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Deep Learning: Embedding of operators



Known Operators in Neural Networks?
• Integrate knowledge and Properties from Physics / Signal 

Processing
• Reduce number of unknown parameters
• Less Training Samples
• Fewer Training Iterations

 “Don’t reinvent the wheel…”
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Introduction



• Schematic of the idea:

• Fix parts of the network by using prior information, to 
reduce number of parameters.
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Known Operators embedded into a Network

[1] Maier, Andreas, “Deep Learning Lecture SS 2018”, https://www.video.uni-erlangen.de/course/id/662
[2] Maier, Andreas, et al. "Precision learning: Towards use of known operators in neural networks." 
arXiv preprint arXiv:1712.00374 (2017).



• Any continuous function can be approximated by Neural 
Net

• The error is bound by 
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Recap: Universal Approximation Theorem



• Specifically consider the use of two operators in 
sequence 

• Can be approximated in the following ways:
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Approximation Sequences



• Approximation introduces error

• Now we want to find bounds to this errors, but how?
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Error of Approximation Sequences



• We use the Lipschitz continuity of the sigmoid function

• For a Lipschitz continuous function: The graph is always 
entirely outside of the cone.
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Error of Approximation Sequences



• But we have a linear combination of sigmoids!
• So combining with a multiplicative constant, we get an 

alternative formulation: (without proof, but cool graph)
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Error of Approximation Sequences



• Now combining all equations yields:
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Error of Approximation Sequences



• Use the same idea for the lower bound

• And so we find a general bound:
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Error of Approximation Sequences



• We come to the following observations:

• Error of U(x) and G(x) additive
• Error in U(x) amplified by g(x)
• Requires Lipschitz continuity
• This is an maximum error approximation
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Error of Approximation Sequences

Error U(x)
Error 
G(x)
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• Using a energy resolving detector we get multiple images 
at different energy levels

• This can be interpreted to be similar to using colors
• Many properties of the transform are known
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X – Ray Material decomposition



• Example application:
We want to subtract a needle from an phantom

• How do it?
Use known transforms in the network that make use of the physics of 
the energy resolving detector that is employed
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X – Ray Material decomposition

X-ray image I(x; y) 
of the phantom 
with the needle

data after example transform 
u(I(x; y)), i.e. line integral 

domain.

ground truth



• The more known transform the better the results got. 
• This also is inline with the derivation at the beginning.
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X – Ray Material decomposition: Results
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• Goal: to learn redundancy weights for our FBP-Algorithm
• What are redundancy weights?
• In Short-Scan some rays are measured twice, so we need to 

weigh them accordingly
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Learning Projection-Domain Weights from Image 
Domain in Limited Angle Problems [3] 

[4]



• The proposed Network for Fan-Beam:
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Learning Projection-Domain Weights

Known 
Operator

To be 
learnt

Filtering



• Fan-Beam is only 2D
• Transition clinically relevant cone-beam geometry (3D)
• Additional cosine weighting and use of the FDK - Alg
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Learning Projection-Domain Weights

To be learnt Filtering Known 
Operator



• Results:
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Learning Projection-Domain Weights

Ground truth Half projections Weights of 
Schäfer et. al

Learned 
Weights



• Results with noise:

26.09.2018 22

Learning Projection-Domain Weights

Parker WeightsLearned 
Weights

Learned 
Weights

Parker Weights



• Results: Interpretation of learned weights is possible!

• The loss of mass typically caused by missing data can be corrected 
by learned compensation weights

• no additional computational effort
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Learning Projection-Domain Weights

Learned 
Weights

Parker Weights Weights by 
Riess et al. 
(without gaussian 

smoothing)

compensation 
weights proposed 
by Schäfer et al.



• Parker Weights
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Learning Projection-Domain Weights



• Learned Weights
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Learning Projection-Domain Weights
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