlation coefficients remain stable even
when the full projection ratio decreases. The value drops only marginally below 0.99
when the non-truncated projection number drops to 10. Since the SSR-B method
is a simple volumetric combination between ATRACT and wTV, it yields a similar
behavior to the ATRACT performance within the ROI. Also, note that it does not
rely on the sparsity level since the truncated projections are handled independently.
The performance of the SSR-A approach rapidly drops with decreasing number of
full projections. It is interesting to see that at a low full projection ratio, the first
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3

Figure 7.16: Illustration of the degradation of image quality in the PR for each of
the considered methods with gradually decreasing of full projection ratio. The first
row to the last row show the results of the three methods using 100, 50 and 10 non-
truncated projections, respectively. From left column to right column: the reference,
the SSR-A, SSR-B and SSR-C approach.
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Figure 7.17: A summary of the quantitative assessment of three SSR algorithms
with three full projection ratios (10, 50 and 100), for the four centered ROI cases
(ROI 1-4). The image quality is evaluated in both the ROI and PR. Here, A, B and
C denote the SSR-A, SSR-B and SSR-C method, respectively.
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approach is even inferior to original ATRACT, although the same method is applied to
reconstruct the ROI. This suggests that the projection-based scaling/offset correction
appears to be nonlinear in the volume domain and may become cumbersome if the
number of reference projections is far from enough.

Although all methods show a sparsity dependency in the quantitative evaluation of
the PR, they still differ noticeably. As expected, the SSR-A approach highly depends
on the number of full projections. It yields the lowest image quality (a correlation
coefficient of about 0.65) in the PR when the number of full projections drops to 10.
But it even shows comparable results to that of the SSR-C method, when the full
projection number increases to 100. Again, the third method is always superior to
the other proposed methods, regardless of the sparsity level and the ROI size. Its
advantage is clearly visible at the lowest full projection ratio (a correlation coefficient
of up to 0.98), which is consistent with the previous visual assessment. The SSR-B
approach always yields an intermediate result and reflects the performance of wTV
on sparse-view reconstruction.

7.4 PBE Specific Evaluation and Parametrization
In Chapter 6, a novel patient-bounded extrapolation (PBE) algorithm that improves
conventional extrapolation schemes has been presented, based on the estimation of
a 3D patient outline model. As input it requires two fluoroscopic images that could
be obtained during the isocentering process prior to a 3D run. In this section, the
feasibility of this method will be investigated.

7.4.1 Implementation Details
Even though a practical application would involve the extraction of the patient bound-
aries from low-dose fluoroscopic data, for proof of concept we here confined to extract
the boundaries from two projections (λ = −90◦ and λ = 0◦) of a non-collimated
3D scan. The patient outline information was extracted in raw data. The pre-set
air/tissue threshold was empirically determined. To enforce the smoothness of the
transition region, the measured data and the extrapolation data are combined by a
cosine-like smooth weighting function in a predefined transition interval. The length
of transition region was set to 1/30 of the effective FOV width. In this evaluation we
adapt two state-of-the-art extrapolation schemes, as described in Section 6.3. We de-
note these new methods as PWCE and PSRE, corresponding to the patient-bounded
water cylinder extrapolation and patient-bounded square root extrapolation, respec-
tively.

Suppose the patient outline is exactly known from all projections, instead of only
two. This could be potentially realized by deploying an optical tracking system (e.g.,
3D range imaging camera) to capture the patient outline and transform the out-
line into the C-arm coordinate system [Kold 11]. In this manner, the extrapolation
scheme could be improved by incorporating a more accurate patient boundary in-
formation. We refer to this method as camera-based extrapolation (CBE). In the
following evaluation, we simulate this camera-based extrapolation method by end-
ing the extrapolation lines at the boundary position detected from all non-truncated
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Figure 7.18: Visualization of a head phantom shape extracted from the non-
collimated 3D reconstruction (left) and the 3D volumetric model estimated from
two orthogonal projections with different ellipses in each slice (right).

projections. Note that this simulation is ideal in a sense that it does not account
for some practical issues, e.g., inaccuracies caused by camera occlusions or potential
errors that may be introduced by co-registration/calibration of the optical tracking
system to the C-arm system.

Moreover, the heuristic water cylinder extrapolation (WCE) proposed by Hsieh
et al. [Hsie 04] was investigated as a baseline and compared with our proposed algo-
rithms.

7.4.2 Image Quality Assessment
In the following sections, we present evaluation results of both variants of the patient
bounded extrapolation proposed in Section 6.3. Note that since reconstruction results
of these two variants are almost visually identical, in the visual assessment part we
only show the results of the PWCE method.

Patient Outline Estimation

The patient bounded extrapolation scheme simplifies the object shape as a 3D model
consisting of a different ellipse in each slice. The estimation is carried out using two
low-dose perpendicular prior images (e.g., fluoroscopic images). An example of the
estimated ellipse model (only every tenth row is visualized) compared with the actual
head phantom shape extracted from an FDK reconstruction on non-truncated data
is shown in Fig. 7.18. Although fine shape details could not be preserved, the rough
outline of the object is nicely described in the 3D ellipse model (see the similarity of
the curvature of the back of the head).

Figure 7.19 shows a comparison of a non-truncated projection, a laterally trun-
cated projection after applying the PWCE scheme and after the heuristic WCE
scheme. The line profiles of the extrapolated projections over projection views of
λ = −40◦, λ = 20◦ and λ = 80◦ are presented in Fig. 7.20. We can see that since
WCE solely relies on the local continuity at the truncation boundary, there is no
guarantee that extrapolation lines describe the real outline of the patient. On the
other hand, the PWCE method more accurately fits the data outside the measure
FOV, even for projections that differ from the AP and ML views and in the case of
severe truncation. Similar observations can also be obtained in the reconstruction
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measured FOV measured FOV

Figure 7.19: Comparison of a non-truncated projection (left), a laterally-truncated
projection after applying the PWCE method (middle) and after the WCE method
(right).
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Figure 7.20: Comparison of the non-bounded traditional extrapolation (WCE) and
patient-bounded extrapolation (PWCE) in a severe truncation case. Line profiles at
projection views of λ = −40◦ (left), λ = 20◦ (middle) and λ = 80◦ (right). Note
that the bounded ellipse parameters are estimated using two single projections from
λ = −90◦ (ML) and λ = 0◦ (AP). The shaded regions indicate the measured part of
projections in ROI scan.

Figure 7.21: Comparison of (from left to right) the FDK reconstruction from non-
truncated projection data, ROI reconstruction corrected by the conventional WCE
method, ROI reconstruction from truncated data corrected by the PWCE method
and ROI reconstruction from truncated data corrected by the CBE method. The
dashed ellipses indicate the estimated outline of the patient and solid circles indicate
the ROI.
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Figure 7.22: Transversal slices of the clinical data 1 (ROI 2) reconstructed by (from
left to right): FDK on non-truncated data, the heuristic WCE method, the PWCE
method and the CBE method from truncated data, in the grayscale window [-1000
HU, 1000 HU]. The black circles indicate the ROI.

slices. From Fig. 7.21 we can see that the fitted ellipse estimated by the PWCE
method describes the actual object support (see the dashed ellipse) much better than
the conventional WCE scheme, even though only ROI is of diagnostic interest.

Centered ROI Case

The reconstruction results using different truncation correction methods from the
centered ROI cases are presented in Figs. 7.22-7.24, respectively. A comparison of
the line profiles indicated as the dashed line in the slices is shown in Fig. 7.25. For
visual inspection in the ROI 2 case, the WCE method as well as the patient-bounded
methods (PWCE and CBE) are capable of avoiding the truncation-induced cupping-
like artifact and produce acceptable reconstruction results. The portions of the pa-
tient inside the ROI are visually comparable to the reference FDK reconstruction;
see Fig. 7.22. The line profiles shown in Fig. 7.25 (top) confirm this observation,
although WCE exhibits a slight intensity increase close to the truncation boundary.

However, it becomes more challenging to correction algorithms when it comes to
severe truncation cases. The WCE method cannot handle the truncation-induced
cupping and also leads to a large offset on HU values; see Figs. 7.23 and 7.24 for a
severe truncation case (ROI 4). These truncation artifacts can also be clearly observed
from the line profile of the water cylinder extrapolation (see Fig. 7.25 (bottom)). This
is because when encountering severe truncation, an accurate extrapolation estimation
on unmeasured data is not possible for heuristic extrapolation schemes, due to less
reliable data available and larger unpredictable unknown portion. In contrast, the
PWCE method that incorporates patient boundary information is still robust with
respect to these particular truncation cases. It is also interesting to see that PWCE
always yields visually comparable results to that of the CBE scheme (see Figs. 7.23
and 7.24), even though the 3D shape model of the former method is only estimated
from two projection views. This observation suggests that the estimated 3D shape
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Figure 7.23: Transversal slices of the clinical data (ROI 4) reconstructed by (from
left to right): FDK on non-truncated data, the WCE method, the PWCE method
and the CBE method from truncated data, in the grayscale window [-1000 HU, 1000
HU]. The black circles indicate the ROI.

model nicely fits the patient head and exact patient boundary information in the
projection domain seems not necessary.

The quantitative evaluations for symmetric truncation (ROI 1-4) are summarized
in Fig. 7.26. In line with visual assessment, it is readily seen that in general quanti-
tative accuracy is considerably improved by the proposed patient bounded methods
compared with the heuristic approach. The average RMSE reached as little as 31.6
HU in the case of ROI 2, compared with 106.4 HU from the WCE method. In the
severe truncation case (ROI 4) the WCE method yields substantially degraded qual-
ity image (RMSE of 312.8± 65.3 HU), due to the residual truncation artifacts, while
the PWCE method still retains a reconstruction of high quality (RMSE of 33.8±12.9
HU).

In terms of correlation coefficients, a very high value of above 0.995 was achieved
by the PWCE method when reconstructing ROI 2. When it comes to a more severe
truncation case, i.e., ROI 4, the differences between heuristic extrapolation and pro-
posed extrapolation substantially enlarge, which is reflected by a difference of 0.28
for the correlation coefficient in Fig. 7.26. Consistent with the visual inspection, the
CBE method is only slightly superior to the PWCE method (CC of 0.997± 0.001 vs.
0.995± 0.005 in ROI 2 and 0.976± 0.031 vs. 0.973± 0.035 in ROI 4). These results
clearly demonstrate a good agreement of the reconstructed images with the reference
image.

It is also interesting to see how two variants of patient bounded extrapolation,
PWCE and PSRE, respond to different ROI cases. We note that in most of the
studied cases PWCE yields better results than PSRE, although in the most severe
truncation case (ROI 4) the differences between these two methods become subtle
(e.g., 0.973± 0.035 vs. 0.974± 0.030).

Off-centered ROI Case

Figure 7.27 qualitatively compares the reconstruction results from all investigated
methods for an off-centered ROI case. It was found that for WCE, truncation artifacts
are most pronounced close to the truncation edge, manifesting as a noticeable inten-
sity increase. This observation is not surprising since the argument still holds: trun-
cation artifacts appear more severe to a side where the large unknown/unmeasured
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Figure 7.24: Sagittal slices of the clinical data (ROI 4) reconstructed by (from top
to bottom): FDK on non-truncated data, the heuristic WCE method, the PWCE
method and the CBE method from truncated data, in the grayscale window [-1000
HU, 1000 HU]. The black rectangles indicate the ROI.

projection data needs to be estimated. On the other hand, additional patient bound-
ary information was demonstrated to be very beneficial to handle this difficulty, which
is reflected by visually high image quality yielded by the PWCE method.

Quantitative evaluations for the off-centered cases (i.e., ROI 5-8) are depicted in
Fig. 7.26. The results show that both proposed patient bounded approaches attain
the mean values of the correlation coefficient higher than 0.99 in all ROI cases. Also,
note that the average RMSE is somewhat inferior to the centered ROI cases (71.8 HU
vs. 40.2 HU). Nonetheless, the error is still much lower than the one from the WCE
method, whose average RMSE almost reaches 500 HU due to inaccurate estimations
of the missing data.

It was found that in off-centered ROI cases, the evaluation results provide no
definite answer when comparing PSRE and PWCE since in some cases one shows
slightly superior over another whereas in other cases it is not.

7.5 Comparative Evaluation among ATRACT, SSR and
PBE

An essential issue for optimizing X-ray imaging protocols involves searching a bal-
ance between image quality (e.g., image resolution, noise, image artifacts, etc.) and
the patient dose. The methods we investigated above always come with a different
trade-off between these two aspects. In this section, we present a detailed compara-
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Figure 7.25: Plots of the line profile (indicated as the dashed line in the transversal
slice) for each algorithm in the ROI 2 case (top) and in the ROI 4 case (bottom).
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Figure 7.26: A summery of the quantitative assessment (RMSE and CC) in the cen-
tered ROI cases (ROI 1-4) for water cylinder extrapolation (WCE), patient bounded
square root extrapolation (PSRE), patient-bounded water cylinder extrapolation
(PWCE) and camera-based extrapolation (CBE).

tive evaluation of all investigated ROI reconstruction algorithms and quantify their
trade-off between image quality and patient dose. Note that most of the algorithmic
performances we investigate in the following are similar to those already evaluated in
the Sections 7.2 to 7.4, while individually analyzing the robustness of these correction
algorithms. The evaluation presented here, however, is more comprehensive. The in-
volved algorithms include the 1D/2D ATRACT method, the patient bounded water
cylinder extrapolation (denoted as PBE below) and the prior image based detrunca-
tion method using shutter scan (denoted as SSR below) with different full projection
ratios. The refined water cylinder extrapolation [Zell 05] (denoted as WCE below)
was also investigated as the baseline here and compared with the proposed algo-
rithms above. This study is again evaluated on the large clinical datasets described
in Section 7.1.1.

In the following evaluation, we focus on the quantitative assessment using the
correlation coefficient that intuitively reflects the robustness of algorithms to restore
structural information. A high root mean square error (RMSE) may also indicate
a scaling/bias occurred in the reconstruction volumes, but such an artifact could be
compensated for by adapting the visualization parameters.
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Figure 7.27: Transversal slices of the clinical data (ROI 7) reconstructed by (from
left to right): FDK on non-truncated data, the heuristic WCE method, the PWCE
method and the CBE method from truncated data, in the grayscale window [-1000
HU, 1000 HU]. The black circles indicate the ROI.

7.5.1 Image Quality Assessment

Centered ROI Case

Figure 7.29 shows the performance of all investigated algorithms on four decreased
ROI sizes. It can be seen that the heuristic WCE scheme attains a fairly good result
when the truncation is mild. This is mainly because in such cases the unmeasured
data can be accurately estimated by a simple water cylinder model. However, when
truncation becomes severe, the performance of WCE declines rapidly, yielding a cor-
relation coefficient of only 0.69±0.20 with respect to the reference. Also considered as
a heuristic extrapolation technique, ATRACT methods that come with a two-stage
filtering, on the other hand, show less dependency on the truncation level. Thus,
they could be the first choice for severe truncation cases, if no prior information is
available.

Figure 7.29 also indicates how image quality is considerably improved with a little
prior knowledge. The PBE method that incorporates patient boundary information
is clearly superior over those of heuristic methods. It retains high accuracy (up to
0.99) to all centered truncation cases. With more prior information, it is found that
decreasing the scan FOV has very little effect on the performance of the SSR method.
It achieves the best results among these investigated methods, with a tenth of full
projections (50 projections out of 496 in total). Note that it reaches not only a high
mean value of the correlation coefficient, but also keeps a small standard deviation.

Although only four centered different ROI sizes are selected in this evaluation,
we can fit the presented evaluation results to non-linear curves, to approximately
estimate the behavior of the methods on unmeasured ROI sizes, as displayed in
Fig. 7.30. The corresponding equations of each line fitting are presented in Table 7.2.
All nonlinear curve fittings were carried out using Levenberg Marquardt iteration
algorithm until the Chi-Sqr tolerance value of 1e-9 was reached.
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Figure 7.28: A summery of the quantitative assessment (RMSE and CC) in the
off-centered ROI cases (ROI 5-8) for water cylinder extrapolation (WCE), patient
bounded square root extrapolation (PSRE), patient-bounded water cylinder extrap-
olation (PWCE) and camera-based extrapolation (CBE).

Figures 7.31 and 7.32 depict the performance of various truncation reduction
artifact methods versus results from the SSR algorithm coming with the different full
projection ratios (grouped by the ROI size). Here, SSR1, 2, 3, 4 and 5 correspond
to 5, 10, 25, 40 and 50 acquired full projections, respectively. In general, the results
shown in Fig. 7.31 are consistent with the previous quantitative interpretation. It is
found that the heuristic methods tend to have a relatively large deviation and several
outliers. For instance, ATRACT is able to produce fairly good image quality in ROI
3: A correlation coefficient of up to 0.99 is achieved. At the same truncation level,
it yields less accurate results in some studied cases (lower than 0.90). In contrast,
with the help of the additional full projection information, the SSR algorithm shows
very robust reconstruction results. It is found that with only ten full projections,
the SSR method stably achieves a correlation coefficient of 0.99 in ROI 1 to 3. The
lines corresponding to the range of Quartile 1, mean, median, and Quartile 3 almost
overlap to each other, yielding the robustness of the method regardless of which
patient data is selected. Figure 7.31 also suggests that acquiring more than 25 full
projections seems unnecessary for SSR due to a bad trade-off between full projection
ratio (related to patient dose) and image quality. Also, we found that the PBE
scheme always achieves an intermediate result between the heuristic approaches and
the SSR approach.
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Figure 7.29: Algorithmic performance of the proposed methods on the four centered
ROIs.

Furthermore, we particularly compare the performance of only PBE and SSR and
show the results in Fig. 7.32. This allows us to study how image quality is improved
with a steady increase in prior knowledge. To better estimate the increasing tendency,
we fit the evaluated results (five measured full projection ratios) to an exponential
function. Again, the fitting equations were computed in an iterative manner using
Levenberg Marquardt algorithm until the Chi-Sqr tolerance value of 1e-9 was reached.
The computed parameters for the nonlinear curve fitting are presented in Table 7.3.

Figure 7.32 delivers the information on which method could be used to achieve
a better image quality with less full projections. For instance in ROI 2, in order
to obtain the higher image quality than PBE (above its Quartile 3)1, the SSR data
acquisition, according to this figure, at least needs to acquire 16 full projections and
480 truncated ROI projections (496 projections in total). It is also found that the
requirement of the full projection ratio varies depending on the ROI size. A general
trend is: with reducing the size of the ROI, the number of required full projections
increases accordingly so that the SSR method could outperform the PBE method.
Thus, in the most severe truncation case (ROI 4) it may occur that even the SSR
method with 50 full projections (as we can see that the improvement already reaches
its saturation), within the ROI, is unable to yield better results than the PBE method.

1Suppose in this specific case we are only interested in the area inside the ROI.
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Figure 7.30: Nonlinear curve fitting of the four evaluated ROI sizes (Fig. 7.29) for
predictably estimating the performance of unmeasured ROI sizes. The parameters of
the fitted curves are presented in Table 7.2.

Model Nr. Param. Equation
Asymptotic 3 y = a− b · cx
Parabola 3 y = a+ b · x+ c · x2

Cubic 4 y = a+ b · x+ c · x2 + b · x3

Algorithm Levenberg Marquardt
Tolerance 1e-9

Algorithm WCE A1D A2D PBE SSR5
Model Asymptotic Cubic Parabola Parabola Asymptotic

a 0.977 -0.617 0.414 0.723 0.999
b 25.85 0.312 0.074 0.036 46.54
c 0.593 -0.019 -0.002 -0.001 0.374
d - 4.1e-4 - - -

Reduced Chi-sqr 5.25e-7 7.33e-8 3.10e-5 3.21e-6 1.61e-8
COD 0.981 0.957 0.995 0.978 0.999

Table 7.2: Nonlinear curve fitting of the presented evaluation results to various non-
linear curve models, for predictably estimating the behavior of methods on unmea-
sured ROI sizes. Here, COD denotes the correlation of determination that indicates
how well data fit a statistical model.
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Figure 7.31: An overview of the quantitative assessment of various truncation arti-
fact reduction methods on 16 clinical datasets for the four centered ROI cases. The
results from the SSR algorithm come with different full projection ratios. Here, SSR1,
2, 3, 4 and 5 correspond to 5, 10, 25, 40 and 50 full projections that would be acquired
during data acquisition, respectively. The plots are grouped by the ROI size.

Off-centered ROI Case

The algorithmic performance on each of the off-centered ROI cases was also com-
pared and summarized in Fig. 7.33. In this study, we again investigated the variant
of ATRACT with gradient compensation, namely ATRACT Plus, as they showed
promising results in the off-centered ROI cases in Section 7.2.3.

In general, the performances of all ROI reconstruction algorithms are in good
agreement with the observation in the centered ROI case. That is, for all off-centered
ROI cases, best results are still obtained using the SSR method if a high full projec-
tion ratio is taken, followed by the PBE method and the ATRACT algorithm. The
heuristic WCE method without prior information yields lowest image quality in ROI
5, 6 and 8. But in the case of ROI 7, it shows superior results over the uncorrected
1D and 2D ATRACT methods, both of which suffer from a severe gradient artifact
caused by the off-centered ROI position.

It is found that the SSR method achieved a correlation coefficient as high as 0.998
for all ROI cases, if a tenth of full projections is acquired. Also, note that image
quality of SSR degrades considerably with a reduction of full projection ratios. For
instance, with only five full projections the mean values of the correlation coefficient
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Figure 7.32: A direct comparison of the algorithmic performance between the pa-
tient bounded extrapolation (PBE) and shutter scan method (SSR).

are 0.986 for ROI 5, 0.975 for ROI 6 and 0.968 for ROI 8, respectively. On the other
hand, the PBE method achieved overall higher correlation coefficients of 0.996 for
ROI 5, 0.986 for ROI 6, and 0.993 for ROI 8, respectively. Interestingly, we also
found that the performance of SSR declines relatively slowly in ROI 7, but still it is
slightly inferior to PBE (0.993 vs. 0.998) with only five full projections.

It is clearly visible that with the developed gradient correction, both 1D ATRACT
Plus and 2D ATRACT Plus, in off-centered ROI cases, produce satisfying recon-
struction results, which are even close to those with prior information. The mean
correlation coefficients for 1D ATRACT Plus and 2D ATRACT Plus are 0.979 and
0.985 for ROI 5, 0.957 and 0.973 for ROI 6, 0.988 and 0.987 for ROI 7 and 0.929 and
0.974 for ROI 8, respectively. These results confirm again that ATRACT could be
the first selected approach for 3D ROI imaging, if no prior information is available.
For a detailed comparison of 1D and 2D ATRACT or ATRACT with and without
the gradient correction, we refer to Section 7.2.3 in this chapter.

7.5.2 Radiation Dose vs. Image Quality
Following the principle of ALARA, any imaging process based on ionizing radia-
tion must be optimized towards dose reduction. The knowledge of the relationship
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Description Nonlinear Curve Fit for SSR
Model Asymptotic

Nr. Parameters 3
Equation y = a− b · cx

Iteration Algorithm Levenberg Marquardt
Tolerance 1e-9

Parameters ROI 1 ROI 2 ROI 3 ROI 4
a 0.998 0.998 0.997 0.986
b 0.019 0.018 0.033 0.019
c 0.841 0.832 0.793 0.817

Reduced Chi-sqr 2.21e-7 7.65e-8 7.39e-7 6.43e-6
COD 0.991 0.996 0.982 0.996

Table 7.3: Nonlinear curve fitting of the presented evaluation results (Fig. 7.32)
for predictably estimating the behavior of the method on unmeasured full projection
ratios. Here, COD denotes the correlation of determination that indicates how well
data fit a statistical model.

that links image quality and radiation dose is of practical significance for such op-
timization. In this section, we study these two aspects for each of the investigated
algorithms.

Theoretical integral dose reduction can be computed based on the dose area prod-
uct (DAP) [Ardr 65], which can be further approximated to the first order as

Dint = Dx · A, (7.4)

where Dint is the integral dose to the patient, Dx is the dose due to the X-ray beam
and A is the area of the scan FOV. In this study, we theoretically estimate the
dose reduction according to Eq. (7.4). i.e., assuming the patient dose saving to be
approximately proportional to the reduction of the area of the scan FOV. Note that
here we also assume the patient encompasses the entire FOV. Let AFull, AROI be
the areas of the scan FOV for non-truncated data and truncated data, respectively.
Then, to approximate the dose reduction in an ROI scan or shutter scan with respect
to the full FOV scan, we define a dose percentage index (DPI) as follows:

DPI = k ·Dx · AFull + (1− k) ·Dx · AROI

Dx · AFull
= k + (1− k) · AROI

AFull
, (7.5)

where k indicates the full projection ratio, i.e., the number of full projections divided
by the total projection number. For instance, consider a shutter scan acquisition that
consists of 446 truncated projections with a scan FOV of 14.7× 14.7 cm (ROI 2) and
50 full projections with the full FOV of 30× 40 cm. The resulting DPI, according to
Eq. (7.5), is 27.4 % with respect to a standard full FOV scan, yielding an additional
dose of about 8% compared with a standard ROI scan (only truncation projections
are acquired).

Figures 7.34 and 7.35 showed image quality against the computed DPI for all
investigated methods in the four centered ROI cases. Image quality is evaluated
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Figure 7.33: An overview of the quantitative assessment of various truncation ar-
tifact reduction methods on 16 clinical datasets for the four off-centered ROI cases.
The results from the SSR algorithm come with different full projection ratios. Here,
SSR1, SSR2 and SSR5 correspond to 5, 10 and 50 full projections that would be
acquired during data acquisition, respectively. The plots are grouped by the ROI
position.

using the correlation coefficient and RMSE, applied within the ROI and in the PR.
Note that here we focus on the centered ROI cases (ROI 1-4) since they are more
clinically applicable for current interventional settings.

All these figures show a similar observation on how image quality varies according
to the DPI, although improvement ratios of the DPI may differ from one ROI to
another. In the following, we provide two examples how to interpret these figures.
The first example considers a data acquisition carried out using the scan FOV of 17.8×
17.8 cm (i.e., ROI 1). Figure 7.34 (top) suggests that in this specific case, WCE could
be selected to generate a 3D ROI image of the highest quality (a correlation coefficient
of 0.975 and an RMSE of 105.8 HU), if DPI has to be minimal. In order to further
improve reconstruction accuracy, according to Fig. 7.34 (top), the PBE method could
be a better choice than SSR1 in terms of both image quality (a correlation coefficient
of 0.992 vs. 0.990) and DPI values (28.53% vs. 29.24%). In other words, with a 1%
increase of the original dose of the standard ROI scan (i.e., 28.25%), PBE improves
image quality from a correlation coefficient of 0.975 to 0.992. This seems to be an
adequate trade-off when optimizing image quality versus patient dose in the current
acquisition setting. So far, we only evaluated the image quality within the ROI. If the
image quality of the PR is also taken into consideration, SSR1 is clearly superior over
the PBE method in this aspect since the latter only extracts the patient boundary
information instead of anatomical structures. As shown in Fig. 7.34 (top), SSR1



124 Evaluation and Results

2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6
0 , 9 3

0 , 9 4

0 , 9 5

0 , 9 6

0 , 9 7

0 , 9 8

0 , 9 9

1 , 0 0

 C C  ( R O I )  
 R M S E  ( R O I )
 C C  ( P R )

S S R 4S S R 3S S R 2

S S R 1

P B E

A 1 D
A 2 D
W C E

S S R 4S S R 3
S S R 2

S S R 1

P B E

A 1 D

W C E

Co
rre

lat
ion

 Co
eff

icie
nt 

(R
OI

)

D o s e  P e r c e n t a g e  I n d e x  ( % )

A 2 D

3 0

6 0

9 0

1 2 0

1 5 0

1 8 0

RM
SE

 in
 HU

 (R
OI

)

0 , 7 5

0 , 8 0

0 , 8 5

0 , 9 0

0 , 9 5

1 , 0 0

1 , 0 5

Co
rre

lat
ion

 Co
eff

icie
nt 

(PR
)

1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7
0 , 9 5

0 , 9 6

0 , 9 7

0 , 9 8

0 , 9 9

1 , 0 0

1 , 0 1

 C C  ( R O I )  
 R M S E  ( R O I )
 C C  ( P R )

S S R 4S S R 3
S S R 2

S S R 1

P B E

A 1 D

A 2 D

W C E
S S R 4S S R 3S S R 2

S S R 1

P B E

A 1 D

W C E

Co
rre

lat
ion

 Co
eff

icie
nt 

(R
OI

)

D o s e  P e r c e n t a g e  I n d e x  ( % )

A 2 D

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0
RM

SE
 in

 HU
 (R

OI
)

0 , 6 3

0 , 7 0

0 , 7 7

0 , 8 4

0 , 9 1

0 , 9 8

1 , 0 5

Co
rre

lat
ion

 Co
eff

icie
nt 

(PR
)

Figure 7.34: Investigation of the relationship that links image quality and radiation
dose for all proposed algorithms in ROI 1 (top) and ROI 2 (bottom). Here, SSR1,
SSR2, SSR3, and SSR4 denote the shutter scan reconstruction with 5, 10, 25, 40
acquired full projections, respectively.
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Figure 7.35: Investigation of the relationship that links image quality and radiation
dose for all proposed algorithms in ROI 3 (top) and ROI 4 (bottom). Here, SSR1,
SSR2, SSR3, and SSR4 denote the shutter scan reconstruction with 5, 10, 25, 40
acquired full projections, respectively.



126 Evaluation and Results

reaches a correlation coefficient of 0.798 in the PR. Although not explicitly depicted
in the figure, the correlation coefficient for PBE is only 0.231 in the PR. Moreover,
Fig. 7.34 (top) also suggests that SSR2 could yield another interesting trade-off,
since with an increase of 5.16% of the original dose, it is able to improve a correlation
coefficient from 0.975 to 0.995 within the ROI and from 0.135 to 0.889 outside the
ROI (i.e., in the PR). It is also noted that further increments of the patient dose only
affect the PR since image quality within the ROI already attains a high level.

Let us consider another example concerning a data acquisition with a severe trun-
cation with a scan FOV of 11.6× 11.6 cm – only 12.2% with respect to the standard
full FOV scan. As shown in Fig. 7.35 (top), at this dose level the 1D ATRACT
algorithm appears to be more superior over the other heuristic methods, yielding a
correlation coefficient of 0.976 and an RMSE of 73.5 HU. With an increase of 2.88%
of the original dose percentage, the correlation coefficient reaches as high as 0.994
when using the PBE method. It also can be seen in Fig. 7.35 (top) that further
improvement on image quality within the ROI will cost much more additional dose
and thus seems not adequate.

7.6 Summary and Discussion
This chapter presented a detailed comparative evaluation of all truncation artifact re-
duction methods proposed in Chapter 4 to 6. We applied these methods on 16 clinical
datasets that were acquired in an interventional suite equipped with an angiographic
system. Overall eight truncation scenarios with four centered ROIs defined by dif-
ferent sizes or off-centered ROIs defined by different positions are considered. Since
each of the considered algorithms comes with several variants or parameter settings,
we first conducted an algorithm-specific evaluation and parametrization, to quantify
the impact of different truncation scenarios on image quality achievable with these
variants.

In the comparison of 1D and 2D ATRACT, we observed that both methods come
with a similar behavior in the presence of data truncation. In general, truncation-
induced cupping artifacts are of considerably reduced strength, compared with that of
the straightforward application of FDK on truncated data. This clearly demonstrates
that the two-step filtering is superior to the conventional one-step ramp filtering in
the presence of data truncation. However, both 1D and 2D ATRACT suffer from an
edge gradient artifact attached to the edge where the high dense skull is truncated.
This artifact somewhat affects their quantitative accuracy (see results in ROI 1).
We assume this is a typical behavior for heuristic extrapolation methods since the
continuation assumption that the methods reply on is violated because of confounding
these high dense objects at the truncation edge. The evaluation results of off-centered
ROI cases demonstrated the robustness of the empirical gradient correction method
when the induced gradient is substantial (e.g., in ROI 5 and ROI 7).

The evaluation results of the SSR methods showed that the differences inside the
ROI were quite small – all considered methods are able to obtain an ROI image of
high quality, although the SSR-C method yields the most visually identical results to
the reference. On the other hand, we observed that image quality and characteristics
in PR region, which is also of particular interest for shutter scan applications, vary
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noticeably among the investigated methods. The SSR-A method, although suffering
from severe streaking artifacts (due to the use of FDK), nicely preserves fine details
of high contrast objects, such as bone structures. It was also found that image qual-
ity of the SSR-A method degrades dramatically with decreasing of the acquired full
projection number. In contrast, the SSR-B approach yields less streaking artifacts
but comes with an overall smooth appearance as a side effect of the wTV regular-
ization. The SSR-C approach in general shows the best image quality also in the
PR among these methods, particularly for the case in which only a low number of
full projections are acquired. This observation is also quantitatively confirmed by its
correlation coefficient, which drops marginally below 0.99 when the full projection
number corresponds to 10.

We found that the PBE method leads to a major improvement in image quality,
compared with the purely heuristic extrapolation method. The experimental results
underlined that this particularly applies for severe truncation cases. Surprisingly, we
found the 3D shape model estimated by only two perpendicular views is sufficient
to describe the coarse patient outline for head cases. It is also shown that PBE is
qualitatively and quantitatively comparable to the camera-based extrapolation (see
[Kold 11]) in which the patient outline is known from all projections. Furthermore,
the method robustly reduces the low-frequency bias in the reconstructed volume,
which is reflected by the very low RMSEs. In the comparison of its two variants, the
differences we observed were small, but overall the results of PWCE appeared to be
slightly superior to those of the PSRE.

The final comparative evaluation presented in Section 7.5 clearly depicted the
algorithmic performance of all investigated methods under the uniform evaluation
framework. For the centered cases, the performance of the heuristic WCE method
declines rapidly, when the truncation becomes severe. The ATRACT methods, on the
other hand, showed less dependency on the truncation degree and thus appeared to be
more robust in severe truncation case. However, a large deviation and several outliers
arose in the results of all these heuristic methods. In contrast, benefiting from prior
knowledge, the PBE and SSR methods were able to achieve ROI reconstructions
in a more accurate and robust manner, which is reflected by the high correlation
coefficients of about 0.99 in ROI 1 to 3 and about 0.96 in ROI 4 (the most severe
truncation case). The performances of all considered algorithms for the off-centered
ROI cases were in good agreement with the observations in the centered ROI case.
That is, the best results were still obtained using the SSR method if 50 full projections
are acquired, followed by the PBE method and the ATRACT algorithms. We note
that the overall values of the correlation coefficient appeared to be lowest in ROI 8,
in which the ROI volume contains the most soft tissue.

A particular interest of the evaluation is to quantify the relationship between
image quality and radiation dose for all investigated algorithms. However, we em-
phasize that this is actually a multidimensional problem since in 3D ROI imaging,
achieved image quality does not solely depend on the patient dose, but also varies
with other factors, such as selected algorithms, truncation degrees or ROI positions,
etc. The decision on which method should be used also depends on the specific clin-
ical application, imaging scenario and availability of prior knowledge. For instance,
the ATRACT methods could be selected in severe truncation cases, if no prior infor-
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mation is available; SSR has practical advantages to display useful information in the
PR but at a cost of additional doses; The PBE method seems to find an adequate
trade-off between image quality and patient dose but the prerequisite is the two non-
truncated fluoroscopic images. Nevertheless, the conducted evaluation and presented
results in this chapter, could be used as an indicator for the ease of such selection.
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Outlook
The work presented in this thesis focused on the technical development of various

truncation artifact reduction techniques that are suitable for different 3D imaging
scenarios. From the algorithmic perspective, the ATRACT algorithm has several
practical advantages and thus could be potentially utilized in most interventional
clinical routines. However, the evaluation in Section 7.2.3 showed the ATRACT
results suffer from a noticeable artifact that is particularly pronounced at the edge
where the high contrast object such as skull is truncated. One possibility to reduce
such artifacts could be to perform a two-step algorithm: Firstly, we need to identify
if high dense bones appear at the truncation edge by using a tissue-bone threshold;
secondly, we could apply the metal artifact reduction techniques proposed in [Bal 06]
and [Prel 10]. More specifically, we could produce a bone-only image by segmentation
of an initial ATRACT reconstruction, followed by interpolating the bone structures
that are transaxially truncated in the raw data using a bone mask sinogram. Finally,
the bone structures are recovered in the second reconstruction by using the previous
bone-only image.

The third approach of SSR (Section 5.3.3) appears to be more robust with re-
spect to image quality in both the ROI and RP. However, the employment of the
iterative method may prohibit its practical use in an interventional clinical setting.
Alternatively, we could investigate other de-streaking strategies to produce streak-
free initial images, such as the fast streak-removal methods studied in [Manh 14] or
the edge-preserving nonlinear filters proposed in [Toma 98, Elad 02].

In this thesis, the sinogram completion method that makes use of the consistency
conditions was investigated and validated in a 2D fan-beam imaging geometry. The
next step is to extend the method and experiment to a 3D cone-beam geometry. To
this purpose, we could follow the study from Patch [Patc 02] that investigated the
consistency conditions for 3D tomography or the investigation of the 3D wedge in the
Fourier domain [Brok 06].

Although in this thesis we use virtually truncated data to accomplish evaluation
tasks, investigating the performance of the algorithms using patient data with phys-
ical collimation is also of practical importance. Note that the differences between an
ROI scan and an associated full view scan lie in the level of physical effects, such as
X-ray scatter, in the projections and also in the fact that patient is often repositioned
between those scans. These differences may complicate the quantitative assessment
when using the reconstruction of non-truncated data as a reference.

Furthermore, in Chapter 7 we theoretically calculated the patient dose based on
its relation to the DAP in a first-order approximation [Ardr 65]. Another interesting
field of future research is to measure the actual effective dose and dose distribution
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associated with different truncation levels, experimentally. One direction is to use
the combination of thermoluminescence dosimeters (TLD) and anthropomorphic head
phantoms that has been shown to be an efficacious method for the accurate, effective
dose measurement [Zeli 12].
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Summary
In this thesis, we considered the problem of the improved restoration of an image

from projection data that is laterally truncated, primarily aiming to reduce radiation
doses to the patient. The contribution towards high-quality images from truncated
data is several-fold, which is reflected in the subdivision of the thesis in two parts.

Part I introduces the clinical background and an overview of truncation artifact
reduction methods. Chapter 1 starts with the motivation. That is, how to reduce
patient dose while still retaining high image quality. In many clinical applications and
workflows, such as follow-up examinations of deployed stents/flow-diverters during
endovascular treatment, cochlear implants and needle biopsies, only a small portion of
the patient may be of diagnostic interest. This enables the idea of 3D region of inter-
est (ROI) imaging, utilizing an X-ray beam collimator to laterally and axially shield
unnecessary radiation during image acquisition. In this manner, only the diagnostic
ROI is being irradiated by X-rays, resulting in a substantial reduction of patient dose.
However, 3D ROI imaging involves transaxially truncated projections from which
conventional reconstruction algorithms generally yield a considerable degradation of
image quality if no effective counter-measure against the truncation is performed.
Thus, the primary focus of this work lies on the algorithmic development of vari-
ous truncation artifact reduction techniques that are suitable for different imaging
applications.

Chapter 2 provides a thorough literature overview of previously published work.
It starts with a few examples to illustrate why the analytical FDK algorithm cannot
tolerate any data truncation. Thereafter, it reviews the existing heuristic extrapo-
lation methods as well as various data completion strategies. Chapter 2 also shows
how the truncation problem can be partially solved using an alternative Radon in-
version – the differentiated backprojection method (DBP). Then, its several variants
and the associated data sufficiency conditions that these methods depend on are pre-
sented. Next, two ROI imaging-specific modifications, i.e., filtered ROI imaging and
offset detector acquisition, are described, followed by the introduction of two alter-
native ROI reconstruction techniques, namely wavelet based localization and lambda
tomography.

In Chapter 3, a new sinogram extrapolation method is proposed that uses sino-
gram consistency methods to estimate the missing sinogram data. We first derived
the Fourier representation of Helgason-Ludwig consistency conditions that can be
evaluated very efficiently via FFT. The derivation is of practical significance and
leads to a new sinogram-based data completion scheme that incorporates these con-
sistency conditions as a constrained optimization for an estimated model in the miss-
ing region. More specifically, the method extrapolates the truncated sinogram with
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forward-projected data from a uniform ellipse of which the parameters are deter-
mined by optimizing these consistency conditions of the extrapolated sinogram. The
experimental results on the Shepp-Logan phantom suggest that this approach yields
more accurate reconstructions than the standard water cylinder extrapolation (Hsieh
et al. [Hsie 04]). The method also robustly reduces the low-frequency bias in the
reconstructed volume, which is reflected by a good recovery of attenuation coeffi-
cients. The feature will potentially enable accurate segmentation and quantitative
analysis of the reconstructed volume. Although the method is described for a 2D
imaging geometry, it could be naturally extended to 3D reconstructions by repeating
this sinogram completion processing slice-wise.

Part II focuses on the three truncation artifact reduction methods that can be
readily applied in clinical practice. All these methods, which either follow the analytic
FBP frame or are by construction in an iterative manner, are capable of generating a
high-quality 3D image from transaxially truncated data. Chapter 4 presents a refine-
ment of the truncation artifact reduction method – ATRACT, for 3D ROI imaging
that is implicitly more robust with respect to severely truncated data. The advan-
tage of this method is that it can be accomplished without explicit extrapolation
or prior knowledge. In its original formulation, the non-local ramp filtering was de-
composed into a 2D Laplace filtering and a 2D Radon-based residual filtering step.
This algorithm, however, requires frequent interpolations and complicates the filter-
ing procedure. For practical use, we present two variants of ATRACT. One is based
on expressing the residual filter as an efficient 2D convolution with an analytically
derived kernel. The second variant is to apply ATRACT in 1D to further reduce
computational complexity. Furthermore, two empirical correction techniques to com-
pensate remaining artifacts from the ATRACT results are suggested at the end of
Chapter 4.

In some clinical applications, e.g., cancer or tumor treatments, reconstructing an
image inside the ROI alone may be sub-optimal, since the outer region may also con-
tain useful information, such as surrounding landmarks or so-called organs-at-risk.
This motivates the study in Chapter 5, where the concept of a special interleaved
acquisition strategy is proposed that would allow us to acquire both full FOV projec-
tion data and truncated data within a single scan. Even though this would involve
acquiring a small number of non-truncated projections, the overall applied patient
dose is still much below the amount of a conventional scan. However, acquired shutter
scan data is in general not compatible with conventional reconstruction algorithms.
Therefore, we suggest three reconstruction pipelines that are capable of dealing with
such data. The first approach involves pre-processing two groups of projection data in
a separate manner, followed by backprojecting filtered data in a single volume. The
second approach is a direct volumetric combination of two individually reconstructed
images with an additional transition smoothing in the radial direction. The last one
yields a projection-based merge using forward-projected data from an initial TV min-
imization reconstruction. All methods are able to provide a particular ROI with high
quality/resolution for diagnosis and the region outside the ROI with relatively low
quality for orientation.

Chapter 6 again investigates the possibility of recovering accurate ROI images
from pure truncated data alone. To this purpose, we exploit the patient-specific a
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priori shape knowledge for the extrapolation of truncated projections. The method
is based on the fact that prior to a 3D scan, two fluoroscopic X-ray acquisitions are
generally performed from two orthogonal views, to isocenter the patient with respect
to the target to be scanned. First, we estimate the rough 3D patient shape based on
two fluoroscopic projections, using per-slice ellipse fitting. Forward-projecting this 3D
model for any projection angle acquired during the actual ROI scan gives the patient
bounded information for the corresponding projection. Then, detruncated projection
data could be obtained by adapting the extrapolated profile to fit the known profile
boundary points. The method yields more practical advantages compared to most
other data completion strategies (Ruchala et al. [Ruch 02], Wiegert et al. [Wieg 05]
and Kolditz et al. [Kold 10]): 1) It involves no additional radiation when using fluoro-
scopic images that are routinely acquired during the patient isocentering process; 2)
The model estimation can be readily integrated into the existing interventional work-
flow without additional hardware; 3) The method only involves small vector/matrix
multiplications on boundary points and thus is computationally very efficient.

Chapter 7 presents a detailed comparative evaluation of all proposed 3D ROI
reconstruction algorithms on 16 patient datasets that were acquired in an interven-
tional clinical environment. First, we describe the experimental setup, followed by
conducting the algorithm-specific evaluation and parametrization for each of three
proposed methods. In the comparison of 1D and 2D ATRACT, we observed that in
general both methods robustly reduce cupping artifacts and yield reconstruction of
high accuracy. However, 1D and 2D ATRACT suffer from an edge gradient artifact in
the particular cases where the high dense skull is truncated. This artifact somewhat
affects their quantitative accuracy in the evaluation. Although the investigated three
SSR methods yield small differences inside the ROI, we observed that image quality
and characteristics in the PR, which is also of particular interest for shutter scan ap-
plications, vary noticeably among these methods. In general, the prior image driven
detruncation method shows a better image quality in the ROI and PR than the other
two SSR methods and appears to be less dependent on the sparsity of full projec-
tions. The results also show that the PBE method leads to a major improvement in
image quality, compared to the purely heuristic extrapolation method. Its accuracy
is comparable to the camera-based extrapolation, in which the patient outline would
be known from all projections. This confirms the effectiveness of the 3D shape model
that is estimated by only two orthogonal projection images. The final comparative
evaluation clearly depicts the algorithmic performance of all investigated methods
under a uniform evaluation framework. ATRACT methods have shown to be more
robust than the water cylinder extrapolation in severe truncation case. Compared
to these heuristic methods that come without prior knowledge, the PBE and SSR
methods achieve ROI reconstructions in a more accurate and robust manner. But
differences between the methods with and without prior knowledge become smaller
in the presence of severe data truncation. At the end of Chapter 7, we studied the
trade-off between image quality and radiation dose for each of the investigated al-
gorithms. We pointed out that although this is a multidimensional problem, the
presented work could be used as the first indicator for the selection of these studied
algorithms.
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Chapter 8 presents several possible investigations in the future. From the algo-
rithmic perspective, the metal artifact reduction techniques proposed in [Bal 06] and
[Prel 10] could be applied to reduce the residual edge gradient artifacts in ATRACT.
To speed-up the SSR reconstruction, some fast streak-removal techniques such as
the methods proposed in [Toma 98, Elad 02, Manh 14] could be further investigated.
Moreover, the consistency condition-based sinogram completion could be extended
to a more practical cone-beam algorithm by following [Patc 02, Brok 06]. From the
experimental perspective, future work involves validating the algorithms using real
collimated data that is also practically important. Furthermore, using TLDs and
anthropomorphic head phantoms to experimentally measure the actual effective dose
and dose distribution for different ROI scans seems another interesting field of future
research.
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A.1 Prove that Tn (s) (1− s2)−1/2 exp (jkθ) Form Orthogonal Basis
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× Tn∗ (s)
(
1− s2

)−1/2
exp (jk∗θ)

(
1− s2

)1/2
dsdθ

=
ˆ 1

−1
Tn (s)Tn∗

(
1− s2

)−1/2
ˆ 2π

0
exp (jkθ) exp (jk∗θ)

= δnn∗δkk∗ (9.1)

A.2 Link Between Bessel Function and Chebyshev Polynomial
The Fourier transform of the Bessel function can be computed as

ˆ ∞
−∞

exp (−jξs) Jn (s) ds = 2 (−j)n

(1− ξ2)1/2Tn (ξ) , (9.2)

for ξ2 < 1. We can swap the variables s and ξ and move the term 2 (−j)n to the left
side: ˆ ∞

−∞
exp (−jξs) Jn (ξ) 1

2 (−j)ndξ =
(
1− s2

)−1/2
Tn (s) , (9.3)

where s2 < 1.
Then, substituting ξ by −ξ and computing the Fourier transform of both sides

Jn (−ξ)
2 (−j)n =

ˆ ∞
−∞

(
1− s2

)−1/2
Tn (s) exp (−jξs) ds. (9.4)
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