Segmentation enhanced Resting-State fMRI for the Detection of Major Depression

Föhst Alexandra 24.11.2014 Pattern Recognition Lab (CS 5)

Motivation

Introduction

Image processing

Results

Outlook

Summary

Motivation

Where is signal source of the functional MRI?

Where is signal source of the functional MRI?

- Brain activity signal arises in gray matter brain tissue
- · Signal from other tissue contributes to noise

Partial volume effect

- multiple tissue types in one voxel
- voxel signal is corrupted by noise

\Rightarrow usage of a segmentation approach may increase signal quality

Introduction

Physiological basis of functional MRI

Blood oxygen level-dependent (BOLD) images

- deoxygenated haemoglobin (Hb⁻) = paramagnetic behaviour
- Hb⁻ decreases MRI signal contrast
- Increased blood flow during neuronal activation
- Increased O₂-concentration raises signal contrast

Functional connectivity

Definition

Temporal correlation between areas or voxels that are located in physically distant brain regions

Methods

- Independent component analysis (ICA)
- Regional Homogeinity (ReHo)
- Seed-based correlation analysis (SCA)

Meaning

Simultaneous activation of brain regions = brain network

The "Resting-state"

- Patient is at rest (eg. eyes closed, instructed to do nothing)
- Observation of spontaneous fluctuations in brain activity
- Low-frequency fMRI signal: 0.01 Hz 0.08 Hz
- Activity can be found within the Default Mode Network (DMN)

Mental disorders

Major depressive disorder (MDD)

- Defined within ICD-10 guidelines
- Symptoms:
 - Reduced capacity of enjoyment
 - Loss of concentration
 - Sleep disturbance and tiredness
 - Diminished appetite
 - · Retardation of physical and emotional reactions
 - · Reduced self-esteem and self-confidence
- Severity of the depression is determined by number of symptoms
- Moderate depressive episode: patient has difficulties in continuing with ordinary activities

Mental disorders

Seasonal affective disorder (SAD)

- Defined within DSM-IV guidelines
- Major depressive episode with a clear seasonal pattern
- Symptoms:
 - similar to MDD
 - · increased need of sleep
 - increased appetite
- Affectation of the inner internal clock

Image Processing

Tools and code source

- FMRIB Software Library (FSL)
- Python Software Packages NiPy and SciPy
- Standard preprocessing and segmentation approach of [4]
- Processing pipeline provided by [4] was extended to 5D

Depressive Disorders Characterized by Gender-Specific MRI Brain Perfusion

Jeanette Lenger^{a,1}, Klaus Sembritzki^{b,1}, Sebastian Kreil^a, Birgit Braun^a, Julie Rösch^c, Arnd Dörfler^c, Joachim Hornegger^b, Johannes Kornhuber^{a,2,*}, Björn Heismann^{b,d,2,**}

^a Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, Germany ^b Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 3, Erlangen, Germany ^c Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, Germany ^d Siemens AG, Healthcare Sector, Allee am Röthelheimpark 2, Erlangen, Germany

[4]

Available image data

MPRAGE

- 3 dimensional
- Needed for:
 - · localization of brain activity
 - segmentation

BOLD

- 4 dimensional
- Information on brain activity

Face exclusion and Registration

- Affine registration to standard space
 - Elimination of non brain tissue (e.g. face)
 - Preparation for non-linear registration
 - 12 degrees of freedom
- Non-linear registration standard space
 - Ensure comparability of different subjects
 - Transformation by a deformation field

Bias field correction and Segmentation

The Bias field

Scanner artifact that causes alternating intensity values for equal tissue types.

- Segmentation and Bias field correction are engaged processes
- Initial Segmentation estimates probability values
- Bias field can be calculated out of tissue probabilities
- · Bias field corrected image shows improved segmentation results

BOLD preprocessing

Head motion correction and Registration

- Rigid-Body registration to reference image
- Rigid-Body registration to subject specific MPRAGE
- 6 degrees of freedom (rotation, translation)

BOLD preprocessing

Nuisance Regression and filtering

- High-pass filtering for signal detrending
- Nuisance signal regression for the correction of thermal and physiological signal noise
 - Setting up a general linear model (GLM)
 - Minimizing error term with least squares
 - Calculating the corrected image

Design matrix

Smoothing methods

- General approach: Gaussian-kernel is applied
- Lenger et al.: linear equation system weighted by a Gaussian-kernel and extraction of gray matter tissue

$$\begin{bmatrix} x_{GM} \\ x_{WM} \\ x_{CSF} \end{bmatrix}_{i} = \begin{bmatrix} [G * (a_{GM} \cdot a_{GM})]_{i} & \dots & [G * (a_{GM} \cdot a_{CSF})]_{i} \\ [G * (a_{WM} \cdot a_{GM})]_{i} & \dots & [G * (a_{WM} \cdot a_{CSF})]_{i} \\ [G * (a_{CSF} \cdot a_{GM})]_{i} & \dots & [G * (a_{CSF} \cdot a_{CSF})]_{i} \end{bmatrix}^{-1} \begin{bmatrix} [G * (a_{GM} \cdot B)]_{i} \\ \dots \\ [G * (a_{CSF} \cdot B)]_{i} \end{bmatrix}$$
(1)

a _x	:	Partial volume map of tissue x from MPRAGE segmentation
В	:	subject specific BOLD image
i	:	i-th voxel
X _x	:	resulting voxel time course for each tissue type x
G	:	Gaussian-kernel

Seed-based correlation analysis

Seed voxel within the posterior cingulate cortex (PCC)

Univariate group analysis

- T-test on calculated parameters
- H₀: differences are due to chance

Contrast HC - MDD HC - SAD MDD -SAD male - female

Cluster-size based thresholding

- Too many false-positive results
- Thresholding decreases the number of errors
- calculate probability that:
 - one or more cluster
 - with a number of voxels n > k
 - voxels are above a certain threshold u

Results

Gender differences

- Female participants show increased connectivity compared to male
- Gaussian-weighted segmentation finds increased connectivity in male patients suffering SAD
- Gaussian-weighted segmentation finds additional cluster within MDD and SAD patients

male > female - HC

male > female - MDD

male > female - SAD

Univariate group inference

- Cerebellar structures \rightarrow sensorimotor deficits [1]
- Occipital cortex → reduction of GABA neurotransmitter (attention-deficit)
- Regions are in agreement with literature

Gauss-filtered

MDD > HC

Segmentation

MDD > HC

Outlook

Further enhancements

- Usage of independent component analysis (ICA) for seed-voxel determination
- Usage of a combination of Gauss-filtering and Segmentation
- Improve cluster thresholding

Summary

Summary

- · BOLD-signal is only a measure of the response to brain activity
- Functional connectivity is not yet fully understood
- Differences are observed within:
 - Male-Female groups
 - · Groups with different medical conditions
 - Gauss-filtered and segmented images

Thank you for your attention.

References I

- Ahmed Abou Elseoud et al. "Altered resting-state activity in seasonal affective disorder." In: Human brain mapping 35.1 (Jan. 2014), pp. 161–72. ISSN: 1097-0193. DOI: 10.1002/hbm.22164. URL: http://www.ncbi.nlm.nih.gov/pubmed/22987670.
- University of Oxford The Oxford Centre for Functional MRI of the Brain Nuffield Department of Clinical Neurosciences. *FMRI- Functional MRI of the brain*. 2014. URL: http://www.fmrib.ox.ac.uk/research/education (visited on 11/18/2014).

References II

- FSL and FreeSurfer Course. Brain Extraction, Registration, Motion Correction and EPI Distortion. 2014. URL: http://www.fsl.fmrib.ox.ac.uk/fslcourse/.
- J. Lenger, K. Sembritzki, and S. Kreil. "Resting State Arterial Spin Labeling for Detection of Major Depression and Seasonal Affective Disorder". unpublished. 2014.
- Analysis Group FMRIB Oxford UK. FSL. 2014. URL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL (visited on 11/18/2014).