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A 2D DILATED RESIDUAL U-NET FOR MULTI-ORGAN SEGMENTATION IN THORACIC
CT

Sulaiman Vesal, Nishant Ravikumar, Andreas Maier

Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany

ABSTRACT

Automatic segmentation of organs-at-risk (OAR) in com-
puted tomography (CT) is an essential part of planning ef-
fective treatment strategies to combat lung and esophageal
cancer. Accurate segmentation of organs surrounding tu-
mours helps account for the variation in position and mor-
phology inherent across patients, thereby facilitating adaptive
and computer-assisted radiotherapy. Although manual delin-
eation of OARs is still highly prevalent, it is prone to errors
due to complex variations in the shape and position of organs
across patients, and low soft tissue contrast between neigh-
bouring organs in CT images. Recently, deep convolutional
neural networks (CNNs) have gained tremendous traction and
achieved state-of-the-art results in medical image segmenta-
tion. In this paper, we propose a deep learning framework to
segment OARs in thoracic CT images, specifically for the:
heart, esophagus, trachea and aorta. Our approach employs
dilated convolutions and aggregated residual connections in
the bottleneck of a U-Net styled network, which incorporates
global context and dense information. Our method achieved
an overall Dice score of 91.57% on 20 unseen test samples
from the ISBI 2019 SegTHOR challenge.

Index Terms— Thoracic Organs, Convolutional Neural
Network, Dilated Convolutions, 2D Segmentation

1. INTRODUCTION

Organs at risk (OAR) refer to structures surrounding tumours,
at risk of damage during radiotherapy treatment [1]. Accurate
segmentation of OARs is crucial for efficient planning of ra-
diation therapy, a fundamental part of treating different types
of cancer. However, manual segmentation of OARs in com-
puted tomography (CT) images for structural analysis, is very
time-consuming, susceptible to manual errors, and is subject
to inter-rater differences[1][2]. Soft tissue structures in CT
images normally have very little contrast, particularly in the
case of the esophagus. Consequently, an automatic approach
to OAR segmentation is imperative for improved radiother-
apy treatment planning, delivery and overall patient progno-
sis. Such a framework would also assist radiation oncologists
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Fig. 1. Example of OARs in CT images with axial, sagittal
and coronal views and 3D surface mesh plot.

in delineating OARs more accurately, consistently, and effi-
ciently. Several studies have addressed automatic segmenta-
tion of OARs in CT images, with efforts being more focused
on pelvic, head and neck areas [1][2][3].

In this paper, we propose a fully automatic 2D segmenta-
tion approach for the esophagus, heart, aorta, and trachea, in
CT images of patients diagnosed with lung cancer. Accurate
multi-organ segmentation requires incorporation of both local
and global information. Consequently, we modified the orig-
inal 2D U-Net [4], using dilated convolutions [5] in the low-
est layer of the encoder-branch, to extract features spanning a
wider spatial range. Additionally, we added residual connec-
tions between convolution layers in the encoder branch of the
network, to better incorporate multi-scale image information
and ensure a smoother flow of gradients in the backward pass.

2. METHODS

Segmentation tasks generally benefit from incorporating local
and global contextual information. In a conventional U-Net
[4] however, the lowest level of the network has a relatively



small receptive field, which prevents the network from ex-
tracting features that capture non-local information. Hence,
the network may lack the information necessary to recognize
boundaries between adjacent organs, the fully connected na-
ture of specific organs, among other properties that require
greater global context to be included within the learning pro-
cess. Dilated convolutions [5] provide a suitable solution to
this problem. They introduce an additional parameter, i.e. the
dilation rate, to convolution layers, which defines the spacing
between weights in a kernel. This helps dilate the kernel such
that a 3×3 kernel with a dilation rate of 2 results in a receptive
field size equal to that of a 7×7 kernel. Additionally, this is
achieved without any increase in complexity, as the number
of parameters associated with the kernel remains the same.

Fig. 2. Block diagram of the 2D U-Net+DR architecture for
thoracic OAR images segmentation. The left side shows the
encoding part and the right side shows the decoding part. The
network has four dilated convolutions in the bottleneck and
residual connection in each encoder block respectively(shown
in red color arrow).

We propose a 2D U-Net+DR (refer to Fig.3.) network
inspired by our previous studies [6][7]. It comprises four
downsampling and upsampling convolution blocks within the
encoder and decoder branches, respectively. In contrast to our
previous approaches, here we employ a 2D version (rather
than 3D) of the network with greater depth, because of the
limited number of training samples. For each block, we use
two convolutions with a kernel size of 3×3 pixels, with batch
normalization, rectified linear units (ReLUs) as activation
functions, and a subsequent max pooling operation. Im-
age dimensions are preserved between the encoder-decoder
branches following convolutions, by zero-padding the es-
timated feature maps. This enabled corresponding feature

maps to be concatenated between the branches. A softmax
activation function was used in the last layer to produce five
probability maps to distinguish the background from the fore-
ground labels. Furthermore, to improve the flow of gradients
in the backward pass of the network, the convolution layers in
the encoder branch were replaced with residual convolution
layers. In each encoder-convolution block, the input to the
first convolution layer is concatenated with the output of sec-
ond convolution layer (red line in Fig. 3), and the subsequent
2D max-pooling layer reduces volume dimensions by half.
The bottleneck between the branches employs four dilated
convolutions, with dilation rates 1 − 4. The outputs of each
are summed up and provided as input to the decoder branch.

2.1. Dataset and Materials

The ISBI SegTHOR challenge1 organizer provided the com-
puted tomography (CT) images from the medical records of
60 patients. The CT scans are 512 × 512 pixels in size, with
an in-plane resolution varying between 0.90 mm and 1.37 mm
per pixel. The number of slices varies from 150 to 284 with
a z-resolution between 2mm and 3.7mm. The most common
resolution is 0.98×0.98×2.5 mm3. The SegTHOR dataset
(60 patients) was randomly split into a training set: 40 pa-
tients(7390 slices) and a testing set: 20 patients(3694 slices).
The ground truth for OARs was delineated by an experienced
radiation oncologist [2].

2.2. Pre-Processing

Due to low-contrast in most of CT volumes in the SegTHOR
dataset, we enhanced the contrast slice-by-slice, using con-
trast limited adaptive histogram equalization (CLAHE), and
normalized each volume with respect to mean and standard
deviation. In order to retain just the region of interest (ROI),
i.e. the body part and its anatomical structures, as the input
to our network, each volume was center cropped to a size of
288×288 along the x and y axes, while the same number of
slices along z were retained. We trained the model using the
provided training samples via five-fold cross-validation (each
fold comprising 32 subjects for training and 8 subjects for
validation). Moreover, we applied off-line augmentation to
increase the number of subjects within the training set, by
flipping the volumes horizontally and vertically.

2.3. Loss Function

In order to train our model, we formulated a modified version
of soft-Dice loss [8] for multiclass segmentation. Here the
Dice loss for each class is first computed individually and then
averaged over the number of classes. Let’s suppose for the
segmentation of an N×N input image (CT slice with esopha-
gus, heart, aorta, trachea and background as labels), the out-

1https://competitions.codalab.org/competitions/21012



puts are five probabilities with classes of k = 0, 1, 2, 3, 4,
such that

∑
k ŷn,k = 1 for each pixel. Correspondingly, if

yn,k is the one-hot encoded ground truth of that pixel, then
the multiclass soft Dice loss is defined as follows:

ζdc(y, ŷ) = 1− 1

N
(
∑
k

∑
n ynkŷnk∑

n ynk +
∑

n ŷnk
) (1)

In Eq. (1) ŷnk denotes the output of the model, where n rep-
resents the pixels and k denotes the classes. The ground truth
labels are denoted by ynk.

Furthermore, in the second stage of the training (described
in detail in the next section), we used Tversky Loss (TL)[9],
as the multiclass Dice loss does not incorporate a weighting
mechanism for classes with fewer pixels. The TL is defined
as following:

TL(y, ŷ) = 1−

N∑
k=1

ynkŷnk

N∑
k=1

ynkŷnk + α
N∑

k=1

ynkŷnk + β
N∑

k=1

ynkŷnk

(2)
Also by adjusting the hyper-parameters α and β (refer to

Eq. 2) we can control the trade-off between false positives and
false negatives. In our experiments, we set both α and β to
0.5. Training with this loss for additional epochs improved the
segmentation accuracy on the validation set as well as on the
SegTHOR test set, compared to training with the multiclass
Dice loss alone.

2.4. Model Training

The adaptive moment estimation (ADAM) optimizer was
used to estimate network parameters throughout, and the 1st
and 2nd-moment estimates were set to 0.9 and 0.999 respec-
tively. The learning rate was initialized to 0.0001 with a
decay factor of 0.2 during training. Validation accuracy was
evaluated after each epoch during training, until it stopped
increasing. Subsequently, the best performing model was se-
lected for evaluation on the test set. We first trained our model
using five-fold cross-validation without any online data aug-
mentation and using only multiclass Dice loss function. In
the second stage, in order to improve the segmentation accu-
racy, we loaded the weights from the first stage and trained
the model with random online data augmentation (zooming,
rotation, shifting, shearing, and cropping) for 50 additional
epochs. This lead to significant performance improvement on
the SegTHOR test data. As the multiclass Dice loss does not
account for class imbalance, we further improved the second
stage of the training process, by employing the TL in place of
the former. Consequently, the highest accuracy achieved by
our approach employed the TL along with online data aug-
mentation. The network was implemented using Keras, an
open-source deep learning library for Python, and was trained

on an NVIDIA Titan X-Pascal GPU with 3840 CUDA cores
and 12GB RAM. On the test dataset, we observed that our
model predicted small structures in implausible locations.
This was addressed by post-processing the segmentations, to
retain only the largest connected component for each struc-
ture. As the segmentations predicted by our network were
already of good quality, this only lead to marginal improve-
ments in the average Dice score, of approximately 0.002.
However, it substantially reduced the average Hausdorff dis-
tance, which is very sensitive to outliers.

2.5. Evaluation Metrics

Two standard evaluation metrics are used assess segmenta-
tion accuracy, namely, the Dice score coefficient (DSC) and
Hausdorff distance (HD). The DSC metric, also known as F1-
score, measures the similarity/overlap between manual and
automatic segmentation. DSC metric is the most widely used
metric to evaluate segmentation accuracy, and is defined as:

DSC(G,P ) =
2TP

(FP + 2TP + FN)
=

2|Gi ∩ Pi|
|Gi|+ |Pi|

(3)

The HD is defined as the largest of the pairwise distances
from points in one set to their corresponding closest points in
another set. This is expressed as:

HD(G,P ) = max
g∈G

{
max
p∈P

{√
g2 − p2

}}
(4)

In Eq. (3) and (4), (G) and (P ) represent the ground truth
and predicted segmentations, respectively.

3. RESULTS AND DISCUSSIONS

The average DSC and HD measures achieved by 2D U-
Net+DR across five-fold cross-validation experiments are
summarized in Table 1. The DSC scores achieved by the
2D U-Net+DR without data augmentation for the validation
and test sets were 93.61% and 88.69%, respectively. The
same network with online data augmentation significantly
improved the segmentation accuracy to 94.53% and 91.43%
for the validation and test sets, respectively. Finally, on fine-
tuning the trained network using the TL we achieved DSC
scores of 94.59% and 91.57%, respectively. Compared to
[2], our method achieved DSC and HD scores of 85.67%
and 0.30mm for the esophagus, the most difficult OAR to
segment. Table 2. illustrates the DSC and HD scores of
each individual organ for 2D U-Net+DR method with online
augmentation and TL on test data set.

The images presented in Fig.3 help visually assess the
segmentation quality of the proposed method on three test
volumes. Here, the green color represents the heart, and the
red, blue and yellow colors represent the esophagus, trachea,



Methods Train Data Validation Data Test Data
DSC [%] DSC [%] DSC [%] HD [mm]

2D U-Net + DR 0.9784 0.9361 0.8869 0.4461
2D U-Net + DR
(Augmented) 0.9741 0.9453 0.9143 0.2536

2D U-Net + DR
(Augmented) + TL 0.9749 0.9459 0.9157 0.2500

Table 1. The DSC and HD scores for training, validation and
test dataset.

and aorta respectively. We obtained the highest average DSC
value and HD for the heart and Aorta because of its high con-
trast, regular shape, and larger size compared to the other or-
gans. As expected, the esophagus had the lowest average DSC
and HD values due to its irregularity and low contrast, mak-
ing it difficult to identify within CT volumes. However, our
method achieved a DSC score of 85.8% for the esophagus on
test data set, demonstrating better performance in compari-
son to the method proposed in [2] which used a shape mask
network architecture and conditional random fields. These
results highlight the effectiveness of the proposed approach
for segmenting OARs, which is essential for radiation ther-
apy planning.

Metrics Esophagus Heart Trachea Aorta
DSC [%] 0.858 0.941 0.926 0.938
HD [mm] 0.331 0.226 0.193 0.297

Table 2. The DSC and HD scores of each organ for 2D U-Net
+ DR(Augmented) + TL method.

Fig. 3. 3D surface segmentation outputs of proposed model
for three subjects from ISBI SegTHOR challenge test set.

4. CONCLUSIONS

In this study, we presented a fully automated approach, called
2D U-Net+DR, for automatic segmentation of the OARs
(esophagus, heart, aorta, and trachea) in CT volumes. Our
approach provides accurate and reproducible segmentations,
thereby aiding in improving consistency and robustness in

delineating OARs, relative to manual segmentations. The
method uses both local and global information, by expand-
ing the receptive-field in the lowest level of the network,
using dilated convolutions. The two-stage training strategy
employed here, together with the multi-class soft Dice loss
and Tversky loss, significantly improved the segmentation
accuracy. Furthermore, we believe that including additional
information, e.g. MR images, may be beneficial for some
OARs with poorly-visible boundaries such as the esophagus.
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