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ABSTRACT

Audiovisual media are increasingly used to study the
communication and behavior of animal groups, e.g. by plac-
ing microphones in the animals habitat resulting in huge
datasets with only a small amount of animal interactions. The
Orcalab has recorded orca whales since 1973 using station-
ary underwater hydrophones and made it publicly available
on the Orchive. There exist over 15 000 manually extracted
orca/noise annotations and about 20 000 h unseen audio data.
To analyze the behavior and communication of killer whales
we need to interpret the different call types. In this work, we
present a two-stage classification approach using the labeled
call/noise files and a few labeled call-type files. Results indi-
cate a reliable accuracy of 95.0% for call segmentation and
87% for classification of 12 call classes. We further visual-
ize the learned orca call representations in the convolutional
neural network (CNN) activations to explain the potential of
CNN based recognition for bioaccousitc signals.

Index Terms— orca, bioaccousitc signals, CNN, classifi-
cation, visualization

1. INTRODUCTION

Animal behavior as well as behavioral ecology are steadily
growing fields of research. The behavior is one of the most
important aspects of animal life. To study this behavior vari-
ous observations are often used such as GPS tracking as well
as visual and acoustic observations. The killer whale (Orci-
nus orca), the largest member of the dolphin family, prefers
living in small groups (pods). As described in the work of
Ford [1], Towers et al. [2] and Wiles [3], killer whales are a
highly social species which were identified to live together in
distinct groups of related, sexually mixed and differently aged
individuals for a very long time.

Coming along with the social patterns mentioned above,
the orcas also have a strong communicative side, which is
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highly advanced and a fundamental component within the
non-trivial social structure of the animals [3]. The underwa-
ter sound events, produced by killer whales, can be divided
into three different classes: clicks, whistles and pulsed calls.
Clicks are short pulses of sound, usually made in series, with
a variable duration between 0.1ms and 25ms [4, 5]. Killer
whales use these clicks primarily for echolocation, which al-
lows them to navigate, spot prey and detect other group mem-
bers. Whistles are described via a non-pulsed or continuous
waveform which appears in a spectrogram as a single narrow
band tone with no or just little harmonic components at fre-
quencies between 1.5 kHz and 18 kHz [4, 5]. The third and
last class of orca vocalizations, the so-called pulsed calls, are
the most abundant and distinguishing type of vocalizations
generated by killer whales and have a pulse-repetition-rate
usually between 250Hz and 2000Hz [4]. In the following
all orca vocalizations will be considered as orca calls.

Ford [6] illustrates that the communicational behavior of
resident killer whales is strongly linked and correlated to the
respective situation of behavioral patterns and affects the an-
imal vocalization in the following parts: Occurrence of the
different orca sound events, amount of animal vocalizations
and frequency distribution of the single call types. In addition
Filatova [7] describes that the communication of killer whales
is also affected by the social context, like the number of pods
and the presence of mixed-pod groups.

Despite some biological studies, it is still difficult to de-
tect structures or semantic patterns within the orca signals.
A detailed understanding and interpretation of underwater
recordings is fundamental and a prerequisite to derive con-
clusions about behavior, communication and social interac-
tions of individual marine animal species. Due to a lack of
computer-aided techniques, biologists continue to manually
listen and label hundreds of hours of animal recordings in
order to find potential animal activity [5, 8]. To improve the
capabilities of multimodal behavior research, we present an
automatic CNN based call type classification using a two-
stage approach. Starting with segmentation stage we separate
orca calls from noise. In a further step we trained a clas-
sifier to classify between the different call types. This has
several advantages like low computational cost due to the



boosting-like approach and the possibility to optimize each
stage separately, e.g. optimize the segmentation for different
metrics depending on the application type.

The organization of the rest of the paper is as follows. In
section 3 we introduce the used databases for segmentation
and call type classification and describe the training proce-
dure in section 4. Section 5.1 and 5.2 explain the experimental
setup and results of the call segmentation and call type classi-
fication. We further visualize activations from characteristic
call and noise signals in section 5.3, before concluding in sec-
tion 6.

2. RELATED WORK

Ness [5] who published the Orchive also used machine learn-
ing techniques to classify between calls, noises and human
voices. He built a classifier using 11041 audio files sampled
at a sampling rate of 44.1 kHz and a SVM with a Radial Basis
Function kernel where he achieved a accuracy of 92.12%. He
also found that a high FFT size of 4096 (~100ms) and a high
number of Mel coefficients (100) delivers the best result.

Ness also built a call type classifier using the same tech-
niques as for his call/noise/voice classifier. He classified be-
tween 12 different pulsed calls, not including echolocation or
whistle resulting in a average accuracy of 76%.

Brown et. al [9, 10] used HMMs and GMMs to classify
call types and identify individual orca whales. However, the
increase of computational power and the progress in machine
learning especially deep learning of the recent years opened
up new possibilities for computer vision, speech applications
[11, 12] and also bioaccoustic signals. Grill [13] used con-
volutional neural networks for bird detection in audio sig-
nals. Other researchers also implemented various deep neural
network architectures for bird sound detection in the detec-
tion and classification of acoustic scenes and events (DCASE)
2018 challenge [14] and for koala activity detection [15].

3. DATA BASIS

3.1. Data basis for orca segmentation

Orchive Annotation Catalog (OAC): Unfortunately, the
datasets that Ness [5] used for his results are not available
as described. However, he published the Orchive dataset
[5] which was constructed from Orcalab data and includes
15 480 labeled audio files from under water recordings. The
dataset contains recordings with orca calls, whistles, echolo-
cation, beach rub as well as some noise and human voice
talking. However, we are not interested in the human voice
labels since we want to classify calls and noise and in the
next step classify the different call types. We also did not
include beach rub because the signal is very similar to some
of the noises and there are often calls superimposed which
we detect anyway.

We randomly split the labeled data in 3 datasets, train,
validation and test containing 70%, 15%, 15% of the data.

Because the noise and also the orca call characteristic is very
similar in the same tape, we made sure that labeled audio sig-
nals of the same tape are only included in one of train, valida-
tion or test dataset.

Automatic Extracted Orchive Tape Data (AEOTD):
The orchive dataset is quite unbalanced favoring the orca
calls. Thus the classifier for call segmentation had a high
false positive rate (FPR) when trying to detect calls in un-
seen audio tapes. To reduce the FPR we added more noise
from unseen Orchive audio tapes. The Orchive audio mate-
rial sums up to about 20 000 hours. Therefor, we randomly
extracted parts, labeled them automatically by a first version
of the call/noise classifier and corrected wrong predictions
afterwards by hand. Overall, we extracted about 2000 more
calls, 10 500 noises and 5500 silence signals. The additional
silence was important because it is present in the tapes but not
in the original labeled Orchive data that was used for training.

DeepAL fieldwork data 2017/2018 (DLFD): Addition-
ally, we got some labeled data from an expedition boat
recorded with an underwater microphone array. This dataset
includes 1435 additional orca call signals and 6547 noise sig-
nals. Since those signals have multiple channels we always
used 4 channels because each had a different noise charac-
teristic. The result is similar to data augmentation by adding
additional noise and helps to increase the data variance. How-
ever, the different channels are always included together in
either train, validation or test dataset. Due to this constraint
the fractions are only approximate as specified above.

Overall, our data set for the call segmentation is structured
as shown in table 1.

dataset training validation test total orca
OAC [5] 8042 1711 1751 84.3%
AEOTD [5] 14 424 1787 1784 9.3%
DLFD 23 891 4125 3912 18.0%
TOTAL 46 357 7623 7447 27.8%

Table 1. Number of audio samples per dataset and its fraction
of train, validation and test set for call segmentation training.

3.2. Data basis for orca call type classification

Ness [5] also published a data set for call classification con-
taining 286 call annotated files and the Orcalab contributed a
call catalog [16] including 138 labeled calls that was used to
train a call type classifier. Those catalogs include together 9
different pulsed call types. We extended the data by adding 30
noise, echolocation and whistles files each from the Orchive
data for a call type classification dataset. We included noise
as a separate class since a beforehand call detection might de-
tect some false positives. This sums up to 514 labeled audio
signals.

3.3. Data pre-processing

We used power spectrograms as input features for the con-
volutional neural network. Since the Orchive includes audio



files with a sampel rate of 44.1 kHz in mono and stereo, we
converted all signals to mono. The spectrogram was com-
puted using a hop size of 441 (10ms) and a STFT window
size of 4096. We used this relatively large window size be-
cause the only transient events are echolocations and for all
other calls we are only interested in a high frequency reso-
lution. A Mel compression did not bring any improvements
because it decreased the high frequency resolution which is
important for high frequency only calls. We converted the
spectrograms to decibel scale to make weak calls better visi-
ble and normalized them between 0 and 1 using a minimum
level of −100 dB and a reference level of 20 dB. To reduce
the memory consumption we decreased the frequency range
to 500Hz to 10 kHz and similar to [5], scaled the number
of frequency bins down to 256 before training. To force the
same input size for the neural network we chose a fixed 1.28 s
window length of the signal, which corresponds to 128 time
steps. Therefore we padded the spectrogram if it was shorter
then 128 time steps or cut out a snippet if it was too long.

3.4. Data augmentation

We used several augmentation methods to artificially in-
crease the data basis only for the train dataset. All augmen-
tation methods assume uniform sampling. We changed the
amplitude of the spectrograms in range −6 dB to +3dB.
This especially improved the detection of weak orca calls.
The pitch was changed by a factor in the range of [0.5, 1.5]
and the length of the signal was stretch by a factor between
[0.5, 2]. For the pitch shifting it was essential to have a high
frequency resolution in the first place before reducing the
number of frequency bins to 256. Those augmentation meth-
ods are very similar to augmentation used in computer vision,
but also have shown its potential in speech applications [17].
It helps the convolutions to learn the representations at dif-
ferent scales, which results in a better generalization on the
given data. Furthermore, we added characteristic noise to
the training spectrograms. This was done by computing the
spectrogram of a noise audio file of the train set and adding
it to the input spectrogram with a SNR between −3 dB and
12 dB. As mentioned above sampling or padding was nec-
essary depending on the input audio length. For training we
randomly zero padded or sampled, for validation and test the
signal was always centered.

4. MODEL ARCHITECTURE AND TRAINING
PROCESS

The model used is based on the ResNet18 architecture [18].
However we found that reducing the resolution/receptive field
after the initial convolutional layer using max pool with stride
2 decreases the accuracy of about 1.5% for call/noise detec-
tion. This is due to the subtle frequency bands of the orca
calls, which cannot be captured after early max pooling with
stride 2. Thus, we removed the max pool layer, which results
in a larger global mean pooling size after the residual layers.

The model was trained using the PyTorch deep learning
framework [19]. We utilized an Adam optimizer with an ini-
tial learning rate of 10−5, beta 1 of 0.5 and beta 2 of 0.999.
The learning rate was decayed by a factor of 0.5 if there was
no improvement on the validation set for 4 epochs and the
training was stopped if there was no improvement on the val-
idation set for 10 epochs. We selected the model with the best
validation accuracy. All presented results are from the test set.
We used a batch size of 32 for call segmentation and 4 for call
type classification.

5. EXPERIMENTS AND RESULTS

5.1. Call segmentation

Our call type classification approach involves two stages.
The first is the time-based segmentation stage. Therefor we
trained a ResNet18 model using a binary cross entropy loss.
We found that due to the relatively simple segmentation task
a ResNet18 architecture is enough to model the data distribu-
tion. Deeper ResNet architectures only result in a marginal
improvement and a longer processing time.

We achieved 95.0% accuracy on the test set with a true
positive rate of 93.8% and 4.3% false positive rate.

Inference of call segmentation is possible with a real-time
factor of 1/25 using a mid-range GPU (GTX 1050) resulting
in processing time in under 2 minutes for a 45 minute audio
tape.

5.2. Call type classification

In the second stage, the call type classifier was trained in-
dependently from the segmentation model but is also based
on the same ResNet18 architecture. Therefor only a much
smaller dataset was used due to the number of signals with
labeled call type. Overall, we used 363 training, 72 valida-
tion and 79 test signals. The size difference of validation and
test datasets is due to the random split separately for each
call type. Despite the small dataset, ResNet18 is able to learn
robust features using a Cross entropy loss with 12 classes.
Deeper ResNet architectures did not generalize as well, be-
cause of the small training dataset. Our model achieved a
mean test accuracy of 87% after training for 72 epochs.

The confusion matrix of the test set from the call type
classifier is shown in figure 1 and only shows two major out-
liers. The N2 and N5 calls have a class detection rate of only
50% and are often classified as N9 call. In fact, these call
types, especially N5, look very similar and they have a sim-
ilar distance of their harmonic frequencies. Another cause
might be because this small dataset is not balanced, and the
prior is in favor of the N9 call for the train dataset. Figure 2
shows three of the false classified calls.

5.3. Visualizing CNN activations

We visualized the activations of the CNN similar to [20] to
demonstrate how well this model is able to learn representa-
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Fig. 1. Confusion matrix from the call type classifier.

N2 call N5 call N9 call

Fig. 2. Wrongly classified calls from the test set. N2 and N5
were classified as N9, the N9 call was classified as N7.

tions from a small dataset containing only 383 training sig-
nals. Activation means in this case the ReLU activated output
of a convolutional layer and is often also called feature map.
Figure 3 shows 3 samples from the dataset. On the top we
have a pulsed call (c), a N9 call, below is a echolocation (e)
which shows the typical transient vertical lines and on the bot-
tom is a noise signal (n) without any orca sound. Depending
on the type of input (0) and the convolutional kernel the acti-
vations have a high variation. Note that in figure 3 the shown
activations in the same column are the result of exactly the
same kernel, only the input differs. While the first shown
kernel of the initial convolution (1.1) only pursues high in-
put with a slight vertical derivation, the kernel of (1.2) only
allows low input and is thus a good filter for weak parts of
signals. This kind of filters are possible due to the relatively
large 7 × 7 kernel of the initial convolution which can com-
pute the negative sum of the input of this area. The ReLU
activation function afterwards thresholds its input by zeroing
everything smaller than 0.

Deeper layers tend to learn textures and discriminative
parts rather than simple features like edges. The kernel of
activation (2) highlights pulsed call textures which is distinc-
tive on the right side of (c, 2). This is also visible on the left
side of (c, 2) where we can see not so sharp but close together
activations that are also part of the N9 call. Note that the reso-
lution of (1) and (2) is the same since the max pool layer with

(c)

(e)

(n)

(0) (1.1) (1.2) (2) (3)

Fig. 3. Visualization of 3 samples of the call type dataset.
From top to bottom: N9 call (c), echolocation (e), noise (n).
From left to right: Input spectrogram (0), two of the strongest
activations of the initial convolution layer (1.1, 1.2), one ac-
tivation of the first ResNet layer (2) and one activation of the
second ResNet layer (3). The activations in each column are
the result of using exactly same convolutional kernel.

stride 2 got removed, as explained in section 4. The kernel
of the last shown activation (3) captures especially transient
parts (e) and smooths weakly activated, noisy parts (e, n) of
its input. One can see that the ResNet architecture is able to
learn representative features from a quite small dataset, which
is ideal for bioaccousitc signals since labeling can be difficult
and expensive.

6. CONCLUSION

We described an automatic orca call classification using state-
of-the-art deep learning techniques. The two-stage approach
by separating call segmentation and call type classification
enabled us to use a semi-labeled database with only a few la-
beled call type signals. Furthermore, this enables us to use
only two small ResNet models that can be used for real-time
detection in the field. Overall, we improved the accuracy over
previous work, although our results are only partly compara-
ble with [5], since the data basis was not entirely the same.

We are currently in the process of extracting more calls
from the unseen audio using the orchive tapes to measure the
real-world performace. Furthermore, the segmentation output
will be automatically classified into the different call types in
order to verify the classifier accuracy under real-world con-
ditions. After correction by biologists we plan to offer these
audio files and labels to the Orchive.
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