MR-projection imaging with perspective distortion as in X-ray fluoroscopy for interventional X/MR-hybrid applications

Jonathan M. Lommen^{1,2}, Christopher Syben^{1,2}, Bernhard Stimpel^{1,2}, Siming Bayer¹, Armin M. Nagel³, Rebecca Fahrig^{1,4}, Arnd Dörfler², Andreas Maier¹

¹Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany ²Department of Neuroradiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany ³Institute of Radiology, University Hospital Erlangen, Erlangen, Germany

⁴Siemens Healthineers, Forchheim, Germany

Purpose

Hybrid X/MR-devices are promising for interventional applications (e.g. intravasculature) exploiting the high frame-rate of X-ray imaging and the contrast variety of MRI [1]. Standard cone-beam fluoroscopy exhibits perspective distortion due to the projection onto the detector. In contrast, MRI data are sampled point-wise with a high flexibility in k-space. Synthesis of both modalities might be achievable through X-ray-like MR projections. Here, we demonstrate initial experiments yielding MR-fanbeam views without the need of time consuming 3D acquisition.

Methods

Principle: According to the Fourier-slice theorem, fanbeam views can be obtained from k-space projections covering the fan-angle of the X-ray system [2]. Using this idea, we are able to synthesize fan-beam projections from multiple parallel MR projections spanning the re-^o spective angles.

Measurements: 2D MR projections were acquired with a -1 gradient-echo sequence by omitting slice selection in view direction. The projection angle was swept from -6° to 6° in steps of 0.1°. 2D/3D acquisitions were performed with a volunteer and a head phantom at 1.5T (Aera, Siemens Healthineers, Erlangen) within 3.8 s / 14:20 min at 1 mm resolution and TE/TR/flip-angle = (3/6/9/12) ms / 15 ms / 8°.

Analysis: Measured 2D-projections and resampled fanbeam views were compared to a ground truth obtained through parallel/fan-beam forward projection of the 3D image data, respectively.

Results

2D MR projections approach the ground truth for short TE<3 ms, where the projections should ideally match the line integral of the relaxation-weighted proton density (**Figure 1**). Signal voids occur due to dephasing with increasing TE. Perspective distortion as seen in fan-beam X-ray can be generated from MR projections (**Figure 2**). Only a small number of angular views is sufficient (error oblow 10% with 3 projections).

Conclusions

We demonstrate an acquisition and reconstruction scheme for MR data enabling straightforward transfer to X-ray data. This enables image fusion of both modalities during an intervention without time-consuming and errorprone transformations. In future, the implementation of dedicated magnetization preparations can tailor the image contrast to the application at hand.

Figure 1: Phantom measurement: Magnitude projections of 3D-scan at different TE (A), measured 2D-projections (B), difference (C), and line plots through A-C (D).

Figure 2: Fan-beam views of the volunteer (A) with different numbers of base projections (61-3) and parallel-beam projection (1), difference to the highest sampling number 61 (B), and line plot depicting the difference (C). For the parallel beam (1), the error relative to a fan-beam projection increases proportional to the distance to the center (white arrows) whereas for the fan-beam reconstruction (3) the deviation stays below 10 % (white ellipses).

Acknowledgements

We thank Martino Leghissa (Siemens Healthineers) for valuable discussions and support during the measurements. This work is founded by EIT Health. EIT Health is supported by the EIT, a body of the European Union. **References** [1] R. Fahrig et al. JMRI. 2001. [2] C. Syben et al. IGIC 2017.

12th Interventional MRI Symposium

54