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Purpose: Benefiting from multi-energy x-ray imaging technology, material decomposition facilitates

the characterization of different materials in x-ray imaging. However, the performance of material

decomposition is limited by the accuracy of the decomposition model. Due to the presence of non-

ideal effects in x-ray imaging systems, it is difficult to explicitly build the imaging system models for

material decomposition. As an alternative, this paper explores the feasibility of using machine learn-

ing approaches for material decomposition tasks.

Methods: In this work, we propose a learning-based pipeline to perform material decomposition. In

this pipeline, the step of feature extraction is implemented to integrate more informative features,

such as neighboring information, to facilitate material decomposition tasks, and the step of hold-out

validation with continuous interleaved sampling is employed to perform model evaluation and selec-

tion. We demonstrate the material decomposition capability of our proposed pipeline with promising

machine learning algorithms in both simulation and experimentation, the algorithms of which are

artificial neural network (ANN), Random Tree, REPTree and Random Forest. The performance was

quantitatively evaluated using a simulated XCAT phantom and an anthropomorphic torso phantom.

In order to evaluate the proposed method, two measurement-based material decomposition methods

were used as the reference methods for comparison studies. In addition, deep learning-based solu-

tions were also investigated to complete this work as a comprehensive comparison of machine learn-

ing solution for material decomposition.

Results: In both the simulation study and the experimental study, the introduced machine learning

algorithms are able to train models for the material decomposition tasks. With the application of

neighboring information, the performance of each machine learning algorithm is strongly improved.

Compared to the state-of-the-art method, the performance of ANN in the simulation study is an

improvement of over 24% in the noiseless scenarios and over 169% in the noisy scenario, while the

performance of the Random Forest is an improvement of over 40% and 165%, respectively. Similarly,

the performance of ANN in the experimental study is an improvement of over 42% in the denoised
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scenario and over 45% in the original scenario, while the performance of Random Forest is an

improvement by over 33% and 40%, respectively.

Conclusions: The proposed pipeline is able to build generic material decomposition models for dif-

ferent scenarios, and it was validated by quantitative evaluation in both simulation and experimenta-

tion. Compared to the reference methods, appropriate features and machine learning algorithms can

significantly improve material decomposition performance. The results indicate that it is feasible and

promising to perform material decomposition using machine learning methods, and our study will

facilitate future efforts toward clinical applications. © 2018 American Association of Physicists in

Medicine [https://doi.org/10.1002/mp.13317]

Key words: deep learning, feature extraction, machine learning, material decomposition, model

selection, multi-energy, spectral x-ray imaging

1. INTRODUCTION

Material decomposition can be performed either before com-

puted tomography (CT) reconstruction in the projection

domain or after CT reconstruction in the image domain.1 The

former was pioneered by Alvarez et al.,2 and the latter by

Brooks.3 In general, image-based material decomposition is

inferior to projection-based material decomposition because

the polychromatic properties of the spectra are lost during

image reconstruction, which leads to material decomposition

being less accurate.4,5 Projection-based material decomposition

employs its corresponding decomposition models to numeri-

cally decompose the measured multi-energy projections into

material-specific projections, which relies on the spectral infor-

mation of each energy bin. However, the spectral information

of projections is typically affected by the spectral distortions

caused by x-ray detectors,1,6 which limits the accuracy of mate-

rial decomposition. Since it is difficult to measure the polychro-

matic properties of the spectra in real scans, various methods

have been proposed to estimate the spectral information for

material decomposition. One family of these methods proposes

explicitly modeling the distortion of detectors for the material

decomposition models.7,8 As an alternative, measurement-

based methods that utilize measured projections to estimate

empirical material decomposition estimators have been pro-

posed.5, 9–13 Such estimators can be estimated without exactly

knowing the spectral information using the measurement-based

methods, which usually consist of empirical calibrations and

model estimations. The former measures the projections using

known phantoms with the corresponding analytic descriptions,

and the latter uses hypothetical transmission models that esti-

mate the system-specific behavior of the scanner. This approxi-

mation is generally susceptible to the nonlinearity of

measurement systems. To solve these difficulties, researchers

have looked into sophisticated machine learning solutions.

Machine learning, which has had a large impact on many

aspects of science and industry, concerns the construction and

study of systems that can learn from data. As an alternative,

supervised machine learning can be utilized to model the rela-

tionship between the aforementioned spectral measurements

and the relevant measurement system. This relationship is

essential for measurement-based material decomposition,

whose modeling can be processed as estimating hypothesis

models using machine learning algorithms. Several related

approaches have been reported in the literature. Lee et al.14

applied a feed-forward neural network to decompose multi-

energy images into material path-length images based on the

simulated images of a three-dimensional head phantom. Zim-

merman et al.15 used a feed-forward neural network to approxi-

mate the functional relationship between the measured

projections and the basis material thickness. Touch et al.16 pro-

posed an artificial neural network (ANN)-based spectral distor-

tion correction mechanism, which trains an ANN to calibrate

the spectral distortion, improving the accuracy of material

decomposition. However, these studies used ANN only to esti-

mate material composition. Other machine learning algorithms

such as decision trees are also appropriate for modeling the

relationship. Notably, only spectral measurements were used

for training models in these previous studies, and these models

are susceptible to noise. Also, the choices of the hyperparame-

ters of machine learning algorithms are essential for the model

learning, and should be an important consideration. In addi-

tion, state-of-the-art neural networks such as deep learning

approaches should be investigated as well.

In our previous works,17,18 we demonstrated the prelimi-

nary results of performing material decomposition using

machine learning. A registration-based method of acquiring

labels and the potential of several image-based features have

been investigated in the two papers. Building on this founda-

tion, more comprehensive studies have been investigated, and

we propose here a learning-based pipeline to perform mate-

rial decomposition. The aim of this pipeline is to address

material decomposition issues in accordance with the concept

of machine learning systems. Compared to the conventional

material decomposition approaches, the pipeline is able to

perform material decomposition without explicitly knowing

the transmission model of imaging systems. In addition, the

pipeline employs not only spectral measurements, but also

informative features such as neighboring information. We

demonstrate the proposed pipeline in both the simulation and

experimentation, and the decomposition results are quantita-

tively evaluated to investigate the feasibility and performance.

Two measurement-based material decomposition methods (a

representative one and a state-of-the-art one) were imple-

mented as the reference methods for comparison studies. The

results demonstrate that the proposed pipeline, using appro-

priate informative features, is able to suppress noise and

strongly improve material decomposition. In addition, two
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state-of-the-art deep learning approaches were also investi-

gated as a pilot study for a comprehensive comparison of

machine learning solutions for material decomposition tasks.

2. MATERIALS AND METHODS

2.A. X-ray physics

According to the Beer–Lambert law, if the input x-ray

photons are monoenergetic, the intensity of non-attenuated

x-ray photons passing through a material can be computed as

I ¼ I0e�lðEÞl; where I0 represents the intensity of x-ray pho-

tons before entering the material, E describes the photon

energy, and l(E) and l represent the spectral attenuation coef-

ficient of the material at E and the path length of the material,

respectively. After applying the minus logarithmic operation,

the projection p can be expressed as p ¼ � lnð I
I0
Þ ¼ lðEÞl.

Normally the scanning object contains various materials

i = 1⋯M, resulting in p ¼
PM

i¼1 p
i based on the mixture

rule, where the material-specific projection pi can be

expressed as pi ¼ � lnð Ii
I0
i

Þ ¼ liðEÞli, in which I0i denotes

the material-dependent I0 of i. The measurements acquired

from an x-ray image system yield:

qj ¼ � ln

Z
½SjðEÞe

�
PM

i¼1
liðEÞli þ XðEÞ�dE;

where SjðEÞ represents the distribution function of the x-ray

spectrum used in the scan with the index j = 1. . .B. Note that

j counts the independent spectral bins in multi-energy x-ray

imaging, and B is the total number of kV settings in multiple-

kV detection, or the total number of energy bins in energy-

resolved spectral detection. X(E) represents the error function

of the measurement, which includes several phenomena, such

as photon scattering, detector distortion and signal noise. In

practice, X(E) is difficult to model due to nonlinearity. As

shown in the functions, we can obtain multi-energy measure-

ments q1; � � � ; qB from the same object from a spectral X-ray

imaging system.

2.B. Material decomposition model estimation

The aim of this work is to build material-specific decom-

position models to decompose the effective material-specific

projection p̂i from the multiple energy measurements

q1; � � � ; qB. A target function of the material decomposition

model is defined as p̂i ¼ DiðqÞ; where DiðqÞ is an as-yet-

unknown general function estimator of the basis material pi

with the multi-energy measurements q ¼ ðq1; . . .; qBÞ. The
goal of the estimator is to learn a mapping from the measure-

ments to an objective quantity. To learn this mapping, a

hypothesis model HiðxÞ is defined to approximate DiðqÞ,
where x is a feature vector that numerically represents the

measurements q. Each element in x, which is a so-called fea-

ture, represents a distinct description of q. The concept of

general function estimation is in accordance with machine

learning systems. Thus, a material decomposition task can be

transferred to a machine learning problem. In machine learn-

ing, the input measurements q is also termed as an instance,

and typically needs to be labeled with an output yi in super-

vised learning. Facilitated by these instance-label pairs, a

supervised learning procedure generates a machine learning

system that can predict correct outcomes when applied to

new input measurements.

On this basis, we first extract the informative feature vec-

tor x from the observation q using a feature extraction step of

x = F(q), where F represents the corresponding feature

extraction that can be implemented to build informative val-

ues from q using different approaches. Then, material decom-

position models are trained from a large number of training

examples of labeled feature vectors ðxw; yiwÞ using machine

learning algorithms, where w = 1,⋯,W. The model con-

structions rely on various machine learning algorithms,

where the hypothesis model HiðxÞ is optimized to find the

most optimal choice HiðxÞ
�

that minimizes the expected value

of a loss function L on the training samples HiðxÞ
�

¼

argmin
H

LðHT
i ðxw; y

i
wÞÞ, where HT

i ðxw; y
i
wÞ denotes the HiðxÞ

using labeled feature vectors. Once the optimal hypothesis

model HiðxÞ
�

is determined, we can obtain an estimated mate-

rial decomposition model ^DiðqÞ to perform material decom-

position.

2.C. Leaning-based material decomposition
pipeline

In light of the aforementioned theories, we propose a

learning-based pipeline for material decomposition, which

addresses material decomposition tasks in the form of solving

a regression problem. The pipeline trains material-specific

decomposition models to reconstruct material-specific

images. Each model is equivalent to a pattern recognition sys-

tem, whose input and output are the multi-energy measure-

ments q from a multi-energy x-ray imaging equipment and

the effective material-specific image p̂i, respectively. The pro-

posed pipeline is illustrated in Fig. 1, which contains two

phases. The models are trained in the model learning phase

using a learning dataset and can be used for material decom-

position tasks afterwards in the material decomposition

phase. In this work, a learning set of the instance-label pairs

fðqg; p
i
gÞg

G
g¼1 of multi-energy measurements fqgg

G
g¼1 and

their corresponding material-specific image fpigg
G
g¼1 are

required to train material-specific decomposition models,

where g is the index of the pair of qg and p
i
g. First, the learn-

ing set fðqg; p
i
gÞg

G
g¼1 is split into two parts of a training set

fðqn; p
i
nÞg

N
n¼1 and a validation set fðqm; p

i
mÞg

M
m¼1 by an evalu-

ation strategy of machine learning, where n and m are the

index, respectively. Then, the two sets are processed to obtain

feature vectors by a feature extractor, whose purpose is to

extract the feature information from the datasets based on rel-

evant theories. These feature vectors from the training set are

employed to learn material decomposition models for
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recognizing the input with a target output using machine

learning algorithms. Since the models vary with the hyperpa-

rameters of the machine learning algorithms, once the models

have been learned, the performance is quantitatively evalu-

ated on the validation set, facilitating parameter optimization

and model selection. Eventually, selected decomposition

models can be applied to the objective multi-energy measure-

ments for material decomposition tasks in the material

decomposition phase, where the input multi-energy measure-

ments also need to be processed by the same feature extractor

with the same parameters that were used in the learning

phase. We will elaborate these steps in detail in the following

subsections.

2.C.1 Feature extraction

In Section 2. B, we introduced the feature extraction step,

which aims at extracting the relevant information that charac-

terizes each attribute of processing data. Such a step in the

pipeline can extract more informative features from raw spec-

tral measurements for the material decomposition tasks. We

demonstrate two feature extraction strategies in this paper.

The feature extractors extract feature information from the

multi-energy measurements pixel-by-pixel to build the feature

vectors. For instance in the training set, an instance-label pair

ðqn; p
i
nÞ is formed into fðVqn

s ;V
pin
s ÞgSs¼1 , where V

qn
s represents

a vector of the respective information at the s-th pixel in each

energy bin of qn, V
pin
s is the label of the s-th pixel in pin, and S

is the total number of pixels of pin. Each element in the vector

Vqn
s represents a feature, and the total number of the features

is related to the total number of energy channels B.

Afterwards, the training set ffðVqn
s ;V

pin
s ÞgSs¼1g

N
n¼1 is used for

learning models by machine learning algorithms.

Because X-ray attenuation coefficients are material- and

energy dependent, their behaviors are adequate features for

classifying different materials. Intuitively, the pixel values of

a multi-energy projection are informative features because

they represent the x-ray attenuation behaviors in the projec-

tion domain. Therefore, a raw-pixel-value feature extractor

was employed to extract the pixel values of each energy chan-

nel from the multi-energy measurements, and these values

are used to represent the spectral measurement information.

Thus, it yields Vqn
s ¼ ðqsn;1; � � � ; q

s
n;BÞ and V

pin
s ¼ pin;s.

In order to integrate more informative features such as

neighboring information for training models, a mean–varia-

tion–median (MVM) feature extractor was also employed,

which extracts not only the value of the target pixel at each

energy channel, but also the mean, the variation, and the

median of the pixels within a radius of r pixels from the tar-

get pixel. Thus, it yields Vqn
s ¼ ðqsn;1; � � � ; q

s
n;B; v

qsn;1
r;mean; � � � ;

v
qsn;B
r;mean; v

qsn;1

r;variation; � � � ; v
qsn;B

r;variation; v
qsn;1

r;median; � � � ; v
qsn;B

r;medianÞ and

V
pin
s ¼ pin;s. This operation creates additional neighboring

information features of the target pixel based on image

patches. In this work, r was set to 1, 2, 4, and 8 for each

instance, yielding B 9 13 features in total.

2.C.2 Machine learning algorithms

Many machine learning algorithms are applicable to the

proposed pipeline. In this work, we investigate some promis-

ing ones and evaluate their performance quantitatively to

FIG. 1. Schematic description of the learning-based material decomposition pipeline. [Color figure can be viewed at wileyonlinelibrary.com]
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demonstrate the feasibility of the learning-based material

decomposition pipeline. All the machine learning algorithms

were implemented using the Waikato Environment for

Knowledge Analysis (Weka)19 application programming

interface (API).

Artificial neural network: Artificial neural networks

(ANN) are massively parallel interconnected networks of

simple, adaptive elements, which are intended to interact

with objects of the real world in the same way as biological

nervous systems do. The ANN employed in this work is a

feed-forward multilayer perceptron20 that fully connects

many simple perceptron-like neurons in a hierarchical struc-

ture, training the network using the stochastic gradient des-

cent (SGD) method21 and the backpropagation method.22

The idea of the SGD is to estimate the global gradient of all

training inputs by averaging over the gradients that are itera-

tively computed from a randomly chosen mini-batch of train-

ing inputs. The picking out of training inputs lasts until the

training inputs are exhausted, which is termed an epoch of

training. The batch size and epochs were both set to 100.

Learning rate and momentum are two hyperparameters in the

backpropagation method. The former adjusts the step size of

the SGD and the later is a method that helps accelerate the

SGD in the relevant direction and dampens oscillations, lead-

ing to faster convergence. The learning rate and momentum

was set to 0.3 and 0.2, respectively. The architecture of the

ANN is composed of one input layer, one output layer and

multiple hidden layers. The number of neurons of the input

layer corresponds to the feature numbers, resulting in B input

neurons for the raw-pixel-value features and B 9 13 input

neurons for the MVM features. The output layer contains

one neuron, which corresponds to the effective material-spe-

cific images. Since we used three energy channels (B = 3) in

this work, there were 4 hidden layers that each contained 3

neurons while using the raw-pixel-value features, and 2 hid-

den layers that contained 39 neurons while using the MVM

features. Each neuron represents a sigmoid activation func-

tion to process the output of neuron except the neuron of the

output layer being a linear unit.

Decision trees: The purpose of decision tree learning,

which uses recursive partitioning of repeatedly splitting on

the values of features under divide and conquer strategy, is

the construction of a decision tree model that has high accu-

racy of predicting new instances. A decision tree model is

composed of a root node that is the topmost node in a tree

structure, several internal nodes that correspond to feature

tests, and several leaf nodes that hold the decision outcomes

of the labels. In prediction, a series of feature tests are per-

formed starting from the root node, and the predicted result

is obtained at a leaf node. We used three decision trees: Ran-

dom Tree,23 REPTree,24 and Random Forest.23 All three use

information gain25 for the splitting strategy. REPTree con-

siders all features to split at each node and performs

reduced-error pruning (REP), whereas Random Tree

randomly picks out a number of features instead of all fea-

tures for the tree induction process, but performs no pruning.

However, the Random Tree in this work uses all features in

order to be in accordance with the REPTree. Random Forest

generates multiple Random Trees in parallel by using boot-

strap sampling of the training data, and then combines these

trees by averaging their outputs. The picking-out features

parameter of these Random Trees in the Random Forest was

set to the logarithm of the number of features, rounded up,

in order to incorporate randomized feature selection. The

sampling bag size was set to be 100% and the number of

iterations was set to be 20. All algorithms set 1 as the mini-

mum number of instances per leaf, 0.001 as the minimum

variance proportion of train variance for the split, and the

maximum depth of the tree to be unlimited.

2.C.3 Model evaluation and selection

The aim of the model selection is to find the appropriate

hyperparameters of the pipeline, such as the parameters of

the feature extractor and the machine learning algorithms, to

generate models with superior generalization capabilities on

the validation sets. Since parameter optimization is essential

in the pipeline, the concept of machine learning is incorpo-

rated into the pipeline for facilitating model evaluation and

parameter selection. We used the hold-out validation strat-

egy to split the learning sets in this work. The strategy of

sampling is that the training set was sampled with a fixed

interval and then the remaining dataset in the learning set

was used as the validation set. Ordinary quantitative mea-

surements were not utilized in this work, instead the general-

ization capabilities were quantified by the Pearson’s

correlation coefficient (R) and the structural similarity

(SSIM) index26 between the decomposed material-specific

images p̂ and the labeled material-specific images p. The

correlation coefficient R measures the linear dependence

between two images, where 0 indicates no linear correlation

and 1 indicates total positive linear correlation. The formula

for R is:

Rp̂;p ¼
covðp̂; pÞ

rp̂rp

;

where covðp̂; pÞ is the covariance, and rp̂ and rp is the stan-

dard deviation of p̂ and p, respectively. The SSIM index mea-

sures the similarity of structural information in two images,

where 0 indicates no similarity and 1 indicates total positive

similarity. The formula for SSIM is:

SSIMp̂;p ¼
ð2lp̂lp þ C1Þð2covðp̂; pÞ þ C2Þ

ðl2p̂ þ l2p þ C1Þðr2p̂ þ r2p þ C2Þ
;

where lp̂ and lp is the mean of p̂ and p, respectively. C1 and

C2 are two variables to stabilize the division with a weaker

denominator. However, both C1 and C2 were set to 0 in this

work because the images are gray-scale. The mean value and

standard deviation of all the quantitative results from each

scenario were used to evaluate the overall performance of the
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material decomposition models. Finally, the models with

superior overall performance were selected to perform mate-

rial decomposition tasks.

2.D. Experimental setup

A simulation study and an experimental study were car-

ried out to evaluate the proposed pipeline for material decom-

position tasks, and we focus on projection-based material

decomposition in this work. All methods were implemented

in the Java-based framework CONRAD.27

2.D.1 Data generation

In the simulation study, we performed energy-resolved

detection using a virtual research Artis zeego C-arm angiog-

raphy system (Siemens Healthineers, Forchheim, Germany)

implemented in CONRAD27 to generate multi-energy projec-

tions and material-specific projections. The geometry and x-

ray spectrum (12 kVp, 0.65 mAs) were simulated based on

the system. A flat panel photon-counting energy-resolving

detector of 620 9 480 pixels with a pixel size of

0.616 9 0.616 mm was implemented to detect three energy

bins (10–40, 40–81, and 81–125 keV) with a cross-talk of

3 keV. The source-to-patient distance was 700 mm while the

source-to-detector distance was 1200 mm. We simulated

three short scan scenarios using an append buffer-based ren-

dering procedure,28 and acquired the multi-energy projec-

tions of a modified XCAT phantom29 containing bone;

Ultravist370 (an iodinated contrast agent, 370 mg Iodine per

mL, Bayer, Germany); and soft tissues such as liver, heart,

and bone marrow. The energy-dependent x-ray absorption

coefficients for the compounds in the phantom were obtained

from the NIST database.30 All the simulated scenarios used

FIG. 2. Example images showing the two simulation scenarios of the XCAT phantom (top row and middle row) and the real scan scenario of the Torso phantom

(bottom row) for model tests. The right images present the corresponding material decomposition objects in this work, which are from the central projections of

each scenario.
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short scans (an angular scanning range of p plus the fan-

angle, 198.4 degrees in total) with an average angular incre-

ment of 1.6 degrees around the torso. One scenario was used

for learning models, while the other two scenarios were used

for testing. As shown in Supporting Information Fig. S1, the

FOV of the learning scenario is centered around the heart to

focus on the costal arch and coronary arteries that were filled

with Ultravist370; both of the FOVs of the two test scenarios

focus on a different area of the phantom, which have 40 mm

translation over the learning scenario in the horizontal direc-

tion. In addition, one test scenario includes the cardiac

motion of heart beats and the respiratory motion from full

exhale to full inhale. The ground truth of the material decom-

position objects were also simulated as monochromatic mate-

rial-specific projections (Fig. 2) for labeling and performance

evaluation. For each scenario, both noiseless projections and

noisy projections (Poisson noise) were created.

In the experimental study, we scanned an anthropomor-

phic torso phantom (Sawbones Europe AB, Malmo, Sweden)

containing a SAWBONES spine with biopsy needles inserted

at different x-ray tube voltage setting of 50 kVp (4.3 mAs),

81 kVp (2.5 mAs), and 125 kVp (0.65 mAs) using a Sie-

mens Artis zeego angiography CT system to generate multi-

energy projections. The flat panel detector was operated with

4 9 4 binning that allows an effective resolution of

620 9 480 pixels with a pixel size of 0.616 9 0.616 mm.

The source-to-isocenter distance was 700 mm while the

source-to-detector distance was 1200 mm. Acquisition of

short scans (an angular scanning range of p plus the fan-

angle, 198.4 degrees in total) with an average angular incre-

ment of 1.6 degrees was performed. In order to obtain the

ground truth projections of the needle, we performed a fourth

scan at 125 kVp (0.65 mAs) after carefully removing the

needles. Subtraction of the two 125 kVp scans yielded mate-

rial-specific projections of the needle for labeling and perfor-

mance evaluation. As shown in Supporting Information

Fig. S2, two experimental scenarios were acquired. The sce-

nario with one biopsy needle inserted was used for learning

models, whereas the scenario with two needles inserted at

different positions was used for testing. The experimental

data were preprocessed by a joint bilateral filter (JBF)31 for

noise reduction.

2.D.2 Experimental protocol

The experiments were performed in accordance with the

proposed learning-based material decomposition pipeline.

We used a two-stage splitting strategy on the learning set to

yield the training set and the validation set for learning

decomposition models. A learning set from the learning sce-

narios was first split into two datasets using the hold-out strat-

egy with a sampling interval of 1 projection, and then one of

the datasets was used as the validation set for model evalua-

tion. Then we applied the hold-out strategies with different

sampling intervals of 0, 1, 2, 3, 5, 8, and 16 (corresponding

hold-out rates relative to the original dataset of 50.00%,

25.00%, 16.94%, 12.90%, 8.87%, 5.65%, and 3.23%, respec-

tively) to the temporary dataset to yield the training sets, per-

mitting the analysis of the hold-out rate strategy. The splitting

strategy is demonstrated in Fig. 3, illustrating that the models

learned from different hold-out rates are evaluated using the

same validation set. The hyperparameters, as elaborated in

Sections 2.C.1 and 2.C.2, were chosen by grid search (i.e.,

parameter sweep) on the validation sets empirically. The

model learning was done using the mixed training set of all

noise levels (noiseless and denoised projections in the simula-

tion study, original and denoised projections in the experi-

mental study). Once the models were built, they were

quantitatively evaluated by the individual validation set at dif-

ferent noise levels using the quantitative evaluation methods,

as elaborated in Section 2.C.3, for model selection. Finally,

the models with superior performance were selected to per-

form material decomposition on a test scenario in the decom-

position phase and the results are presented in Section 3.

2.D.3 Comparison study

In order to evaluate the proposed method, we used two

measurement-based material decomposition methods as the

reference methods for comparison studies. One is an

FIG. 3. Schematic description of the splitting strategy for generating the training sets in the learning phase. [Color figure can be viewed at wileyonlinelibrary.

com]
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estimator with polynomial fitting (namely Ref-Poly),5 which

uses polynomial approximation to estimate the nonlinear

behavior of the beam polychromacity. In this work, the

degree of the polynomial was set to 3 (B = 3) and a standard

least-squares multiple linear regression was used to estimate

coefficients. Another one is the A-Table method (namely Ref-

A-Table),11,13 which is a state-of-the-art decomposition

method that uses a first-order Taylor series expansion and

maximum likelihood estimation to approximate the relation-

ship between spectral measurements and basis materials.

3. RESULTS

3.A. Simulation study

Table I shows the performance on R and SSIM (aver-

age � standard deviation) across all quantitative measure-

ments in each scenario at the hold-out rate of 50%. All the

machine learning algorithms were able to train models for the

material decomposition tasks using the spectral measure-

ments. The ANN, the REPTree, and the Random Forest

demonstrated superior performance compared to the refer-

ence methods. However, these models are susceptible to noise

and motion phenomena in this study, as indicated by the lim-

ited performance in the noisy scenarios and the motion sce-

narios, respectively. Thus, the neighboring information was

employed to address this problem. As shown in Table I, the

performance of the ANN in the motion scenario is improved

by over 11% in the noiseless scenarios and by over 91% in the

noisy scenario, while the performance of the Random Forest

is improved by over 20% and 127%, respectively. Compared

to the A-Table method, the performance of the ANN is

improved by over 24% in the noiseless scenarios and by over

169% in the noisy scenario, while the performance of the

Random Forest is improved by over 40% and 165%, respec-

tively.

Figure 4 and Supporting Information Fig. S3 demonstrate

the decomposed material-specific projections of the coronary

arteries filled with Ultravist370 in the two test simulation sce-

narios at the hold-out rate of 50%. The contrast of the images

was also enhanced by a histogram stretching with 0.3% satu-

rated pixels and normalized to [0, 1]. There are overlaps

among different materials (Fig. 2) in the central projection of

each scenario, resulting in challenges for material decomposi-

tion tasks. Therefore, the results from such projections were

selected to demonstrate the performance of each method. As

shown in the images, the Random Forest was able to preserve

more details of the vessels using the raw-pixel-value features

in the noiseless scenario, but the performance also deteriorated

in the noisy scenario, just as for the other algorithms. The

application of the neighboring information has improved the

performance of the machine learning algorithms, especially in

the noisy scenarios. In general, despite a little residue of the

bone, the ANN and the Random Forest have identified more

vessels using the MVM features, even in the noisy scenarios.

Results of the sampling interval analysis are presented in

Supporting Information Figs. S4 and S5. It can be seen that T
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the performance of the machine learning algorithms tend to

improve as hold-out rate increases. The shift of the curves

between using the raw-pixel-value features and the MVM fea-

tures also shows that it is beneficial to use neighboring infor-

mation for material decomposition.

3.B. Experimental study

Figure 5 presents the material decomposition results for

the two needles in the SAWBONES phantom scenario at the

hold-out rate of 50%. The contrast of the images was

enhanced by the same histogram stretching. The machine

learning algorithms demonstrate better performance com-

pared to the reference methods. Similar to the simulation

study, the neighboring information is also beneficial to the

performance, with improved contrast of the needles. The

improvement is also reflected in the quantitative measure-

ments. However, some residue of the other materials has

appeared. Table II summarizes the performance using R and

SSIM (average � standard deviation) across all quantitative

measurements at the hold-out rate of 50%. Compared to the

A-Table method, the performance of the ANN is improved by

over 42% in the noiseless scenarios and by over 45% in the

noisy scenario, while the performance of the Random Forest

is improved by over 33% and 40%, respectively. The

improvement is not as much as in the simulation study

because the experimental scenario has a lower noise level (as

show in Fig. 2). Supporting Information Fig. S6 shows the

sampling interval analysis and demonstrates a pattern of per-

formance curves similar to those seen in the simulation study.

4. DISCUSSION

4.A. Model evaluation

In this work, only hold-out validation with continuous

interleaved sampling was employed in the pipeline because

the datasets of projections were generated across various

angles with a fixed angular increment. A fixed interval sam-

pling brings an effect of down sampling to the datasets, mak-

ing subsets retain the properties of the original datasets

depending on the sampling rate. The performance as a func-

tion of the hold-out rates was also investigated. Ignoring the

computation load, the hold-out validation with continuous

interleaved sampling strategy should be appropriate, because

this would minimize the divergence of properties between the

training set and the validation set.

R and SSIM were employed to quantify the performance

of the models for quantitative evaluations instead of ordinary

methods such as root mean squared error (RMSE). RMSE

measures the average of the deviations between two images,

treating all the pixels equally, which is somehow not in

FIG. 4. Decomposed material-specific projections of the coronary arteries in the test XCAT scenarios with cardiac and respiratorymotion using (a) the raw-pixel-

value features and (b) the MVM features. The central projections with corresponding quantitative measurements are presented to demonstrate the performance.
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accordance with human visual perception. For instance,

RMSE cannot differentiate the divergence between two

images where the first has a small number of pixels with large

deviations and the second has a large number of pixels with

small deviations. The quantitative evaluation in this work is

therefore based on R and SSIM, which are popular choices

for subjective quality assessment.

4.B. Feature extraction and machine learning
algorithms

Two feature extractions have been demonstrated in this

work. The raw-pixel-value feature extractor was implemented

to extract the raw spectral measurements of multi-energy pro-

jections, which does not explicitly fit the polychromatic spec-

tra in spectral x-ray imaging. Nevertheless, as shown in the

results, the introduced machine learning algorithms with

appropriate hyperparameters are able to learn successful

models for material decomposition tasks, and have demon-

strated superior performance compared to the reference meth-

ods. However, the performance deteriorates in the noisy

scenarios because the training was based on pixel-wise spec-

tral measurements. The pixels of noise may be treated as false

positive instances, which reduces the accuracy of the models.

The MVM feature extractor creates additional features of

neighboring information to the spectral measurements. In this

work, we used multiple radial parameters to yield different

levels of neighboring information for optimizing perfor-

mance. The results show that it is feasible and beneficial for

the material decomposition tasks. Especially, such informa-

tion significantly improves the performance in the noisy sce-

narios. We speculate that this is due to the fact that the

neighboring information of the target pixel has reduced the

false positive probability, as well as provided highly relevant

features for the tasks. Thus, adequate feature extraction

approaches may prove valuable.

Machine learning algorithms have been employed to

model the relationship between the multi-energy projections

and the effective material-specific projections in the pipeline,

largely conditioning the success of the material decomposi-

tion endeavor. As shown in the results, the performance of

the respective algorithms is different. Since the sigmoid acti-

vation function was used to process the output of the neurons,

the performance of the ANN appears more noisy than that of

the decision tree algorithms. This is due to the fact that the

models trained by the ANN may predict small negative values

being displayed as residues of bone. Furthermore, this also

affected the performance quantified by SSIM, especially

when there was only a small amount of training data (repre-

senting low hold-out rate, as shown in Supporting Informa-

tion Figs. S4–S6). Note that the neighboring information has

significantly improved the performance of the ANN,

FIG. 5. Decomposed material-specific projections of the two biopsy needles in the test Torso scenarios using (a) the raw-pixel-value features and (b) the MVM

features. The central projections with the corresponding R and SSIM are presented.
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indicating good prospects for using deep learning approaches

such as deep convolutional neural network (CNN). In order

to complete this work as a comprehensive comparison of

machine learning solutions for material decomposition tasks,

we have also performed a pilot investigation on material

decomposition using deep learning approaches. Figure 6 and

Table III present the material decomposition results using

two state-of-the-art deep learning-based solutions, DnCNN-

based32 and ResNet-based.33 Both of the two solutions use

the three-channel projections as the inputs, and were imple-

mented by PyTorch on a Titan Xp GPU.

The structure of the DnCNN-based network is shown in

Fig. 7(a), and the number of the depth layers was 20. For the

first layer, 64 filters of size 3 9 3 9 3 were used to generate

64 feature maps with rectified linear units (ReLU) activations.

For the 20-depth layers, 64 filters of 3 9 3 9 64 were used,

and batch normalization was added between convolution and

ReLU. For the last layer, 1 filter of size 3 9 3 9 64 was used

to generate the output. The network training was performed by

minimizing the MSE loss between the generated decomposed

projection and the respective label. Adam gradient-based opti-

mization with a momentum of 0.8 was used. The convolution

kernel weights were initialized using random Gaussian distri-

butions with a weight decay of 0.001 and a mini-batch size of

128. The learning rate and epochs were set to 0.0005 and 50,

respectively. The image patch size was 40 9 40.

The structure of the ResNet-based network is shown in

Fig. 7(b), and we used nine residual blocks in this study.

Adam with a momentum of 0.5 was used for minimizing the

loss function. The generators were trained with a MSE loss

function. The learning rate and epochs were set to 0.0002

and 100, respectively. The image patch size was 40 9 40.

As show in Fig. 6 and Table III, the two deep learning-

based solutions demonstrate comparable performance to

ANN and Random Forest with MVM features, the perfor-

mance is especially better in challenging projections. Coun-

terintuitively, the simulation scenarios in this work are very

challenging for segmentation tasks. The shape of vessels are

similar to the shape of bones, and the overlap among materi-

als is very challenging to segment. Although the performance

of the two deep learning-based solutions using low hold-out

rate are limited (Fig. 8) due to lacking sufficient training data,

it is evident that while the performance of other methods

seems to slowly taper off as the sampling rate increases, the

deep learning methods still maintain a raising slope. More-

over, in the deep-learning methods, no specific choice of

what goes in to the feature maps has been made, which could

be considered as a major advantage as no restrictions are

being imposed on the learning model with regards to what

features should be learned. Further studies such as redesign

concerning loss function, network architecture and sophisti-

cated parameter tuning are required to develop a full-fledged

deep learning method for material decomposition tasks.

As an alternative to ANN, decision trees are also appropri-

ate for material decomposition tasks. Three decision tree

algorithms have been demonstrated in this work. The Ran-

dom Tree chose all features to construct decision tree models,T
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FIG. 6. Decomposed material-specific projections of theMotion-Noisy XCAT scenario using two deep learning-based solutions.

TABLE III. Material decomposition results of two deep learning-based solutions in the motion-noisy XCAT scenario.

DnCNN ResNet MVM + ANN MVM + random forest

R � SD SSIM � SD R � SD SSIM � SD R � SD SSIM � SD R � SD SSIM � SD

Noisy 0.76 � 0.12 0.70 � 0.15 0.77 � 0.13 0.74 � 0.14 0.75 � 0.14 0.73 � 0.15 0.75 � 0.16 0.71 � 0.16

FIG. 7. The structure of the two deep learning-based networks. [Color figure can be viewed at wileyonlinelibrary.com]
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which was susceptible to overfitting. As two methods of

improving the generalization performance, the REPTree per-

forms reduced-error by pruning the trees whereas the Ran-

dom Forest combines the outputs of multiple Random Trees.

According to the hold-out rate analysis in the results, the

decision tree algorithms demonstrated superior performance

on SSIM while using low hold-out rates, especially the Ran-

dom Forest. Furthermore, there would be no negative value

issue because they use tree construction to learn the models,

resulting in better visual impression. Similar to the ANN, the

performance of the Random Forest can be greatly improved

by the neighboring information. This indicates that the Ran-

dom Forest has better modeling capability and is more appro-

priate for further investigations compared to the other two

decision trees.

As shown in the results, the appropriate machine learning

algorithms demonstrated superior performance compared to

the reference methods. Aside from the beneficial neighboring

information, we speculate that the superior performance is

due to the following reasons:

(1) These machine learning algorithms can model the

nonlinear and nonparametric models more accurately.

(2) The per-pixel strategy employed in the feature extrac-

tions creates large amount of training data for learning

the models.

(3) The hold-out strategy with continuous interleaved

sampling can minimize the divergences between the

training set and the validation set, providing precise

feedback to the parameter tunings to generate success-

ful models.

4.C. Toward clinical practice

As shown in the Supporting Information Fig. S7, the per-

formance does not vary a lot across different FOVs with the

same imaging system parameters. This indicates the potential

for clinical practice. In order to apply this pipeline to practice,

the training needs to be general. The generalization perfor-

mance of the models depend on the training data. In this

work, we generated various imaging scenarios with different

noise levels for investigation. However, if the models were

trained by the training data from an individual scenario, the

performance would deteriorate when applied to another indi-

vidual scenario. For this reason, we combined the feature vec-

tors from different scenarios to train generic models for each

individual scenario. Since the parameter of image scenarios

would vary in practice, sufficient amount of training data

from various scenarios are necessary to train more generic

models. However, the computation needs more time with the

increasing number of features and amount of training data.

This means expensive computation would be one of the bot-

tlenecks of application toward clinical practice. Table IV pre-

sents the computation time of each algorithm using our

workstation (Intel Xeon CPU E5-2650 v2 2.60 GHz, 64 GB

DDR4 RAM), which is calculated based on single-thread

implementation on CPU. As shown in the table, two powerful

algorithms, the ANN and the Random Forest, are very time-

consuming in the learning phase, especially so when MVM

features were included in the training. The deep learning-

based solutions are also very computational expensively.

Hardware acceleration can speed up the learning, but this

requires high demands on hardware.

Material decomposition is not a simple segmentation

problem and each objective material needs to be quantified.

The proposed pipeline is applicable to provide quantitative

information depending on its labels. The labels can be either

material-specific line integrals (as demonstrated in this work)

or objective quantifies (e.g., material thicknesses). However,

another challenge in applying the pipeline to clinical practice

is providing the labels. Since supervised learning was

employed in the pipeline, creating labels becomes essential.

The labels are not only used for learning models but also

TABLE IV. Computation time of each algorithms in the simulation study.

Computation time

Learninga Decom.a

Ref-Poly 00 h11 m34 s 4.122 s

Ref-A-Table 00 h09 m22 s 0.324 s

Raw-pixel-value MVM

Learninga Decom.b Learninga Decom.b

ANN 10 h50 m56 s 0.367 s 56 h57 m27 s 8.454 s

Random tree 00 h16 m13 s 0.301 s 00 h43 m18 s 1.482 s

REPTree 00 h12 m04 s 0.945 s 02 h03 m24 s 1.023 s

Random forest 01 h39 m10 s 3.654 s 03 h54 m01 s 12.654 s

aLearning phase: the computation times of the learning phase are given for build-

ing a model from all pixels of each training set. (two noise levels, 36 902 400 pix-

els in total).
bMaterial decomposition phase: the computation times of the material decomposi-

tion phase are given for decomposing one projection (average time across all

projections) in each test set. (297 600 pixels for each projection).

*h: hour *m: minute *s: second.

FIG. 8. Comparison study of different hold-out rates using DnCNN, ResNet,

ANN + MVM and RandomForest + MVM. [Color figure can be viewed at

wileyonlinelibrary.com]
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quantitative evaluations for model selection, representing the

desired outputs of the pipeline. The ground truth can be used

as labels directly in simulation studies. However, creating

labels becomes more difficult in experimental studies. In this

work, we demonstrated that the datasets can be labeled by

experimental methods (as elaborated in Section 2.D.1).

Beyond that, registration-based methods elaborated in the lit-

erature16,18 could also be considered. Nevertheless, creating

labels would need further study, especially while applying

the pipeline toward potential clinical applications. With mul-

tiple labels, the pipeline is able to perform multi-material

decomposition as well. The decomposition results of the

bone in the respective simulated scenarios are presented in

Supporting Information Fig. S8 and Table I. In general, the

results demonstrate the potential of applying the proposed

pipeline to clinical practice. We will explore the feasibility of

the pipeline toward clinical application in future studies.

5. CONCLUSION

In this work, we proposed a novel learning-based material

decomposition pipeline. The material decomposition capabil-

ity of the pipeline has been demonstrated in various scenar-

ios. In general, the proposed pipeline is able to learn generic

material decomposition models from input spectral measure-

ments without explicitly modeling the imaging system. This

was validated by quantitative evaluation in both the simula-

tion study and the experimental study. Beyond that, the step

of feature extraction in the pipeline has potential to integrate

more informative features, such as neighboring information

to facilitate material decomposition tasks. Deep learning-

based solutions were also investigated in this study, and they

demonstrated promising results. Compared to the reference

methods, the performance of material decomposition was

improved upon using appropriate features and machine learn-

ing algorithms. The results indicate that it is feasible and

promising to perform material decomposition using machine

learning methods, and the study will facilitate future efforts

toward clinical applications.
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Fig. S1. Three noiseless simulated scenarios of XCAT short

scan in the simulation study. The top row presents the first

projections and the bottom row presents the central projec-

tions. Differences in FOV can be seen between the learning

scenario and test scenarios. Motion phenomenon can be

observed between the two test scenarios.

Fig. S2. Two experimental scenarios of Torso scan. The one-

needle scenario was used for learning and the two-needle sce-

nario was used for test.

Fig. S3. Decomposed material-specific projections of the

coronary arteries in the testing XCAT scenarios with (a) the

raw-pixel-value features and (b) the MVM features. The cen-

tral projections with corresponding quantitative measure-

ments are presented to demonstrate the performance.

Fig. S4. Quantitative measurements plotted against the hold-

out rate derived from the material decomposition results in

the test XCAT scenario with cardiac and respiratory motion

using (a) the raw-pixel-value features and (b) the MVM fea-

tures. The y axis corresponds to either mean R or mean SSIM

depends on the type of curves.

Fig. S5. Quantitative measurements plotted against the hold-

out rate derived from the material decomposition results in

the testing scenario of XCAT using (a) the raw-pixel-value

features and (b) the MVM features. The y axis corresponds to

either mean R or mean SSIM depends on the type of curves.

Fig. S6.Quantitative measurements plotted against the hold-

out rate derived from the material decomposition results in

the Torso scenarios using (a) the raw-pixel-value features and

(b) the MVM features. The y axis corresponds to either mean

R or mean SSIM depends on the type of curves.

Fig. S7. Quantitative measurements plotted against the FOV

offsets from the FOV of the learning scenario using the

MVM features in the noisy XCAT testing scenario.

Figs. 8. Decomposed material-specific projections of the

bone in the testing XCAT scenario with motion using (a) the

raw-pixel-value features and (b) the MVM features. The cen-

tral projections with corresponding quantitative measure-

ments are presented to demonstrate the performance.

Table SI. Mean R � standard deviation and mean

SSIM � standard deviation across all projections of the bone

with (a) the raw-pixel-value features and (b) the MVM fea-

tures.
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