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Purpose: The purpose of this study was to establish a novel paradigm to facilitate radiologists’

workflow — combining mutually exclusive CT image properties that emerge from different recon-

structions, display settings and organ-dependent spectral evaluation methods into a single context-

sensitive imaging by exploiting prior anatomical information.

Methods: The CT dataset is segmented and classified into different organs, for example, the

liver, left and right kidney, spleen, aorta, and left and right lung as well as into the tissue types

bone, fat, soft tissue, and vessels using a cascaded three-dimensional fully convolutional neural

network (CNN) consisting of two successive 3D U-nets. The binary organ and tissue masks are

transformed to tissue-related weighting coefficients that are used to allow individual organ-speci-

fic parameter settings in each anatomical region. Exploiting the prior knowledge, we develop a

novel paradigm of a context-sensitive (CS) CT imaging consisting of a prior-based spatial resolu-

tion (CSR), display (CSD), and dual energy evaluation (CSDE). The CSR locally emphasizes

desired image properties. On a per-voxel basis, the reconstruction most suitable for the organ, tis-

sue type, and clinical indication is chosen automatically. Furthermore, an organ-specific window-

ing and display method is introduced that aims at providing superior image visualization. The

CSDE analysis allows to simultaneously evaluate multiple organs and to show organ-specific DE

overlays wherever appropriate. The ROIs that are required for a patient-specific calibration of the

algorithms are automatically placed into the corresponding anatomical structures. The DE appli-

cations are selected and only applied to the specific organs based on the prior knowledge. The

approach is evaluated using patient data acquired with a dual source CT system. The final CS

images simultaneously link the indication-specific advantages of different parameter settings and

result in images combining tissue-related desired image properties.

Results: A comparison with conventionally reconstructed images reveals an improved spatial resolu-

tion in highly attenuating objects and in air while the compound image maintains a low noise level in

soft tissue. Furthermore, the tissue-related weighting coefficients allow for the combination of vary-

ing settings into one novel image display. We are, in principle, able to automate and standardize the

spectral analysis of the DE data using prior anatomical information. Each tissue type is evaluated

with its corresponding DE application simultaneously.
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Conclusion: This work provides a proof of concept of CS imaging. Since radiologists are not aware

of the presented method and the tool is not yet implemented in everyday clinical practice, a compre-

hensive clinical evaluation in a large cohort might be topic of future research. Nonetheless, the pre-

sented method has potential to facilitate workflow in clinical routine and could potentially improve

diagnostic accuracy by improving sensitivity for incidental findings. It is a potential step toward the

presentation of evermore increasingly complex information in CT and toward improving the radiolo-

gists workflow significantly since dealing with multiple CT reconstructions may no longer be neces-

sary. The method can be readily generalized to multienergy data and also to other modalities. © 2018

American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13127]
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1. INTRODUCTION

Computed tomography (CT) is irreplaceable in clinical rou-

tine. Multiple disciplines base their therapeutic decisions on

CT diagnoses. Indications are manifold and include examina-

tions, for example, in oncological, gastrointestinal, and

trauma imaging. However, for one acquired CT rawdata set,

there are manifold parameters for CT image reconstruction,

display, and analysis. Among others, the reconstruction algo-

rithm and parameters, for example, analytical, iterative, ker-

nel, strength of iterative reconstruction, etc., determine the

CT image quality. In particular, the choice of the reconstruc-

tion kernel in an analytical reconstruction has a strong impact

on competing characteristics of the reconstructed images: soft

kernels result in smooth images with high contrast and low

noise level but poor spatial resolution. In contrast, sharp ker-

nels provide images not only with high spatial resolution but

also high noise levels.1 Moreover, reading CT images requires

organ-dependent display settings. For display purposes, the

images are often viewed with varying display settings and

blending ratios. The images are reformatted either in axial,

coronal, sagittal, oblique, curved, or arbitrary plane. More-

over, different window level settings favor the presentation of

different anatomical structures. Especially the lung is recom-

mended to be reconstructed with a lung kernel and viewed in

a lung window that is superior compared to a soft tissue gray

level window.2,3 In order to detect lung nodules, this organ is

frequently visualized with a (STS) maximum intensity pro-

jection (MIP). On the contrary, reading liver images requires

a low noise level. The image is therefore displayed using

thicker slabs4,5 although thin slices would be preferable. The

image is visualized using a soft tissue gray level window. Fur-

thermore, there are many dual energy (DE) applications,

which provide a multitude of information about the tissue

type, material composition, or function to the radiologist.

However, each of the approved applications processes the

entire DECT dataset and performs the DECT evaluation

organ- or indication-specific (virtual noncontrast (VNC),

iodine overlay, gout visualization, kidney stones, blood flow

in the lung or heart, bone marrow, etc.). The dual energy

information outside the organ of interest is therefore worth-

less and cannot be used to improve diagnosis. In the clinical

routine, the user needs to invoke each application manually

in order to start a specific dual energy evaluation. Supposing

that the user wants to evaluate different body regions, the var-

ious applications are called sequentially. Furthermore, each

of the applications requires a patient-specific calibration,

based on manually placed regions of interest (ROIs). A com-

prehensive dual energy-based diagnosis involves several user

interactions and the interpretation of multiple DE analyses.

As a consequence, each medical question requires a case-

adapted CT examination and analysis in order to obtain a

comprehensive diagnosis for the patient. A large amount of

different image stacks need to be interpreted under varying

diagnostic questions. Hence, reading CT images and prepar-

ing them for interdisciplinary case discussions like tumor

boards are a tedious and time-consuming task.

In this paper, we therefore propose an innovative concept of

a context-sensitive CT imaging in contrast to the conventional

CT imaging with the aim to significantly improve the clinical

routine. In this work, we present a novel approach to combine

initially mutually exclusive CT image properties that emerge

from different reconstructions, display settings and spectral

evaluations and analyses into a single context-sensitive imag-

ing by means of prior anatomical information. The novel imag-

ing paradigm now favors the display of only one context-

sensitive image volume and enables the interactive adjustment

of various organ-specific parameters in real time as well as the

smooth changeover back to the conventional imaging during

diagnosis. We thus present an end-to-end pipeline that contains

a context-sensitive image formation which enforces local

image properties. The volumes are displayed organ depen-

dently and can be evaluated and analyzed in an organ-specific

manner. In order to provide a proof of concept, we focus on

the most common analytic reconstruction kernels, display

techniques (windowing and sliding thin slab technique), and

dual energy applications in this work. However, the bench of

possibilities could be extended as easily. The contributions of

this work include the usage of prior anatomical knowledge to

allow for an organ-dependent adaptation of different recon-

struction algorithms, the use of individually optimized display

settings, and the selection of organ-related DE evaluation on a

per-voxel basis. Our end-to-end pipeline to permit a context-

sensitive (CS) imaging mainly consists of three steps that do

not require any user interaction:

1. Perform an automatic multiorgan segmentation (Sec-

tion 2.A) in varying anatomical regions using a
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cascaded three-dimensional (3D) fully convolutional

neural network (CNN).

2. Transform the segmentation result to tissue-related

weighting coefficients (Section 2.B). The binary-seg-

mented masks are converted to weights that introduce

smooth transition zones between the different anatomi-

cal regions. The tissue-related weighting coefficient is

derived using the squared Euclidean distance transform

of the masks.

3. Use the tissue-related coefficients to allow for individ-

ual settings for each anatomical region. We present a

prior-based organ-specific image formation that con-

sists of a context-sensitive display (CSD) (Section 2.C)

and a context-sensitive dual energy evaluation (CSDE)

(Section 2.D).

2. MATERIALS AND METHODS

2.A. Prior anatomical information

In this paper, we assume that an accurate multiorgan seg-

mentation is given. We focus on demonstrating the benefit of

incorporating prior anatomical information. Once an assign-

ment between a voxel and an anatomy label is given, the prior

knowledge is exploited to provide a more sophisticated anat-

omy-adapted imaging. In particular, we obtain our segmenta-

tions using the method proposed in Ref. [6]. To summarize

briefly, the segmentation is obtained by a coarse-to-fine hier-

archical 3D fully convolutional neural network (CNN) that is

based on the U-net for biomedical image segmentation.7 A

U-net is a fully connected CNN including an analysis and

synthesis path. The approach was later extended to 3D volu-

metric data.8 A cascaded 3D fully connected CNN segments

the single (SECT) or dual energy CT (DECT) data into differ-

ent organs. In case of SECT data, the image to be segmented

is directly passed through the network. In case of DECT data,

a mixed image is calculated beforehand. In our used segmen-

tation approach,6 the mixing weight a is optimized to maxi-

mize the segmentation accuracy. The network architecture is

shown in Fig. 1. Each stage is based on a 3D U-net with a

depth of four levels.

The first stage of the network is trained and applied to

detect the abdominal cavity. This generated ROI reduces the

search space and improves the class weights for the multior-

gan segmentation. The output of the second stage is a predic-

tion map wherein each value indicates the probability of the

voxel belonging to a certain organ. The final segmentation

result is consequently defined by the maximum intensity of

these class probability maps. The network is implemented

using an open source implementation of a two-stage cascaded

network9 and the Caffe deep learning library.10 The U-net

was initialized with pretrained weights.

Our data pool include 42 contrast-enhanced patient DECT

scans in the arterial and portal venous phase with varying

clinical indications. We used 30 scans for training, 6 for vali-

dation, and 6 for testing. The training on 30 cases takes 2–3

days per stage and the final segmentation takes a few minutes.

The method achieves an average Dice coefficient over all 42

patients (eightfold cross validation with six test patient data-

sets, respectively) of 93 � 1% for the liver, 92 � 3% for the

spleen, 91 � 3% for the right kidney and 89 � 5% for the

left kidney, 96 � 2% for the right lung, and 96 � 1% for the

left lung, respectively. To accommodate for different field of

views (FOVs), we included scans with varying FOV, ranging

from 350 to 500 mm, into our training set. However, the pro-

posed method is sensitive to the scan protocol. A fine-tuning

of the parameters might be required if the scan protocol is

different and has never been trained.

It is not the main contribution of this work to discuss the

details on the automatic segmentation. We apply the proposed

approach as it is without any modifications. Using the provided

segmentation method, the dataset is segmented into the organs

liver, left and right kidney, spleen, aorta, and left and right

lungs. The remaining yet unlabeled voxels are further classified

into five tissue types bone, muscle, fat, vasculature, and air. We

apply a simple thresholding to derive the tissue classes. Since

the tissue types are well separable by means of their CT value

differences, the thresholds are selected by Otsu’s algorithm.11 If

there is a contrast media uptake, the separation between the tis-

sue classes vasculature and bone has to be manually postpro-

cessed, since their CT value distribution is quite similar in only

a SECT scan is available for segmentation. In case of DECT

data, both materials can be separated based on their material-

specific spectral behavior.

2.B. Tissue-related weighting coefficients

By means of the automatic segmentation, the target CT

dataset is divided into L disjunct tissue labels, that is, each

voxel r = (x, y, z) is initially assigned one label l and the

dataset is uniquely characterized. Given these organ or tissue

labels, the volume is subdivided into a set of disjunct binary

masks M = {m1(r), m2(r), . . .,. . ., mL(r)} for each label. For

our purposes, we intend to use the organ and tissue labels to

allow for an organ-dependent parameter adaptation. Since the

labels are nonoverlapping, we need smooth tissue-related

weighting coefficients wl(r) for each label l from the binary

masks. Within the emerging transition zone of adjacent

organs, the voxel is no longer exactly assigned to one specific

anatomical structure and can be interpreted as an anatomical

hybrid voxel. The tissue-related weights can therefore also be

interpreted as a prior probability that a voxel belongs to a cer-

tain anatomical region. The weight wl(r) corresponding to

one specific tissue class l at voxel position r is defined as fol-

lows

wlðrÞ 2

f1g if r belongs to a specific tissue class l,

ð0; 1Þ if r belongs to the transition area,

f0g elsewhere.

8

>

<

>

:

(1)

The smooth tissue-related weighting coefficient is derived

by a transition zone diameter d between neighboring regions.
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The width of the transition zone can depend on the initial

segmentation and the diameter d can thus be selected organ

dependent. In our case, a constant transition zone diameter is

used as we show later on. The tissue-related weight is derived

using the Euclidean distance transform12
D of each label mask

ml(r). The transformation D(r,l) associates the distance to the

nearest point in the mask ml(r) to each voxel r in the volume.

We then perform a truncation of the Euclidean distance field:

if the Euclidean distance is larger than the diameter d, the

transformed values are cropped and set to d.

Dtruncðr; lÞ ¼
d if Dðr; lÞ[ d,

Dðr; lÞ otherwise.

�

(2)

An inverse scaling and normalization to ensure
PL

l¼1 wlðrÞ ¼ 1 yields the final tissue-related weight for

voxel r and label l

wlðrÞ ¼
1
d
ðd � Dtruncðr; lÞÞ

PL
l¼1

1
d
ðd � Dtruncðr; lÞÞ

: (3)

Since each voxel r is initially assigned to exactly one label,

the sum
PL

l¼1
1
d
ðd � Dtruncðr; lÞÞ is greater than zero for each

voxel position.

These weights are used in the following to manage the

behavior inside transition zones between adjacent regions in

the context-sensitive resolution (CSR), context-sensitive dis-

play (CSD), and context-sensitive dual energy evaluation

(CSDE).

2.C. Context-sensitive display (CSD)

2.C.1. Context-sensitive spatial resolution (CSR)

An image is formed that combines mutually exclusive

image properties like high spatial resolution inside the bone

or lung and low noise level in soft tissue regions. Depending

on the assigned label, the basis image most suitable for the

organ, tissue type, and clinical indication is chosen automati-

cally from the set of B pre-reconstructed basis images fb(r) on

a per-voxel basis. The basis images can either result from a

single or a DECT scan as well as from a monoenergetic

reconstruction from dual energy data. It is possible to recon-

struct the basis images using varying reconstruction methods,

for instance an analytical reconstruction with varying kernels

or an iterative reconstruction, resulting in images with desired

competing properties.1,13,14 For reconstruction, we use the

weighted filtered backprojection (wFBP)15 that is available at

our scanner (Somatom Definition Flash, Siemens Healthi-

neers, Forchheim, Germany). The basis images are recon-

structed with different reconstruction kernels leading to

various resolution levels. The CSR is defined as

fCSRðrÞ ¼
X

L

l¼1

X

B

b¼1

wlðrÞ � dl;bðrÞ � fbðrÞ; (4)

where wl(r) is the tissue-related weighting coefficient, dl,b is

the Kronecker delta function that describes the assignment of

the label l to the basis image fb(r).

More than one label might be assigned to the same basis

image. For instance, a smooth basis image fsmooth(r) is

assigned to the tissue type classes liver as well as kidney.

Thus, more than one anatomical structure may be recon-

structed with the same basis image. The basis image fb(r)

contributes if and only if it is assigned to the label l meaning

that the weight is greater than 0. Inside the artificial overlap-

ping transition zones, a weighted mean of the contributing

basis images is calculated. The result is a compound image

altering the resolution and noise level depending on the

depicted tissue type and organ.

In order to provide an image display that guarantees an

optimal image impression, presenting each anatomical struc-

ture with the best-adapted display settings simultaneously, we

further propose a CSD. The approach is twofold: on the one

hand, the CSD locally adapts the window level settings, the

FIG. 1. Architecture of the two cascaded U-nets for DECT multiorgan segmentation.
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center and the width, for each organ or tissue type separately.

The displayed images combine several organ-dependent win-

dow level settings. These organ-specific settings are chosen

in accordance with recommended settings for individual

anatomical regions in the literature2,3 rather than arbitrarily

selected ones to provide an initial parameter selection. How-

ever, we are not restricted to these values and an intuitive

parameter adaptation is possible at any time during the image

presentation. On the other hand, the CSD images can be

viewed with an adaptive sliding thin slab (STS) technique.

Depending on the desired anatomical structure, the image

can be reformatted in an arbitrary direction using, for

instance, a piecewise organ-specific STS-mean intensity pro-

jection (MeanIP), STS-maximum intensity projection (MIP),

and STS-minimum intensity projection (MinIP) simultane-

ously. An STS-MeanIP is frequently applied in the liver to

render the image with almost no noise remaining. An STS-

MinIP is often used for the potential diagnosis of an emphy-

sema in the lung.16 An STS-MIP facilitates, for example, the

detection of pulmonary nodules in the lung.17 The slab thick-

ness are chosen organ dependently. The STS techniques and

corresponding slab thicknesses are also selected as recom-

mended in the literature.4,5 Additional more sophisticated dis-

play techniques might be applied in the same manner. The

following methods are applicable to the CSR image as well

as to every other CT image, for example, single or dual

energy data.

2.C.2. Adaptive window level settings

The window level settings (center and width) for each

tissue type are locally adapted both to the specific organ

and to the clinical indication. The above-mentioned tissue-

related weighting coefficient is reused to realize a soft

blending between neighboring window level settings, for

example, lung window vs soft tissue window. We establish

an artificial transition area between these adjacent win-

dows by means of a blending weight coefficient for each

label l. Since the blending radius varies from the transition

diameter during image composition, this weight is denoted

by bl(r). The preset or organ-specific diameter determines

the overlap between the neighboring regions. The organ-

dependent center Cblend and width Wblend for each voxel

are given by

CblendðrÞ ¼
X

L

l¼1

blðrÞ � Cl; (5)

WblendðrÞ ¼
X

L

l¼1

blðrÞ �Wl; (6)

where Cl and Wl are the center and width assigned to the

organ or tissue type l. The organ-specific assignment of the

center and the width is not fixed and can be changed dynami-

cally on demand. Within the overlapping areas, a smooth

transition between neighboring window/level settings

emerges.

2.C.3. Adaptive sliding thin slabs (STS)

The CSD can be improved using an adaptive STS display

technique. The CT data are no longer displayed as one entire

volume but rather as slabs of sections that move through the

volume of the dataset.4 Whenever possible, the CTvolumes are

reconstructed with the smallest possible slice thickness in order

to obtain an isotropic spatial resolution to facilitate a MPR in

arbitrary direction. However, an isotropic spatial resolution

results in a high noise level that can be reduced by viewing the

CT image in thicker “slabs”. Multiple subsequent images are

combined, that is, by averaging adjacent parallel slices (STS-

mean) along different viewing directions. In our adaptive STS

implementation, the slab thicknesses are chosen organ specifi-

cally. Furthermore, the mean calculation is substituted by

retaining the maximum value (STS-MIP) or alternatively the

minimum value (STS-MinIP) along the slab direction depend-

ing on the organ or clinical indication, for example, in the lung.

The adaptive STS is able to adjust the slab thicknesses depend-

ing on the organ of interest and viewing direction and switches

between MeanIP, MIP, and MinIP depending on the clinical

indication and radiologists’ preferences.

2.D. Context-sensitive dual energy evaluation
(CSDE)

There are many commercial dual energy applications.18

The most common material decompositions and classifica-

tion tasks are realized by almost all (CT) vendors. In this

work, we focus on the applications that are implemented by

Siemens (italic: official application names in the Siemens

Syngo.CT Dual Energy software). These dual energy meth-

ods rely on two main approaches: firstly, a material decompo-

sition that is used for all kinds of material quantification, and

secondly, a material classification that is used for the discrim-

ination and highlighting of two materials. The first method

results in two basis material images whereas the second

method distinguishes two possible materials that are above or

below a certain decision boundary.19 The methods perform

the decomposition and classification in image domain based

on the CT value distribution of the low and the high energy

image fL and fH in the DE diagram (see Fig. 2). The low and

high energy image span a plane, where the coordinates of any

point in the DE diagram is represented by their CTvalue pair.

Using the dual energy methods, the following applications

are realized:

• calculation of pseudomonochromatic images and opti-

mization of the contrast in the images20 (Optimum Con-

trast, Monoenergetic and Monoenergetic+).

• material decomposition

– quantification and color coding of the iodine con-

centration in the lung21 (Lung PBV) and heart

(Heart PBV).

– iodine quantification and virtual noncontrast

imaging in the liver (Liver VNC) and body
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(Virtual Unenhanced) as well as in the brain

(Brain Hemorrhage).

– subtraction of the calcium content from the bones

to display any HU increase due to an infiltration or

bone bruising22 (Bone Marrow).

• material classification

– detection and differentiation between different renal

stones (calcium oxalate and uric acid stones)23–26

(Calculi Characterization) or the detection of

monosodium urate crystals (gout)27–29 (Gout).

– removal of Ca2+ in plaque and bone (Direct Angio,

Hardplaque Display and Bone Removal)

Each of these applications suffers from the lack of prior

anatomical information, performs the dual energy evaluation

on the entire dataset, and needs to be invoked by the user. By

means of the tissue-related weighting coefficient, the DE

application is automatically selected and only applied to the

specific organs without any user interaction. This CS analysis

allows to simultaneously evaluate multiple organs and to

show organ-specific dual energy overlays or tissue classifica-

tion information wherever appropriate. The method can read-

ily be generalized for other vendors’ applications.

2.D.1. Automatic patient-specific calibration

In order to obtain a reliable DE analysis, each of the

above-mentioned applications needs a patient-specific cali-

bration. The calibration parameters are usually determined by

user-defined ROIs. However, the elaborated step of placing

these ROIs is often not performed and the default settings are

used instead.

A schematic illustration of the algorithms is shown in

Fig. 2. The subtraction of iodine corresponds to a parallel

projection onto the virtual noncontrast (VNC) line. This line

is determined by the position of two reference points, in par-

ticular fat and soft tissue for the LiverVNC application.

RelCM points toward pure iodine and corresponds to the rela-

tive iodine contrast in the image.30 The length of the parallel

projection is similar to the iodine concentration of the voxel

to be decomposed.19 However, for a quantitative material

decomposition, RelCM as well as the exact position of these

reference points must be known, since they determine the

slope of the VNC line to which, for example, iodine is to be

projected onto.31 The material classification assumes the

knowledge of the exact position of one reference point

(blood) as well as the slopes toward the two materials, RelCM

for iodine and RelCa for bone22 in particular, that should be

distinguished. The relative contrasts of these two materials

with different energy dependency needs to be defined

because they determine the slope toward these materials. The

slope of the decision boundary is then calculated by averag-

ing the two material-dependent slopes.19 The final differentia-

tion between these two materials is consequently given by

their signed distance to the decision boundary.

The parameter RelCM R is determined by the DE iodine

ratio of the low energy CT value of iodine to the high energy

CT value of iodine30 and is usually in the range of 1.85–3.46

depending on different tube voltage combinations and patient

thicknesses.30 In clinical applications, the default value of

this parameter is fixed to 3.01 for the tube voltage combina-

tion 80 kV/140 kV + Sn and 2.24 for the tube voltage com-

bination 100 kV/140 kV + Sn. This value might be a good

trade-off for most of the patients. However, due to the nonlin-

earity of beam hardening and scatter, which highly depends

on the patients’ cross section, the default settings might not

be optimal and this may result in an under- or overestimation

of the true iodine concentration. Therefore, we believe that an

automatic patient-specific calibration improves the iodine

quantification accuracy instead of degrading the quantitative

capability of the modality. The relative iodine contrast, which

defines the slope in the DE diagram, has to be adjusted indi-

vidually for each patient by means of a calibration.

The relative iodine contrast is defined as the ratio between

the differences of the mean values of two ROIs placed within

regions of different iodine concentrations acquired at two dif-

ferent energy levels, that is,

R ¼
CT1ðELÞ � CT2ðELÞ

CT1ðEHÞ � CT2ðEHÞ
; (7)

with CTi(E), i = 1,2, being the ROI’s mean value of the mea-

surement at energy level E. With the unknown mixing ratios

m1 and m2 of water and iodine, respectively, in these two

ROIs, we get

CTiðEÞ ¼ ð1� miÞCTWðEÞ þ miCTIðEÞ; (8)

with CTW(E) being the CT value of water and CTI(E) being

the CT value of iodine. Inserting the above Eq. (8) into Eq.

(7), it turns out that the unknown mixing ratios cancel out

FIG. 2. Dual energy evaluation scheme in image domain. The low- and the

high-energy image fL and fH span a plane where the coordinates of any point

in the DE diagram are represented by their CT value pair. Material decompo-

sition: The subtraction of iodine corresponds to a parallel projection onto the

virtual noncontrast (VNC) basis line. This line is determined by the position

of two reference points, in particular fat and soft tissue for the LiverVNC

application. RelCM points toward pure iodine and corresponds to the relative

iodine contrast in the image. The length of the parallel projection is similar to

the iodine concentration of the voxel to be decomposed. Material classifica-

tion: The differentiation between two materials with known relative contrast

in the image (iodine: RelCM and bone: RelCa) is given by their signed dis-

tance to the decision boundary.
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R ¼
CTIðELÞ � CTWðELÞ

CTIðEHÞ � CTWðEHÞ
¼

CTIðELÞ

CTIðEHÞ

¼
lI;L � lW;L

lI;H � lW;H

lW;H

lW;L

¼
lI;L � 1

lI;H � 1
: (9)

In the second step, we exploit the fact that the CT value

of water is zero by calibration. In the third step, the CT

values are converted to attenuation values while for the

last step, we assume that the values stored in the image

are scaled such that lW = 1. This last convention will be

used in the following considerations. Apart from R > 1,

which is true for iodine or other hyperdense materials,

please note that

R� 1 ¼
lI;L � lI;H

lI;H � 1
; (10)

1�
1

R
¼

lI;L � lI;H

lI;L � 1
: (11)

We demonstrate in the following the role of the relative con-

trast ratio R in the decomposition of the low-energy image fL
and the high-energy image fH into a virtual noncontrast or

water image fW and an iodine overlay fI. The initial images

are calibrated such that air is 0 and water is 1. To obtain fW
and fI from two measurements fL and fH, we make use of the

mean values lW,L and lW,H of a water ROI and of the mean

values lI,L and lI,H of an iodine ROI, both measured in the

low- and high-energy images, to find linear combinations

such that

1 ¼ cW;LlW;L þ cW;HlW;H (12)

1 ¼ cW;LlI;L þ cW;HlI;H (13)

for the water image (VNC image) and such that

0 ¼ cI;LlW;L þ cI;HlW;H (14)

c ¼ cI;LlI;L þ cI;HlI;H (15)

for the iodine image with c being the value that corresponds

to iodine. Exploiting the assumption that lW,L = lW,H = 1,

we find

cW;L ¼ 1� cW;H ¼
1� lI;H

lI;L � lI;H
¼

1

1� R
(16)

cI;L ¼ �cI;H ¼
c

lI;L � lI;H
: (17)

The relative iodine contrast is then calculated by the ratio

of two ROIs that contain water–iodine mixtures at two ener-

gies (ROI in aorta and ROI in liver). The relative calcium

contrast is derived in a similar manner22 by using one ROI in

bone and one ROI in fat at two energies. In order to identify

the position of the reference points, we evaluate different

ROIs in fat, soft tissue, etc. The materials air and water are

set to fixed values. Exploiting the prior anatomical informa-

tion, these ROIs can now be placed automatically into the

corresponding anatomical structures.

3. RESULTS

3.A. Data acquisition

CT patient data of the chest and the abdomen

acquired with a third-generation 128-slice dual source CT

system (SOMATOM Definition Flash, Siemens Healthi-

neers, Forchheim, Germany) are retrospectively used in

this work. All patients signed written informed consent

before the examination. The system operated in dual

energy mode, where the x-ray tube voltages were set to

100 and 140 kV, respectively, where the latter operated

with a 0.4 mm thick tin prefilter. Iodinated contrast

media (CM) (300 mg iodine/mL, Imeron� 300 M, Bracco

Imaging Deutschland GmbH, Konstanz, Germany) was

administered as contrast agent with body weight-adapted

volumes. The study was performed for the data of seven

contrast-enhanced DECT patient in the arterial and in the

portal venous phase. The basis images in the CSR are

mixed images fM that are calculated by a linear weighting

of the DE data

fMðrÞ ¼ ð1� dÞfLðrÞ þ dfHðrÞ: (18)

The mixing weight d is set to 0.5 as preset at our system. The

resulting images yield the same noise and contrast enhance-

ment properties compared to a dose-equivalent single-energy

CT scan at 120 kV.19

3.B. Prior anatomical information

The multiorgan segmentation is obtained using the previ-

ously mentioned cascaded 3D fully connected CNN.6 Cur-

rently, this method is limited to large organs like the liver, left

and right kidney, spleen, aorta, and left and right lungs. The

CNN robustly segments the listed anatomical regions also in

the presence of high image noise. Since the network has

never seen images highly degraded by artifacts during train-

ing, it may fail on such unseen data during inference. In this

work, we therefore excluded heavily degraded images primar-

ily due to such images being absent in our data. Moreover,

the remaining yet unlabeled voxels are assigned to one tissue

class using a naive threshold-based segmentation. The thresh-

olds are selected using Otsu’s method.11 The CT value distri-

bution ambiguities between the vascular system and bone

result in misclassification of the two tissue classes. We there-

fore need to manually refine the class boundaries between

iodinated tissue and bone by manually removing misclassi-

fied voxels from the masks. Overall, the total number of class

labels is currently restricted to L = 9, consisting of bone,

lung, liver, kidneys, spleen, aorta, vasculature (including

heart and large vessels), muscles, and fat. The lung mask also

includes the trachea as well as the bronchial tree. Further-

more, in order to account for ambiguities between adjacent

tissue labels, we solve for smooth tissue-related weighting

coefficients that are utilized in the CS CT imaging. These

weights are defined according to Eq. (1) and derived from the

binary masks as shown in Fig. 3. The tissue-related weights

introduce artificial overlapping areas between adjacent tissue

Medical Physics, 0 (0), xxxx

7 Dorn et al.: Context-sensitive CT imaging 7



classes. A transition zone diameter controls the width of the

overlap.

3.C. CSD

3.C.1. Context-sensitive spatial resolution

The tissue-related weights guide the weighted sum of

involved basis images in the CSR. In order to analyze the

influence of the tissue-related weights, a line profile in the

CSR image (see Fig. 4 left) is drawn through the lung,

bone and soft tissue consisting of muscles as well as fat.

The position of the profile is chosen such that it traverses

four tissue classes. The considered tissue-related weight

masks (with highlighted profile indicated by arrows) are

also illustrated in Fig. 3. The line profile along the tissue-

related masks is shown on the right in Fig. 4. Each of

these profiles reflect the contribution of the corresponding

involved tissue-related weight. Therefore, each voxel along

the profile is composed of the assigned basis image

weighted by their tissue-related coefficient. Since each of

these weights is assigned to one basis image, it determines

the contribution of that specific basis image in the transi-

tion area of adjacent tissue labels.

FIG. 3. Binary masks of anatomical structures that are generated using the automatic segmentation as well as the tissue-related weights to cope with the bound-

aries of adjacent structures. The weights are normalized in order to yield a convex combination. The arrows correspond to the position of the line profile in

Fig. 4.

FIG. 4. Left: line profile traversing four tissue types lung, muscle, fat, and bone to illustrate the contributions of the tissue-related weights and associated basis

images in the CSR. Right: the contribution of the tissue-related weights during the CSR along the line profile through the lung, bone, muscle, and fat. The pixels

are compounded using a weighted sum of the associated basis images. The tissue-related weight determines the contribution of each basis image in the transition

area of adjacent tissue labels.
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We compare a conventionally reconstructed smooth basis

image fsmooth and sharp basis image fsharp with the associated

CSR image fCSR in Fig. 5. In this setup, we chose the number

of basis images B = 2 and the smooth basis image fsmooth

denotes a reconstruction with the D20f kernel and the sharp

basis image fsharp denotes a reconstruction with the B80f ker-

nel. The image is composed of the smooth basis image for

soft tissue, fat, organs etc., and sharp basis image for lung

and bone revealing no information loss. In order to highlight

the advantages of the compound image, piecewise magnifica-

tions are shown in three typical window level settings,

namely the body window, lung window, and bone window.

The CSR image yields a significantly higher spatial resolu-

tion in high contrast objects like the lung or bone while main-

taining a low noise level in the soft tissue compared to the

basis images. The evaluation of two ROIs as well as a line

profile that is drawn through the lung and heart and a line

profile that is drawn through the lung, bone, and soft tissue in

both basis images and in the CSR image confirms this result

(see Fig. 6).

The number of basis images can be further increased in

order to obtain a better adaption to different anatomical struc-

tures. There are many analytic reconstructions that are

adapted to different anatomical regions. For instance, a B23f

kernel also includes a beam-hardening correction for iodine

and is often recommended for a reconstruction of the vascular

system.

3.C.2. Influence of transition zone diameter

The transition zone diameter that is used to calculate

the tissue-related weight for the CSR has a strong impact

on the boundaries of adjacent tissue classes in the CSR

image. The diameter d strongly depends on the segmenta-

tion accuracy, because it determines the width of the

weighted average calculation. Wherever one of the weights

is within the interval of 0 and 1, more than one basis

image contribute to the CSR image. The influence of the

diameter of the transition zone is depicted in Fig. 7. It

shows an image section of the borders between anatomical

structures that are composed of competing basis images,

in particular, the boundary between lung and soft tissue as

well as the boundary between soft tissue and bone. If no

transition zone is used, that is, the diameter is set to

d = 0 mm, a bright overshoot appears at the border

between lung and soft tissue. Voxels that should result

from a smooth basis image result from a sharp basis

image. The volume of the binary lung mask is slightly too

large, and therefore, the voxels are incorrectly assigned to

the lung mask at the boundaries of the organ. On the

other hand, a large transition zone diameter (e.g.,

d = 6 mm) reduces the spatial resolution of the bone

because of an averaging of the sharp basis image in the

bone with the smooth basis image of the surrounding. The

same effect also appears at the boundaries between lung

FIG. 5. Patient C. Comparison between the smooth basis image fsmooth, the sharp basis image fsharp, and the CSR image fCSR in three different window level set-

tings (soft tissue, lung, and bone window). The CSR image combines the advantages of both basis images: a high spatial resolution in high contrast areas, for

instance the lung and bone, and a low noise level in soft tissue.

Medical Physics, 0 (0), xxxx

9 Dorn et al.: Context-sensitive CT imaging 9



and soft tissue. A transition zone diameter of d = 4 mm

results in a good trade-off between hard transitions and

the loss of spatial resolution due to the averaging of

adjacent basis image reconstructions. Since all datasets are

segmented with the same segmentation approach, the

diameter is empirically determined to 4 mm in the CSR.

FIG. 6. Line profiles taken from the both basis image fsmooth and fsharp as well as from the corresponding CSR image (C = �200 HU, W = 1000 HU) through

the lung and the heart (profile 1) and through the lung, bone, and soft tissue (profile 2). Two ROIs in the lung and heart are further evaluated regarding the noise

level and spatial resolution.

FIG. 7. Influence of transition zone diameter during the CSR. From left to right (C = �200 HU, W = 1500 HU): if there is no transition zone used (d = 0 mm),

the border between lung and soft tissue (muscle and fat) shows a bright streak. The adjacent soft tissue also results from a sharp basis image because the volume

of the binary lung mask is slightly too large and voxels are incorrectly assigned to the lung. A large transition zone diameter (e.g., d = 6 mm) leads to a smooth-

ing of the sharp kernel reconstruction in the bone. A transition zone diameter d = 4 mm results in a good compromise in the transition zone.
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3.C.3 Adaptive window level settings and STS

In clinical practice, there are many predefined window set-

tings for different anatomical structures available that are

used for daily diagnosis. Table I lists typical window level

settings for varying organ windows, as they could be preset

by default on a clinical CT device. However, within a single

given gray level window, the full information contained in the

CSR image cannot be adequately visualized as we have seen

in Fig. 5 (soft tissue window I vs lung window I vs bone win-

dow I).

The adaptive windowing approach solves this problem by

locally adjusting the window level settings for each organ sep-

arately. Figure 8 demonstrates that a CSR image with the use

of a sophisticated adaptive CS windowing presents signifi-

cantly more information to the reader compared to both basis

images and to the CSR image in one specific window level

setting, for instance the body window I. The different CS

window level settings are listed in Table II. The settings of

CS window I and CS window II differ only in the gray level

window settings of the lung and may be adjusted to a desired

visual perception. The vascular system, including the aorta

and the heart, is windowed with an angiography window.

This window reduces the bright iodine contrast in particular

in the heart and aorta. The liver window is narrower than the

applied body window I in order to improve the soft tissue

contrast and therefore to highlight the liver vessels. The third

CS window III aims at maximizing the visual contrast while

maintaining the conventional image impression. We therefore

chose a wider window for the bone (bone II) and a darker

window for the lung (lung III). The center of the soft tissue

window is also slightly translated to a higher CT value. In a

clinical application, the center and the width for each organ,

respectively, are interactively adjustable on demand.

To reduce the noise in the soft tissue, an STS-MeanIP in

these areas is used. Moreover, in order to highlight the par-

enchyma, an STS-MIP in the lung is applied to the data. Fig-

ure 9 illustrates the overall CSD display of three patient

datasets. For this data presentation, the transition diameter is

set to 4 mm and the blending diameter, which will be dis-

cussed in the following section, is set to 2 mm. The slab

thickness of the STS-MeanIP is set to 5 mm in the soft tissue

and different organs. The value is selected since it reduces the

noise level to a sufficient level. Furthermore, we use a slab

thickness of 10 mm for the STS-MIP display. The data are

windowed with the CS window III. While in the conventional

STS technique, the entire dataset is processed, we reduce the

corresponding display to the essential anatomical structures.

Thus, one can examine several anatomical structures simulta-

neously.

3.C.4 Influence of blending diameter

We establish a smooth blending between adjacent win-

dow level settings. The size of the blending area is deter-

mined by the blending diameter that is used to calculate

the tissue-related weights corresponding to the CSR. These

recalculated weights are then utilized in the CSD. The

influence of the blending diameter is illustrated in Fig. 10.

If no blending (d = 0 mm) is performed, hard transitions

between adjacent windows arise. However, if the blending

diameter is too large, dark areas around the lung arise,

since the soft tissue window contributes to the lung win-

dows. The CT values that are mapped to black in the soft

tissue window are no longer mapped to black in the lung

window. The dark areas could be misinterpreted as pneu-

mothorax and therefore should be avoided. The larger the

blending diameter, the wider the dark area in the transition

between lung and soft tissue is. There is a trade-off

between the selection of tissue-related window level set-

tings and the selection of a proper blending diameter.

Therefore, the blending diameters must be assessed depend-

ing on the visual perception and freely specifiable to the

user. Overall, in our experiments, a blending diameter of

2 mm results in a satisfying compromise.

3.D. CSDE

Figure 11 shows an overview of the CSDE evaluation and

analysis. The mixed image fM is used as background for the

color overlays of the various DE applications. We first per-

form a set of iodine quantifications, that is, a lung perfused

blood volume (PBV), a liver iodine quantification, and a

body iodine quantification. The liver and body iodine quan-

tifications differ by their slope of the VNC baseline in the DE

diagram. The liver iodine quantification is optimized for that

specific organ. Voxels inside the liver are assumed to be a

composition of the two reference materials, fat and soft tis-

sue, and iodine. The body iodine quantification uses water

and air as reference point that results in a VNC line with a

slope of 1. The decomposition is not optimized for a specific

organ. Each of these applications is now invoked only for the

specific organ and the iodine content is overlayed with differ-

ent color codings. The DE is extended to accomplish two

competing DE evaluations of the bone. We indicate either a

bone marrow analysis that color codes any HU increase due

to an infiltration or bone bruising or a bone removal. Within

one single DE image, we combine material decomposition

TABLE I. Window level settings used in the CSD.

Anatomical structure

Window settings

Center (HU) Width (HU)

Body I 30 400

Body II 60 400

Liver 40 200

Heart 200 600

Angiography 100 900

Bone I 450 1500

Bone II 300 2000

Lung I �600 1200

Lung II �600 1600

Lung III �400 1400
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and classification tasks and are able to show color overlays

wherever appropriate.

Evermore applications can be applied to a restricted body

region. Figure 11 shows only a selection of possible evalua-

tions and an interactive activation or deactivation of specific

applications as well as the changeover to a conventional DE

display is always possible.

3.D.1. Automatic patient-specific calibration

A direct comparison between the default calibration and

an automatic calibration of the patient-specific parameters is

shown in Fig. 12 for Patient A. The color overlays show

nearly identical iodine distributions compared to those

obtained by using the default calibration. A quantitative eval-

uation of the iodine content in five ROIs leads to a root mean

square error of 0.095 mg/mL for this patient. The mean

values of the iodine content in five ROIs that are placed in

different anatomical structures, that is, aorta, lung, spleen,

kidney and liver, for overall six patients are listed in Table III.

The ROIs are drawn with similar size and position in each of

the evaluated patients A–F. Since no ground truth is avail-

able, we assume that the default calibration is a good trade-

off and provides accurate iodine concentrations. Therefore,

those values are used as reference iodine concentrations to

evaluate the automatic patient-specific calibration. The mean

relative error per patient is chosen as an estimate of the over-

all deviation between the iodine concentrations obtained with

the default calibration cdefault and the iodine concentrations

obtained with the automatic patient-specific calibration cpatient.

epatient ¼
1

N

X

N

n¼1

jcdefault;n � cpatient;nj

cdefault;n
; (19)

where N is the total number of evaluated ROIs. Furthermore,

we evaluate the root-mean-square error per patient

RMSEpatient ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

ðcdefault;n � cpatient;nÞ
2

v

u

u

t

: (20)

The automatic patient-specific calibration yields iodine

concentrations which are in accordance with the iodine

concentrations obtained with the default calibration.

Table IV summarizes the adapted relative iodine contrast

FIG. 8. First row from left to right: smooth basis image, sharp basis image, and CSR image displayed in the body window I. Second row from left to right: the

CSR shown with adaptive window settings CS window I, CS window II, and CS window III. The (CSD) settings are summarized in Table II.

TABLE II. Exemplary CS window settings.

Anatomical structure

Lung Bone Vasculature Soft tissue Liver

CS window I Lung I Bone I Angiography Body I Liver

CS window II Lung II Bone I Angiography Body I Liver

CS window III Lung III Bone II Body II Body II Liver
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R per patient, the patient-specific mean relative error, and

the root-mean-square error. It should be noted that the last

row of this table represents the mean and standard devia-

tion of the overall relative iodine contrast R, the overall

mean relative error e, and the RMSE over all patients.

The automatic patient-specific calibration yields an overall

mean relative error of 3.04 � 1.26% that corresponds to

an overall RMSE of 0.16 � 0.08 mg/mL. These deviations

result from the adaptation of the relative contrast media R

to the actual patient size. The patient-specific calibration,

which delivered values ranging from 2.132 to 2.227

depending on the patient, therefore compensates for beam

hardening and scatter.

4. DISCUSSION AND CONCLUSIONS

In this paper, we propose a new paradigm to combine

mutually exclusive image properties, which result from differ-

ent reconstruction algorithms, display settings and dual

energy evaluations, into a single CS imaging by exploiting

prior anatomical information. The incorporation of prior

knowledge, which is gained from an automatic multiorgan

segmentation, enables the combination of various desired

characteristics into a single CS image generation and presen-

tation. Furthermore, by using the prior anatomical informa-

tion, numerous DECT applications as well as any other

evaluation methods can be combined into one single tool.

FIG. 9. STS-MeanIP in soft tissue over 5 mm and STS-MIP in the lung over 10 mm for three patient datasets. The transition diameter is set to 4 mm and the

blending diameter is set to 2 mm.

FIG. 10. Different blending diameters. No blending leads to hard transitions between adjacent windows. However, if the blending diameter is too large, dark areas

around the lung arise, since the soft tissue window contributes to the lung windows. CTvalues that are mapped to black in the soft tissue window are not mapped

to black in the lung window. A blending diameter of 2 mm results in a satisfying trade-off. The larger the blending diameter the darker is the transition between

lung and soft tissue.
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Based on the CS information, the tools can be chosen and

applied to the different organs simultaneously. Instead of hav-

ing one single manually selected dual energy evaluation, the

prior-based DE scheme performs all organ-specific feasible

methods at once.

The multiorgan segmentation, which is based on a

cascaded 3D fully connected CNN,6 enables us to do

context-sensitive imaging. We assume that an accurate multi-

organ segmentation is available that allows for the automatic

labeling of organs in CT data. Our primary focus of this work

is the presentation of the novel paradigm of CS CT imaging

and how CT imaging in general might benefit from an ideal

segmentation. Therefore, the presented method is not

restricted to this specific CNN approach and might as well be

FIG. 11. Context-sensitive dual energy evaluation scheme. Each of the applications is automatically invoked and applied to the organ of interest.

FIG. 12. Iodine quantification accuracy of the automatic calibration. The color overlay of three invoked quantification algorithms (liver iodine map (LiverVNC),

perfused blood volume in the lung (LungPBV), body iodine map (Virtual Unenhanced)) is shown at two different z positions. The iodine content is further evalu-

ated in the ROIs delineated in red in the right column.
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replaced by other suitable segmentation approaches, for

example, probabilistic atlas-based methods.32–36

In order to account for small inaccuracies in the automatic

segmentation and ambiguities at organ boundaries, smooth

tissue-related weights are introduced. In this paper, we chose

constant diameters for the calculation of the transition

weights. The optimal diameter for the transition zone in the

image composition turns out to be 4 mm and the blending

diameter in the organ-adapted window is set to 2 mm. These

values provide in our experiments a qualitative superior

image impression. We assume that in comparison to most

clinical relevant pathologies, these diameters are very small.

Furthermore, since some organ-specific window level settings

are more similar to adjacent windows than others, the weights

could also be varied across different anatomical structures

using adaptive transition zone diameters. Future work could

also include the replacement of the tissue-related weights

with a probabilistic atlas or the output probabilities of the

neural network-based segmentation. Moreover, we need to

mention that the segmentation is still a work in progress,

which will constantly be improved. Furthermore, we are hop-

ing that the current neural network-based segmentation will

be extended to segment more and more anatomical structures.

To do this, the network should be retrained with the associ-

ated ground truth segmentations of these target structures,

which must be provided by medical experts. As a conse-

quence, we are expecting to overcome the threshold-based

segmentation and manual correction step in the near future.

Overall, there is considerable potential in exploiting prior

anatomical information for CT imaging. The CS image com-

bines indication-specific advantages of different parameter

settings. Each tissue type is displayed with the clinically most

appropriate reconstruction algorithm (here: kernel). The CSR

provides images with low noise while maintaining high spa-

tial resolution in air and highly attenuating materials by

choosing the best-adapted basis image during the image com-

position on a per-voxel basis. The CSR image, therefore,

combines the advantages of different reconstructions. The CS

images are composed of quantitative CT basis images, and

therefore, the CT values themselves in the compound image

are not altered or lost in any case. Since the CT values during

image formation and display do not change, we expect no

loss in the quantitative capability of CT. The number of nec-

essary images to present to the radiologists may hence be

reduced to one CSR. Furthermore, we demonstrate that the

CSD is able to combine the advantages of different window

level settings into one adaptive CS window. Moreover, the

CSD enables the reduction of the remaining noise level in dif-

ferent anatomical structures by viewing specific organs in

thicker slabs. The adaptive STS technique further performs a

MIP, for example, of the lung simultaneously. The number of

images to display might also be reduced to one CSD image

since our proposed display method outperforms the conven-

tional image viewing. It highlights each anatomical structure

by applying best organ-related display settings and therefore

TABLE III. Evaluation of the mean iodine concentration cdefault and cpatient in different anatomical structures for six example patients. The corresponding ROIs of

example Patient A are shown in Fig. 12. Please note that comparable ROIs are evaluated with similar size and position in all patients.

Patient A Patient B Patient C

cdefault (mg/mL) cpatient (mg/mL) cdefault (mg/mL) cpatient (mg/mL) cdefault (mg/mL) cpatient (mg/mL)

Aorta 9.92 9.97 13.43 13.12 8.63 9.14

Heart 9.23 9.33 11.52 11.27 7.27 7.70

Spleen 2.61 2.67 4.57 4.47 2.12 2.24

Kidney 4.85 4.90 5.97 5.84 3.84 4.06

Lung 1.81 1.65 1.39 1.27 1.52 1.59

Patient D Patient E Patient F

cdefault (mg/mL) cpatient (mg/mL) cdefault (mg/mL) cpatient (mg/mL) cdefault (mg/mL) cpatient (mg/mL)

Aorta 9.31 9.38 9.51 9.74 9.08 9.23

Heart 9.51 9.58 8.92 9.13 11.44 11.63

Spleen 3.20 3.22 2.32 2.38 2.84 2.89

Kidney 4.79 4.83 5.74 5.87 4.97 5.05

Lung 2.11 1.97 2.06 2.15 2.00 2.04

TABLE IV. Patient-specific relative iodine contrast, corresponding mean rela-

tive error, and root-mean-square error between measured iodine concentra-

tions resulting from default vs automatic calibration of the six example

patients. Please note that the last row represents the mean and standard devia-

tion of the overall patient-specific relative iodine contrast Rpatient, the overall

epatient and overall RMSEpatient.

Patient Rpatient epatient(%) RMSEpatient (mg/mL)

A 2.226 2.79 0.095

B 2.227 3.50 0.20

C 2.132 5.54 0.32

D 2.145 1.92 0.079

E 2.194 2.76 0.16

F 2.206 1.74 0.12

overall l � r 2.188 � 0.037 3.04 � 1.26 0.16 � 0.08
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increases the amount of visible information in the CT image.

The proposed display method provides high quality images,

which achieve an improved image impression. The automatic

DE calibration yields accurate material decompositions and

classifications by means of prior anatomical knowledge.

Exploiting this available information allows us to automati-

cally calibrate, select, and apply an organ-dependent DE eval-

uation method. Hence, we establish a simultaneous

evaluation and analysis of various DE applications without

the need of any user interaction. In particular, the automatic

patient-specific calibration of the relative iodine contrast

might be a conceivable improvement of the iodine quantifica-

tion accuracy, since the default calibration neglects the actual

patient size. The resulting CSDE image combines and high-

lights the contributions of different material decompositions

and classifications and therefore assigns the spectral informa-

tion as third dimension to the CS imaging. The method is not

restricted to DE data and can readily be generalized to the

cases of multienergy CT data as well as to other modalities.

However, there is a notable parameter issue. In CS imag-

ing, there are a lot of parametric choices to be made. On the

one hand, there are the existing parameters that have a strong

impact on the resulting CS image, its display and analysis.

On the other hand, there are newly introduced parameters,

which are needed to actually perform the CS imaging, partic-

ularly the width of the tissue-related weight that determines

the overlap between adjacent anatomical structures. In oder

to calculate a CSR image, the number and type of the basis

images must be determined. The basis image can be recon-

structed either iteratively or analytically. In particular, for ana-

lytic reconstructions, there are a great variety of convolution

kernels, each resulting in different image properties regarding

the noise level and spatial resolution. We currently have no

clinical experience regarding our proposed method. However,

different institutions and different physicians may have their

own preferences regarding the kernels and their usage. Thus,

the kernel selection and the kernel-to-organ assignment

would be freely specifiable by the user. While two kernels are

the absolute minimum, it may well be the case that users pre-

fer to see significantly more than two kernels. Depending on

the implementation, processing time is not really an issue

because often the images can be generated by applying the

shift invariant parts of the kernel to a single master image,

and it thus requires just a single reconstruction. In our exam-

ples, we used the scanner’s reconstruction which does not

provide us with such a master image and had to carry out one

reconstruction for each kernel. Once a CS image is com-

posed, display parameters need to be determined: the window

level settings for each organ, the organ-specific STS tech-

nique as well as the corresponding slab thicknesses for each

of them. Beside the presented context-sensitive display

approaches, the principle could also be extended to any other

display technique. The next step is to decide which DE evalu-

ation method should be applied to which organ. For some

organs, there is more than one DE evaluation (Bone Marrow

vs Bone Removal) reasonable, and therefore, a decision needs

to be made. The evaluation method and how to best present

the data to the radiologist (color overlays, pop-up menus, vol-

ume rendering, etc.) is also an issue. In consultations with

radiologists and medical experts as well as after comprehen-

sively reviewing state-of-the-art literature, we have identified

and agreed upon the selection of the kernels and number of

basis images, the common display settings as well as number

and type of applied DE evaluation methods. Both diameters

of the transition or blending zone, respectively, are selected

such that the image appearance is optimal. This paper pro-

vides only a proposal on the parameter selection and could be

extended or changed without restriction of any kind. In con-

clusion, we propose to display only one single CS image to

the radiologists whereby the default parameter selection

could be regarded as a recommendation. The interactive tun-

ing takes place in this CS image presentation.

This paper offers a proof of concept to demonstrate the

feasibility and potential benefit of CS imaging. But currently,

the radiologists are not aware of the CS images and the verita-

ble diagnostic reliability of them has not yet been clinically

evaluated. Therefore, in order to perform an extensive clinical

study, a graphical user interface (GUI) is required that could

be handed to the radiologists. This GUI should contain the

variety of the most popular functionalities as well as our

novel methodology. Using the GUI, the parameters can be

adjusted for each organ individually. For instance, the user

might be able to change the window level settings for one

organ separately while keeping the window level settings for

the other organs constant to a preset window. We are cur-

rently developing a basic GUI in order to integrate the CS

imaging into the clinical routine. Using this GUI, the radiolo-

gist will experience the novel technique and will be able to

modify different parameters. Future work will include a com-

prehensive clinical evaluation to analyze the diagnostic

potential of the CS imaging.

In summary, this new paradigm is a potential step toward

presenting evermore increasing complex information in CT

and toward improving the radiologists’ workflow signifi-

cantly. During case discussions and presentations, the switch-

ing between different image stacks may no longer be

necessary since the CS image combines the advantages of

varying reconstructions and display settings. DE color over-

lays could be dynamically superimposed in order to present

an additional quantitative analysis to the radiologist. The

combination of varying DE applications might assist the radi-

ologist to find a precise diagnosis. CS imaging could increase

diagnostic accuracy by improving the sensitivity for inciden-

tal findings, for example, small nodules can be diagnosed in

the lung parenchyma even if the main focus of the radiologist

was assessing the soft tissue.
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