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Abstract. Despite the visually appealing results, most Deep Learning-
based super-resolution approaches lack the comprehensibility that is re-
quired for medical applications.
We propose a modified version of the locally linear guided filter for the
application of super-resolution in medical imaging. The guidance map
itself is learned end-to-end from multi-modal inputs, while the actual
data is only processed with known operators. This ensures comprehen-
sibility of the results and simplifies the implementation of guarantees.
We demonstrate the possibilities of our approach based on multi-modal
MR and cross-modal CT and MR data. For both datasets, our approach
performs clearly better than bicubic upsampling. For projection images,
we achieve SSIMs of up to 0.99, while slice image data results in SSIMs
of up to 0.98 for four-fold upsampling given an image of the respective
other modality at full resolution. In addition, end-to-end learning of the
guidance map considerably improves the quality of the results.

1 Introduction

Spatial resolution is subject to trade-offs in many medical imaging applications.
For example in Magnetic Resonance Imaging (MRI), spatial resolution must be
weighed against the signal-to-noise ratio and acquisition time. A retrospective in-
crease in resolution by post-processing measures could alleviate this problem. To
this end, a vast amount of super-resolution (SR) methods have been proposed
and proven in the past [1]. In general, a differentiation can be made between
single and multiple image SR methods. The latter is of particular interest for
medical imaging, as non-existent information in one image can be derived from
another image of the same patient. Especially in diagnostics, the presence of
several scans of the same patient is common. In processing these data, Deep
Learning (DL) has recently developed the state of the art in SR towards a previ-
ously unknown image quality [2]. Thereby, most learning-based methods apply
high-dimensional non-linear transformations that are very difficult or impossible
to comprehend. If only additional information is generated, e.g. in segmentation,
the lack of comprehensibility can be tolerated, as blatant errors can be quickly
identified. However, if the image is modified, as is the case with super-resolution,
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a failure of the method cannot be detected trivially. This is a limiting factor in
medical applications where no less than the lives of patients are at stake. Despite
these downsides, DL-based methods are highly promising if used in an appropri-
ate way. In combination with well understood known operators, the advantages
of DL can be combined with the necessary comprehensibility [3,4]. To transfer
this to the task of super-resolution, we present the combination of the guided
filter, which applies a local linear transformation to the input image, with a
guidance map that is learnd end-to-end from multi-modal input.

2 Methods

2.1 The Guided Filter

First proposed by He et al. [5], the guided filter has been applied to a variety
of tasks. Simply put, a given input image I is processed by incorporating struc-
tural information from a guidance image G. The filtering operation in this case
assumes a locally linear model between the guidance and the input image. In
general, the guidance map can be any given image, even the input image itself. To
fully leverage the power of the guided filter, a more appropriate guide is needed.
Given multiple input images from the same object, a combination of these is
beneficial. However, this raises the question of how the combined guidance map
is composed.

2.2 End-to-End Trainable Guided Filter

Based on the wide range of possible applications of the guided filter as well
as the ongoing success of Deep Learning, Wu et al. [6] incorporated the guided
filter into a DL framework as a differentiable layer. This allows to backpropagate
gradients through the filter to previous layers. We employ a convolutional neural
network with the task to generate a guidance map for the guided filter based
on the multi-modal input. Being able to train this generator in an end-to-end
fashion enables for an optimal selection of features from all input modalities
directly by the network.

The proposed pipeline consists of a guidance map generator network, for
which we use a U-net-like architecture [7] with two separate encoding and a
single decoding path, and the guided filtering layer.

Starting from two images, the low-resolution image I lr, which is to be raised
to higher resolution, and a higher-resolution image Lhr that serves as a guide.
First, the input image I lr is upsampled by bicubic interpolation to the desired
output resolution as an initialization, further denoted as Iup. Second, I lr and Lhr

are fed into the generator network in order to extract the best possible combined
representation G. Finally, the learned guidance map G and the upsampled input
Iup are processed by the guided filter, resulting in the high-resolution output Ihr.
By this, only (locally) linear processing steps are applied to the computed output
image. A graphical representation of the pipeline is shown in Fig. 1.

Optimization is performed using a feature matching (FM) loss [8] based on
the VGG-19 network [9].
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3 Experiments

For evaluation, on the one hand multi-modal MRI data is used in the form of
8 tomographic T1 and T2 flair datasets with a spatial resolution of 256 x 256.
On the other hand, 13 cone-beam MR and X-ray projections at a resolution
of 512 x 512 are processed. All experiments are performed on clinical patient
datasets provided by the Department of Neuroradiology, University Clinics Er-
langen (MR: 1.5 T MAGNETOM Aera / CT: SOMATON Definition, Siemens
Healthineers, Erlangen / Forchheim, Germany). Of each combination of modali-
ties two corresponding patient dataset pairs are reserved for final testing. Image
registration is done using 3D slicer [10]. The forward projections are taken from
the work on hybrid MR/CT imaging by [11,4,12] and are generated using the
CONRAD framework [13]. The low resolution images are artificially created by
nearest neighbor downsampling by a factor of 4, resulting in a resolution of
64 x 64 for the tomographic and 128 x 128 for the projection data. For quan-
titative evaluation, we compute the mean squared error (MSE) and multi-scale
structural similarity (MS-SSIM) measures. To avoid optimistic bias by the large
homogeneous air regions, all background pixel are ignored for the evaluation
metrics.

4 Results

The proposed approach was evaluated in comparison with bicubic upsampling
and guided filtering using only the high-resolution image Lhr as guidance. The
results are presented in Tab. 1. Exemplary qualitative results with their respec-

Guidance Map 

Generator

Guided 

Filtering

Layer

Ilr

Lhr

G

Iup

Ihr

Ground Truth

FM Loss

Fig. 1. The proposed guided filtering pipeline. Black arrows indicate the order of pro-
cessing steps and orange arrows the gradient flow.
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Table 1. Evaluation metrics of the proposed multi-modal guided filter

CT & MRI Projection Images (128x 128→ 512x 512)

Bicubic GF w/o learned guidance GF w/ learned guidance

MSE 0.0019 ± 0.001 0.0873 ± 0.0398 0.0005 ± 0.0001

MS-SSIM 0.97 ± 0.00 0.74 ± 0.04 0.99 ± 0.003

Tomographic T1 & T2 MRI images (64x 64→ 256x 256)

Bicubic GF w/o learned guidance GF w/ learned guidance

MSE 0.0997 ± 0.0526 0.1506 ± 0.0493 0.0138 ± 0.0077

MS-SSIM 0.89 ± 0.04 0.63 ± 0.13 0.98 ± 0.01

tive inputs are shown in Fig. 2. Furthermore, in Fig. 3 a region of interest can
be seen to better observe the differences in the fine details.

5 Discussion

The quantitative and qualitative results show clear improvement of the pro-
posed guided filtering pipeline compared to the reference method. Especially
when observing the differences between the bicubic and the proposed upsam-
pling method for the tomographic images in Fig. 3(a) and 3(b), respectively, the
improved performance of the guided filter upsampling becomes apparent. The
proposed framework captures fine details that are present in the guidance map
which can not be estimated from the low-resolution input alone. Furthermore,

(a) Guide Lhr (b) Input I lr (c) Prediction Ihr (d) Ground truth

(e) Guide Lhr (f) Input I lr (g) Prediction Ihr (h) Ground truth

Fig. 2. Results of the guided filtering process. T1 & T2 MRI image pairs (a)-(d) and
CT & MRI projection images (e)-(h).
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(a) Bicubic (b) Ours (c) Bicubic (d) Ours

Fig. 3. Comparison of the proposed GF results with bicubic upsampled images.

(a) Guidance map (b) Bicubic (c) Ours

Fig. 4. An exemplary guidance map (a). Difference maps of the bicubic (b) and guided
filtering (c) upsampled images w.r.t the ground truth.

the end-to-end learned guidance map clearly benefits the processing, as indicated
in Table 1. This comes with the additional advantage that the optimal guidance
map can be learned individually for each task and each combination of inputs.
The learned guidance maps are already close to the desired high-resolution out-
put images (see Fig. 4(a)). However, due to the high-dimensional transforms
applied in the computation of these, the required comprehensibility is not given.
In contrast, when only used as guidance, the modifications to the input images
can be reduced to locally linear operations.

For future work, the proposed pipeline needs to be evaluated more thoroughly
against a variety of comparable methods. In addition, we want to compare our
method with state-of-the-art deep learning super-resolution methods, although
these are not in line with our fundamental considerations regarding comprehensi-
bility of the results. Furthermore, we would like to apply the proposed approach
to other tasks that can be addressed by the guided filter, e.g., denoising.

6 Conclusion

We presented a guided filtering pipeline for multi-modal medical image super-
resolution. The proposed approach has two key points. First, it solves the prob-
lem of the unknown best combination of multi-modal inputs by learning a task-
optimal guidance map directly from the data. Second, the actual data is only
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processed with known operators, which ensures comprehensibility of the results
and simplifies the implementation of guarantees. The achieved results closely
resemble the ground truth data which is substantiated by the low error and high
structural similarity measures.
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