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Abstract—Beam hardening is a problem arising in
every computed tomography scan with a conventional
X-ray tube. We describe a new calibration-free, compu-
tationally efficient algorithm for mono-material beam
hardening reduction. It is based on optimization of the
Epipolar consistency condition on computed tomogra-
phy raw data. The efficiency of our approach is achieved
by formulating the optimization problem directly on
the Radon intermediate function conventionally used
by these consistency conditions. We thus avoid recal-
culating the intermediate function and can solve a
homogeneous least squares optimization problem. We
regularize the ill-posed homogeneous problem by in-
troduction of a regularizer which keeps the dynamic
range of the projection data constant. The resulting
constrained problem can be solved in closed form. To
demonstrate the effectiveness of our approach we apply
our method to simulation experiments. We additionally
provide experimental insight to the robustness of our
algorithm to image noise, geometrical noise and trun-
cation. As a last experiment we apply our method to
real data.

I. Introduction
Beam hardening is a common problem in X-ray computed

tomography which is caused by the polychromatic spectrum
of conventional X-ray sources combined with the energy
dependence of the linear attenuation coefficient. It causes
severe image artifacts such as cupping, streaks and negative
regions in reconstructions [1].

Many different prior approaches exist to reduce the
effect of beam hardening. They can be roughly divided in
approaches reducing it during acquisition, like optimization
of the X-ray spectrum, or approaches reducing the effect
with algorithms. The algorithmic approaches either use a
mono-material or a multi-material model. A well-known
mono-material approach was presented by Kachelrieß et
al. [2]. They assume a polynomial model for the line
integral measurements and calculate its parameters from
a calibration scan of a homogeneous phantom of a known
material.

Some multi-material methods decompose the different
materials in a preliminary reconstruction [3] and estimate
different parameters for the mono-material images. A
computationally efficient approach doing this has been
presented by Wu et al. [4].

Beam hardening will also introduce inconsistencies into
the projection data which will be reflected by consistency

conditions used to reduce geometric misalignment. Three
well-known formulations of consistency conditions are the
Helgason-Ludwig [5], the Fourier [6] and the Epipolar con-
sistency condition [7]. The Epipolar consistency condition
is directly applicable to cone beam projection data.

However the introduced inconsistency also presents an
opportunity to reduce beam hardening using consistency
conditions. A restoration model can be adopted and its
parameters optimized by minimization of the inconsistency.
Different methods using the Helgason-Ludwig consistency
condition have been presented e.g. by Tang et al. [8].
An approach by Abdurahman et al. uses the Epipolar
consistency condition in cone beam geometry [9]. A big
advantage of consistency-based methods is, that they
provide an optimization target directly from redundancies
in the measured raw data. This way no prior knowledge
about the X-ray source or the materials of the object is
needed. A common drawback of these methods is their
computational demand.

Using the Epipolar consistency condition, we derive a
computationally efficient mono-material beam hardening
reduction algorithm. We choose the popular polynomial
model and estimate its parameters by optimization of con-
sistency. The key difference to the method by Abdurahman
et al. is the formulation of the optimization problem in the
domain of the intermediate function, which enables to keep
it constant during optimization. The main idea for our
formulation combines the Epipolar consistency condition
(ECC) and the linearity of the Radon transform, similar to
empirical cupping correction (ECC) [2], which leads us to
the acronym ECC2. We show that our formulation leads to
an overconstrained homogeneous system of linear equations
allowing an efficient solution.

II. Methodology
In Sect. II-A we introduce the Epipolar consistency

condition as presented by Aichert et al. [7] . We then
formulate our optimization problem on the intermediate
function in Sect. II-B. We subsequently show how this
problem can be solved uniquely and efficiently.

A. Epipolar Consistency Condition
The Epipolar consistency condition emerges out of

Grangeats theorem [10], which establishes a fundamental
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relation between the derivatives in normal direction of
the 3D Radon transform and the X-ray transform. This
has been presented by Debbeler et al. [11], before being
introduced as Epipolar consistency condition by Aichert
et al.[7]. Aichert et al. state in equation (31) of [7] that
the derivatives in normal direction d

dn of the Epipolar
plane of the 3D Radon transform, denoted by d

dn ρR(E)
approximately equal the derivatives in spatial direction d

dt

of line integrals along the detector d
dt ρI(l), where l denotes

the intersection of the plane E with the detector:
d

dt
ρI0(l0) ≈ d

dn
ρR(E) ≈ d

dt
ρI1(l1) . (1)

Here l0 and l1 denote a corresponding pair of Epipolar
lines with the indices distinguishing the different lines
dependant on their detector position. The index R of ρR

here distinguishes the 3D Radon transform of the object
from the Radon transform of the projection images ρI0 and
ρI1 . They proceed by formulating a metric between two
projection images as:

M̂1
0 =

∫ π
2

− π
2

(
d

dt
ρI0(l0) − d

dt
ρI1(l1)

)2

dα , (2)

where α is an angle between a reference plane and other
Epipolar planes. An important acceleration strategy in
their formulation is to compute a discretization of line
integrals of the projections by calculating their Radon
transforms. This allows one to replace the integration step
in the evaluation of the consistency condition by a sampling
and therefore greatly speeds up the process.

B. Epipolar Consistency Guided Beam Hardening Reduc-
tion

The conceptual goal of a beam hardening reduction
algorithm based on this consistency is to optimize the
parameters w of some beam hardening reduction model
denoted by f :

d

dt
ρf(I0,w)(l0) ≈ d

dt
ρf(I1,w)(l1) . (3)

Two key problems can be derived from this equation:
(a) The precomputed line integrals are only valid for a

single choice of w and
(b) a solution can only be determined up to scale.
We use the well-known polynomial model[2]. An advantage
of such a non-linear basis series model is, that despite
being non-linear, it is linear in its parameters. Plugging
this model into equation 3 we receive

d

dt
ρ(∑N

n=1
wnIn

0

)(l0) ≈ d

dt
ρ(∑N

n=1
wnIn

1

)(l1) . (4)

Here In denotes transforming every pixel of projection I
independently to its n-th power. Because of the linearity
of the Radon transform and the derivative operator we
can reuse the idea of empirical cupping correction [2] and
rewrite equation 4 to:

N∑
n=1

wn

( d

dt
ρIn

0
(l0)
)

≈
N∑

n=1
wn

( d

dt
ρIn

1
(l1)
)

. (5)

This solves key problem (a), because the powers of the inter-
mediate functions d

dt ρIn stay constant during optimization.
We can now optimize for consistency:

min

(
N∑

n=1
wnan

)2

, an =
( d

dt
ρIn

0
(l0) − d

dt
ρIn

1
(l1)
)

. (6)

Since we want to solve this problem for many different
projections and epipolar planes, there are M measurements
amn, producing a homogeneous overdetermined system of
linear equations, which can therefore only be solved in a
least squares sense and up to scale. A typical solution for
the scaling is to restrict the ℓ2-norm of w to ∥w∥2

2= 1.
However this rescales the data in an arbitrary way. Our
proposed solution is to rescale w requiring

β =
N∑

n=1
wnbn = wT b (7)

for an arbitrary line integral b of the projections and β,
the value b will take on after beam hardening reduction.
Here bT denotes the vector:

[
b1 · · · bN

]
. This problem

can then be stated as:

min(∥Aw∥2
2) s.t. : wT b = β (8)

Where A denotes a measurement matrix: a01 · · · a0N

...
. . .

...
aM1 · · · aMN

 .

The M rows of the matrix represent different consistency
equations involving N coefficients wn of the polynomial
which have to hold simultaneously. The Lagrangian func-
tion of this problem is:

L(w, λ) = wT AT Aw + λ(β − wT b) . (9)

We calculate the partial derivatives of the Lagrangian with
respect to w and λ:

∂

∂wL(w, λ) = 2AT Aw − λb, (10)

∂

∂λ
L(x, λ) = β − wT b . (11)

A necessary condition for an optimum of this function is
∂

∂w = 0 and ∂
∂λ = 0. Therefore we can use equation 10 to

receive:
ŵ = (AT A)−1b , (12)

where we substituted
2w
λ

= ŵ . (13)

Because λ is still unknown we have determine its value by
using equation 11 and substitute again:

λ = 2β

ŵT b , (14)

finally yielding w as:

w = λ

2 ŵ = β

ŵT bŵ . (15)
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Equation 12 can readily be solved using linear algebra
libraries, while equation 15 is a simple scaling. As a default
value we choose β and b to be equal to the maximum
line integral value of the projection data. This keeps the
range of the histogram of the projection images similar.
Optimization of this problem is well-posed because it
is convex and the data-dependent term is fixed during
optimization.

C. Robust estimation

In presence of additional sources of inconsistency, which
cannot be reduced using a pixel-wise independent func-
tion, degenerate solutions may occur. These degenerate
solutions violate the physical model of beam hardening, by
introducing reversal points. To deal with this problem, we
formulate an additional constraint on our solution to be
strictly monotonous. This can be achieved by a positivity
constraint on the coefficients:

min(∥Aw∥2
2) s.t. : wT b = β; w ≥ 0 ∀w ∈ w . (16)

This problem is a quadratic programming problem and
cannot be solved linearly. However it is still convex and can
be solved using general purpose non-linear optimization
methods.

III. Experiments

We present three simulation experiments with our
method using the robust optimization. In Sect. III-A we
evaluate the robustness of our method to image noise.
To this end, we use the same model for simulation and
restoration to have accurate ground truth. We use the well-
known FORBILD phantom, with a polynomial applied to
it to simulate the beam hardening effect. Our goal is to
retrieve the simulated polynomial.

We proceed by studying the robustness of the proposed
algorithm to noise in the geometric description on top of
the simulated beam hardening in Sect. III-B.

Because the Epipolar consistency conditions no longer
hold in presence of truncation, we study robustness to this
kind of corruption in Sect. III-C.

Sect. III-E finally demonstrates an experiment with real
data.

A. General feasibilty and robustness to noise

We construct the ground truth polynomial from figure
1, to follow our choice of the fixed maximum value of the
projections. We proceed by corrupting the projections by
applying the inverse of this polynomial. Subsequently we
corrupt the projections with poisson-distributed noise. The
different noise levels are created by varying the parameter
of the Poisson distribution, corresponding to the count of
emitted photons[#].
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Figure 1: Comparison of results with added noise

From figure 1, an accurate retrieval of the simulated
polynomial can be seen in absence of noise. The left figure
compares the polynomials visually, the right plot shows
the difference in area under the respective polynomials to
the area under the ground truth polynomial. Increasing
noise degrades the results but even in the presence of severe
amounts of noise, beam hardening can be reduced very well.
Note that the robustness to noise can be improved further
by binning the projections for the intermediate function.

B. Robustness to jitter

To simulate geometric noise, which we refer to as jitter,
we use uniformly random distributed noise in u and v
direction of the detector coordinates measured in pixels
[px]. The same polynomial as in the previous experiment
is used. We increase the geometric noise progressively by
two pixels. We sum up the result in figure 2.
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Figure 2: Comparison of results with added geometric noise

We conclude from this experiment that our method shows
a quite complicated behaviour in terms of robustness to
geometric noise. Since geometric noise can’t be accounted
for by a pixel-wise transformation the data-term enforces
degenerate results. However using our robust estimation we
can recover very good solutions even in presence of severe
jitter.

C. Robustness to truncation

Truncation is simulated for every direction, by cropping
the quadratic image from each of the four sides simulta-
neously. We apply a symmetric cropping in the image’s
width and height given as a percentage[%].
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Only +Noise +Jitter +Truncation

SNR Original 11,61 7.46 11.38 5.56
SNR ECC2 40.16 4.20 20.88 14.25

CNR Original 2.77 1.77 1.40 0.69
CNR ECC2 28.34 2.80 9.30 8.56

Table I: Quantitative results for the depicted simulations
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Figure 3: Comparison of results with added truncation

Figure 3 shows our results for this experiment. With
increasing truncation, the method tends to produce more
linear curves on this object, resulting in a less accurate
solution or no reduction at all in case of severe truncation.
However the method is robust to truncation in the sense,
that our method never degrades the image quality. This
can be seen from the polynomials by the fact, that they all
represent monotonic convex functions. It can also be seen
from the overview figure 4, by the increasing contrast of
the truncation example. Note that this image also has to
be corrected for truncation artifacts which interacts with
the beam hardening effect.

D. Quantitative results
To quantitatively assess the image quality gains using

our method we calculate the signal to noise ratio(SNR) as
µ
σ over a homogeneous region depicted in figure 5. Because
beam hardening is an effect causing structured noise which
is not properly reflected by SNR, we additionally report
the contrast to noise ratio(CNR). The CNR is calculated as
|µ1−µ2|

σ , where µ1 and µ2 are regions depicted in figure 5.
Our results in table I show that our method increases
the SNR for every scenario except the one involving severe
image noise. However this does not correspond to a decrease
in perceived image quality because the contrast of the
image increases greatly. This is reflected in the fact that
our method increases the CNR for every single case.

E. Real data experiment
We carry out an experiment on a real object. The object

is a metal stopwatch. The effect of beam hardening is
reduced using our method. Figure 6 shows an interesting
slice of our result. We can see, that the beam hardening
effect has been reduced greatly by examining the air
between the high density parts. Additionally, the cupping
effect is reduced. We measure SNR and CNR in this slice,
as 31.81 (SNR) and 31.34 (CNR) for the original data

against 75.09 (SNR) and 71.75 (CNR) after applying our
beam hardening reduction algorithm.

Original Beam hardening reduced

Figure 6: Beam hardening reduction on real data.
(Grayscale window: C/W = 0.08/0.32 mm−1).

IV. Conclusion and Outlook
We have shown our algorithm to be generally able to

reduce the effect of beam hardening without a need for
prior knowledge. Furthermore we have shown its robustness
to noise, geometric misalignment, truncation and real
data. Since the approach by Abdurahman et al. relies
on the optimization of the same consistency condition,
we expect comparable behaviour to his method. However,
our formulation using the linearity of the Radon and the
Derivative operators greatly reduces the computational
effort of the method, since the Radon transform consumes
most of the runtime of the algorithm. In addition, we
showed our optimization problem has a unique solution
and can readily be solved in closed form.

Our algorithm has the potential to simplify calibration
for beam hardening reduction since no prior knowledge
about the object, the spectrum or the response charac-
teristics of the detector is required. This is especially
convenient for service providers where the precise materials
of the scanned object are typically unknown. Future
research directions include a more extensive evaluation
of the algorithm on real data and an extension to a multi-
material method. Also a simultaneous multi-dimensional
optimization of geometric and beam hardening parameters
promises to provide improved results for both methods.
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