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Pattern Recognition Pipeline 

  Heuristic feature extraction methods 
  Projection to new orthogonal basis 

  Linear Predictive Coding (LPC) 

  Geometric Moments 

  Wavelets 

  Analytic feature extraction methods 

  Feature selection 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Simple Low-pass Filter 

  Let                                                                be a 
periodic signal. 

  A simple low-pass filter can be: 

  The low-pass filtering can be written in a matrix form:  
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Rank deficient!! 
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Simple High-pass Filter 

  Let                                                                be a 
periodic signal. 

  A simple high-pass filter can be: 

  The high-pass filtering can be written in matrix form:  
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Downsampling 

  Let N be even, then the downsampling operator  

 is defined as: 

€ 

D :CN →C
N
2

  

€ 

D : (
 
f 0,
 
f 1,…,

 
f N−1)→ (

 
f 0,
 
f 2,…,

 
f N−2)
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Fourier-based Frequency Analysis 

  Basis functions are sinusoids. 

  If the signal is a sinusoid, then it is better described 
and localized in the frequency domain.  

€ 

f (t) = cos(2π5t) + cos(2π10t) + cos(2π20t) + cos(2π50t)

€ 

F(t)
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Fourier Analysis – limitation 1 

  Many coefficients are required to describe a 
discontinuous signal.  

  If the signal is sinusoid, it is better described in the 
frequency domain. 

  If the signal is a square pulse it is better described 
in the time domain. 
f(t) 

t ω


F(ω) 
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Fourier Analysis – limitation 2 

  The time content of the signal is lost.  

  Distinct signals in the time domain can generate the 
same frequency response.  
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Image courtesy of Fengxiang Qiao, http://cseweb.ucsd.edu/~baden/Doc/wavelets/qiao_wavelet_intro.pdf   
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Solution: Short Time Fourier Transform 

  Use windows to analyze a small section of the signal 
at a time => STFT. 

  Fixed window size. 

  Narrow window leads to poor frequency resolution. 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart2.html 

Narrow window STFT!

Image courtesy of Fengxiang Qiao 

  Peaks are well separated in time. 
  Each peak in the frequency 

domain covers a range of 
frequencies, instead of a single 
frequency. 
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Solution: Short Time Fourier Transform 

  Fixed window size. 

  Wide window leads to poor time resolution.  

Wide window STFT!

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart2.html 

  Peaks are overlapping in time. 
  Each peak in the frequency 

domain is very narrow, 
approaching a single frequency. 
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Multi-Resolution Analysis (MRA) 

  Idea: use different window sizes, i.e. varying 
resolution. 

  Since we do not know ahead of time, which resolution 
should be used at what time instance, analyze the 
signal in multiple resolutions. 

  MRA is designed to give 
  Good time- and poor frequency-resolution at high frequencies 

  Poor time- and good frequency-resolution at low frequencies. 

  In practice many signals exhibit high frequencies over 
short time durations and low frequencies over 
extended periods of time. 
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Wavelet 

  A wavelet is a mathematical tool designed for multi-
resolution analysis. 

  It is used in dividing a given signal into different 
frequency components and analyzing each 
component with a resolution that matches its scale. 

  It uses a sliding scalable window. 

  The building block of the wavelet transform, its 
window, is a small wave, a wavelet, which is given 
by a function ψ(t).  

  A wavelet transform is the representation of a signal 
f(t) by wavelets. 
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Continuous Wavelet Transform 

  Like the STFT the signal is multiplied with a 
function. 

  In STFT we have the windowing function and then 
take the FT. 

  In wavelet analysis the signal is multiplied with a 
function of varying resolution. The multiplicative 
function is a sinusoidal function called a wavelet. € 

STFTf
w (τ) = f (t)w(t − τ )e− jωt

−∞

∞

∫ dt

€ 

CWTf
ψ (τ,α) =

1
α

f (t)ψ* t − τ
α

 

 
 

 

 
 

−∞

∞

∫ dt
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Continuous Wavelet Transform 

  The multiplicative function     is the wavelet. 

  τ is the location of the analyzed signal (where the 
wavelet is positioned) 

  α is the scale (the resolution) of the wavelet. 

  There exists a mother wavelet ψ, which is the 
prototype wavelet out of which all the children 
wavelets (the shifted and scaled versions) are 
created.  

€ 

CWTf
ψ (τ,α) =

1
α

f (t)ψ* t − τ
α

 

 
 

 

 
 

−∞

∞

∫ dt
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ψ*
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Scale 

  All the children wavelets are either dilated or 
compressed and shifted versions of the mother 
wavelet. 

  Scale 
  α>1: dilated wavelet 
  α<1: compressed wavelet 

  Low Frequency -> Large Scale -> Non-detailed 
global view of the signal -> Span entire signal 

  High Frequency -> Low Scale -> Detailed view of 
the signal -> Lasts short time 

  Only a limited range of scales is necessary 
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Computing the CWT of a signal 

1.  Set α=1 and place the wavelet at the beginning of 
the signal. 

2.  The wavelet at scale “1” is multiplied with the 
signal, integrated over time and scaled by  

3.  Shift the wavelet at t=τ and reevaluate step 2, at 
the new position, i.e. compute the transform at 
time τ and scale 1. Repeat until you reach the end 
of the signal. 

4.  Increase the scale α by a small amount and repeat 
steps 2 and 3. Do so for multiple α values.  

€ 

CWTf
ψ (τ,α) =

1
α

f (t)ψ* t − τ
α

 

 
 

 

 
 ∫ dt

€ 

1
α
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Illustration of 1st pass 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html 



 Seite 18 

Page 18 

Illustration of pass with medium scale 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html 
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Illustration of pass with large scale 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html 
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A signal and its CWT 

Images courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html 



 Seite 21 

Page 21 

Visualization of Wavelet MRA 

Time 

Frequency 

Better time 
resolution; 
Poor frequency 
resolution 

Better 
frequency 
resolution; 
Poor time 
resolution 

Image adapted from Fengxiang Qiao, http://cseweb.ucsd.edu/~baden/Doc/wavelets/qiao_wavelet_intro.pdf   
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Comparison of Transformations 

Figure courtesy of http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10 
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Reconstructing a signal from the CWT 

  The original signal can be reconstructed with the 
inverse transform: 

  where     is the admissibility constant and is defined 
as: 

  and                   . 

€ 

f (t) =
1
cψ

CWTf
ψ

−∞

∞

∫
−∞

∞

∫ (τ,α) 1
a
ψ* t − τ

α

 

 
 

 

 
 dt

dα
α 2

€ 

cψ

€ 

cψ =
Ψ(ω) 2

ω−∞

∞

∫ dω

€ 

Ψ(ω) = FT(ψ(t))
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Wavelet function 

  A wave signal can be used as a wavelet iff it 
satisfies the following conditions: 

1.  admissibility condition: 

2.         is absolutely integrable: 

3.  and        is square integrable: 

  Wavelets that satisfy the following 2 conditions, also 
satisfy the previous 3 conditions: 

1.         is a zero-mean function: 

2.  and        has a square norm one: 

€ 

0 < cψ <∞

€ 

ψ(t)

€ 

ψ(t)

€ 

ψ(t)
−∞

∞

∫ dt <∞

€ 

ψ(t) 2dt <∞
−∞

∞

∫

€ 

ψ(t)

€ 

ψ(t)

€ 

ψ(t)
−∞

∞

∫ dt = 0

€ 

ψ(t) 2dt =1
−∞

∞

∫
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Morlet Wavelet 

  The Morlet wavelet is defined as: 

 where   controls the number of oscillations. 

€ 

ψ(t) = e
−
t 2

2αe jωt

€ 

ω

α=3.8

ω=2π1.9


α=3.8

ω=2π4.8


α=6

ω=2π3.0
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Other Wavelets 

  The Mexican Hat wavelet is 

defined as: 

  The Shannon wavelet is 

defined as: 

€ 

ψ(t) = 1− t 2

α 2

 

 
 

 

 
 e

−
t 2

2α 2

Image courtesy of http://commons.wikipedia.org 

€ 

ψ(t) = αsinc(αt)e jωt

Image courtesy of http://commons.wikipedia.org 



 Seite 27 

Page 27 

Haar Wavelet 

  The Haar wavelet is a single square wave defined as: 

  The children wavelets are then: 
 where the amplitude of  the square wave is 

   the width of the square wave is 
 and the position of the square wave is    

€ 

ψ(t) =

1        for 0 ≤ t < 1
2  

−1    for 1
2 ≤ t <1

0       otherwise        

 

 
 

 
 

€ 

ψα ,τ (t) = 2
α
2ψ(2α t − τ )

Image courtesy of http://commons.wikipedia.org 
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2
α
2
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2−α

€ 

τ2−α
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Drawbacks of CWT  

  Infinite number of wavelets. 

  High redundancy (regarding signal reconstruction). 

  Often can not be computed analytically. 

  Even if when we use a discretized version of CWT, 
computing the wavelet transform may take a couple 
of hours for large signals and high resolution of 
scale and translation. 

 (Although it can also only take a second for small 
signals and low resolution). 
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Discrete Wavelet Transform (DWT) 

  Idea 1: Use Nyquist sampling theory to eliminate 
redundancy with minimal information loss. 

  Idea 2: Use the nice toolbox of filtering and 
convolution in performing wavelet analysis. 

  A discrete wavelet transform is a wavelet transform 
where the wavelets can only be scaled and 
translated in discrete steps. 

  The scaling and translation intervals are determined 
by sampling theory. 
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CWT versus DWT 

  In CWT 
  Change the scale of the analysis window (wavelet). 
  Shift the window (wavelet) in time. 
  Multiply with the signal. 
  Integrate over time. 

  In DWT 
  Use filters of different frequencies to analyze the signal at 

different scales 
  Because frequency cutoff filters come at limited range (i.e. 

high-pass and low-pass filters), frequency analysis at finer 
resolutions is achieved by changing the scale of the signal via 
subsampling (downsampling). 

  Apply the filter (shift the filter-window, multiply and integrate) 
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Why subsample? 

  Consider a half-band lowpass filter. 

  It removes all the frequencies above half of the 
highest frequency in the signal. 

  If the original highest frequency was 1200Hz, after 
half-band lowpassing, the highest frequency is 
600Hz. 

  According to Nyquist sampling rate,           , since 
the highest frequency is halved, we can sample the 
signal at twice as big sampling intervals. 

  We can store/analyze a downsampled by a factor of 
2 sample without information loss. 

€ 

Δt = 1
2Bt
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Computation of the DWT 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html 

where g[n] is a half-
band highpass filter, 
h[n] is a half-band 
lowpass filter and 
x[n] is the input 
signal with frequency 
between 0 and π.   
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DWT example 

Images courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html 

Wavelet: db4 

Level: 6 

Signal: 
0.0-0.4:  20 Hz 
0.4-0.7: 10 Hz 
0.7-1.0: 2 Hz 

fH 

fL 

Image courtesy of Fengxiang Qiao, http://cseweb.ucsd.edu/~baden/Doc/wavelets/qiao_wavelet_intro.pdf   
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DWT example 

Image adapted from Fengxiang Qiao, http://cseweb.ucsd.edu/~baden/Doc/wavelets/qiao_wavelet_intro.pdf   

Wavelet: db4 

Level: 6 

Signal: 
0.0-0.4:  2 Hz 
0.4-0.7: 10 Hz 
0.7-1.0: 20Hz 

fH 

fL 

Image courtesy of Fengxiang Qiao, http://cseweb.ucsd.edu/~baden/Doc/wavelets/qiao_wavelet_intro.pdf   
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The Math Behind the DWT 

  Let h(t) be the half-band low-pass filter and g(t) be 
the half-band high-pass filter. 

  Applying the low-pass filter means: 

  Downsampling by a factor of 2 after filtering is 
equivalent to: 

  Similarly 
€ 

f (t) * h(t) = f (k)h(t − k)
k=−∞

∞

∑

€ 

ylow (t) = h(k) f (2t − k)
k=−∞

∞

∑

€ 

yhigh (t) = g(k) f (2t − k)
k=−∞

∞

∑
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Another View of Wavelets 

  A specific wavelet instantiation (a wavelet child)     
oscillates at a specific frequency and for a specific 
duration. 

  When I overlay a complex signal f(t) with           if the 
signal contains this particular oscillating frequency at a 
time instance tk, then I would get a high response at 
locations tk. 

  So when I convolve a signal with a specific wavelet I 
obtain all the locations where the particular wavelet is 
one of the component frequencies of the signal.  

€ 

ψτ ,α
*(t)

€ 

ψτ ,α
*(t)
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Wavelet Decomposition 

  In a similar manner to the Fourier Transform (or the 
projection to orthogonal basis methods), one can 
then define a set of complementary wavelets which 
can deconstruct a signal to its component 
frequencies. 

  In other words, one can use wavelets as a set of 
orthogonal basis functions. 

  When this set of wavelets is properly chosen, the 
original signal can be reconstructed from the 
projected data with minimal loss of information.   

  Representing a signal using a set of wavelet basis 
functions is called a Wavelet Series. 
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Wavelet Series 

  When a set of discrete wavelets is used to transform 
a continuous signal the result is knows as a wavelet 
series decomposition.  

  Since the wavelet basis is assumed to be known one 
only needs to store the corresponding  wavelet 
coefficients.  

  A typical orthonormal wavelet basis set is of the 
following form:  

 where where       is the Haar wavelet and         . 

€ 

ψm,k (t) = 2mψ(2m t − k)

€ 

m,k ∈ Z

€ 

ψ(t)
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Wavelet Basis Functions 

  More formally, a wavelet series representation of a 
square integrable function is its decomposition into 
an orthonormal basis set generated by a wavelet. 

  A function       is an orthonormal wavelet if it has 
the following form:  

 where  

 and 

 where  

€ 

ψ(t)

€ 

ψm,k (t) = 2mψ(2m t − k)

€ 

m,k ∈ Z

€ 

<ψ j ,k (t),ψ l,m (t) >= ψ j ,k (t)ψl ,m
* (t)

−∞

∞

∫ dt = δ j ,lδk,m

€ 

δ j ,l =
1  for j = l   
0 otherwise
 
 
 
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Wavelet Series Decomposition 

  One can then use this orthonormal wavelet basis set 
to represent a signal f(t): 

  This representation of f(t) is known as the wavelet 
series.  

  The wavelet coefficients       can be directly computed 
by: 

 where  
€ 

cm,k€ 

f (t) = c j,k
k=−∞

∞

∑
j=−∞

∞

∑ ψ j ,k (t)

€ 

cm,k =WT(2−m ,k2−m )

€ 

WT(m,k) =
1
m

f (t)
−∞

∞

∫ ψ* t − k
m

 

 
 

 

 
 dt
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CWT, DWT and WS 

  CWT has a lot of redundancy. 

  For signal encoding and compression DWT is usually 
sufficient. 

  For signal analysis (like Pattern Recognition) the 
exact CWT or WS coefficients are used because 
  they are more robust to noise 
  they are more informative 
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2D Wavelets 

  When analyzing 2D signals, f(x,y), one has to apply 
the wavelet in each direction, i.e. x and y 
separately, as well as on their combination. 

  For example the 2D mother Haar wavelet looks like:  

Images courtesy of Seline Aviyente http://www.egr.msu.edu/~aviyente/ece802tdw.ppt   
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hn

€ 

gn

€ 

hn

€ 

hn
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gn

€ 

gn

INPUT 

x-direction y-direction 

2D Wavelet Decomposition 
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Typical Wavelet Decomposition of an Image 

where j specifies the 
level of the DWT, 
“Details” 
corresponds to the 
output of the high-
pass filter, and “f” is 
the output of the 
low-pass filter. 

Image courtesy of P. Nass, http://www.eso.org/sci/data-processing/software/esomidas//doc/user/98NOV/volb/node316.html 
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DWT example 

Image courtesy of http://cam.mathlab.stthomas.edu/wavelets/waveletworkshopwt.jpg 
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DWT example 

Image courtesy of http://commons.wikipedia.org 
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Wavelet Based Image Compression 

  The improved compression performance (of JPEG 2000 
over JPEG is attributed to: 
  the use of DWT 
  a more sophisticated entropy encoding scheme 

  The difference between lossy and lossless image 
compression in JPEG 2000 is that lossless compression 
uses a reversible integer wavelet transform. 

original JPEG 43:1 
compression 

JPEG 2000 43:1 
compression 

Image courtesy of Sharon Shen www.csee.umbc.edu/~pmundur/courses/CMSC691M-04/sharon-DWT.ppt 
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Wavelet-Based Video Compression 

  Consecutive frames typically differ slightly from 
each other.  

  Store and transmit only the differences between 
consecutive frames. 

  Wavelets allow a more compact representation, 
since wavelet coefficients suffice for storage and 
transmission. 

  Store/transmit the difference in the wavelet coef. 
between consecutive frames. 

  Wavelets can “zoom in” on those areas of the image 
where the change has occurred.  
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Wavelet decomposition and 
reconstruction of an image.  

(a) Original image (top left).  

(b) First level coefficients of 
decomposition (top right).  

(c) Reconstructed image 
(bottom left).  

(d) Second level coefficients 
of decomposition (bottom 
right). 

Example of Wavelet Decomposition 

Slide from TAMU presentation on Multirate Signal Processing http://www.ee.tamu.edu/~wilab/elen444p/MRSP-1.ppt    
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Wavelet-packet 
decomposition and 
reconstruction of an image.  

(a) Original image (top left).  

(b) Third-level coefficients of 
decomposition (top right).  

(c) Reconstructed image 
(bottom left).  

(d) Error of reconstruction 
(bottom right). 

Example of Wavelet Decomposition – cont. 

Slide from TAMU presentation on Multirate Signal Processing http://www.ee.tamu.edu/~wilab/elen444p/MRSP-1.ppt    
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DWT in texture classification 

(a) wavelet image; 
(b) energy 
distributions in the 
different frequency 
subbands, the 
darker the pixel the 
higher the energy; 
(c) binarized energy 
image; (d) color 
coded regions of 
distinct textures; 
(e) texture regions 
overlaid in original 
image. 

Image courtesy of John R. Smith and Shih-Fu Chang, http://www.ctr.columbia.edu/~jrsmith/html/pubs/PAMI/pami_final_1.html 


