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Introduction

Known Operators in Neural Networks?

. Integrate knowledge and Properties from Physics / Signal
Processing

. Reduce number of unknown parameters
. Less Training Samples
. Fewer Training Iterations

- “Don’t reinvent the wheel...”
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Known Operators embedded into a Network

e Schematic of the idea;

Operator u i  Operatorg

 Fix parts of the network by using prior information, to
reduce number of parameters.

[1] Maier, Andreas, “Deep Learning Lecture SS 2018”, https://www.video.uni-erlangen.de/course/id/662
[2] Maier, Andreas, et al. "Precision learning: Towards use of known operators in neural networks."

arXiv preprint arXiv:1712.00374 (2017).
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Recap: Universal Approximation Theorem

 Any continuous function can be approximated by Neural
Net

u(x) ~ U(x) = Zuzs(w:x + w; o)

« The erroris bound by

| — sig(t) = 7 1o |
‘U(X) — U(X)‘ é € 0.8 f‘
0.6
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Approximation Sequences

o Specifically consider the use of two operators In
sequence

fx) = glux))

 Can be approximated in the following ways:
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Error of Approximation Sequences

e Approximation introduces error

fx) = glulx)) = Glu(x)) + e
= Zgj (uj(x)) + go + €4

— Zgj +eu3)+go+6g

e Now we want to find bounds to this errors, but how?

26.09.2018



FRIEDRICH-ALEXANDER

Error of Approximation Sequences

« We use the Lipschitz continuity of the sigmoid function

s(x+e) <s(x)+1s-|e

 For a Lipschitz continuous function: The graph is always
entirely outside of the cone.
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Error of Approximation Sequences

 But we have a linear combination of sigmoids!
« So combining with a multiplicative constant, we get an

a|ternatlve fOI’mu|a'[I0n (without proof, but cool graph)
gis(x +e) < gjs(x) +1g;] - ls - €]
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Error of Approximation Sequences

« Now combining all equations yields:

flx) = Zg,, X) + ey, ) + go + €g
< Zgj )+ g0 + 3051951 L - lew; | +eg
< ( )+ |93| ls - |ew; | + €
Jx) = F(x) < > gyl -ew; | +eg
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Error of Approximation Sequences

e Use the same idea for the lower bound
ef 2 _Z|9j|'ls e, | — €
j

« And so we find a general bound:

er| < Z|9j| s - lew; | + €
J
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Error of Approximation Sequences

We come to the following observations:

er| < Z|9j| s - lew; | Heg
J

Error
Error U(X) G(x)

 Error of U(x) and G(x) additive

e Error in U(x) amplified by g(x)
 Requires Lipschitz continuity

 This is an maximum error approximation

26.09.2018
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Deep Learning: Embedding of operators

e Examples:
« X — Ray Material decomposition

26.09.2018
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X — Ray Material decomposition

 Using a energy resolving detector we get multiple images
at different energy levels

 This can be interpreted to be similar to using colors
« Many properties of the transform are known

26.09.2018
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X — Ray Material decomposition

« Example application:
We want to subtract a needle from an phantom

X-ray image I(x; y) data after example transform

A ground truth
of the phantom u(l(x; y)), i.e. line integral
with the needle domain.

e Howdo it?

Use known transforms in the network that make use of the physics of
the energy resolving detector that is employed

26.09.2018 15
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X — Ray Material decomposition: Results

« The more known transform the better the results got.
 This also is inline with the derivation at the beginning.

Ground Truth F(x) Flu(x)) Flg(x)) Flg(u(x)))

OVERVIEW ON THE RESULTS OF THE PREDICTION. PEARSON’S r IS
GENERALLY HIGH, WHILE THE SSIM IS DRASTICALLY INCREASED WITH
INCREASING PRIOR KNOWLEDGE.

F(1) | Fu(@)) | F(g(I) | F(g(u(l)))
Pearson’s r [%] 95.0 05.2 05.1 95.5
SSIM [%] 54.1 63.1 73.8 88.4
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Deep Learning: Embedding of operators

e Examples:

» Learning Projection-Domain Weights

26.09.2018
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Learning Projection-Domain Weights from Image
Domain in Limited Angle Problems g

Goal: to learn redundancy weights for our FBP-Algorithm
« What are redundancy weights?

. In Short-Scan some rays are measured twice, so we need to
weigh them accordingly

/,’;ﬂ_\
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Learning Projection-Domain Weights

sinogram

The proposed Network for Fan-Beam:
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Learning Projection-Domain Weights

e Fan-Beam s only 2D
 Transition clinically relevant cone-beam geometry (3D)
e Additional cosine weighting and use of the FDK - Alg
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Learning Projection-Domain Weights

e Results:

Ground truth Half projections Weights of Learned
Schafer et. al Weights

26.09.2018
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Learning Projection-Domain Weights

e Results with noise:

Parker Weights Learned Parker Weights Learned
Weights Weights
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||||||||"
ll
"m J
fuimm
i
e}

]
Ii
©
o

EEEEEEEEEEEEEEEEEEEE

Learning Projection-Domain Weights

 Results: Interpretation of learned weights is possible!

Learned Parker Weights Weights by compensation
Weights Riess et al. weights proposed
(without gaussian by Schéfer et al.

smoothing)

« The loss of mass typically caused by missing data can be corrected

by learned compensation weights

 no additional computational effort

26.09.2018
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Learning Projection-Domain Weights

Parker Weights
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Learning Projection-Domain Weights

Learned Weights
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