Implementation and Evaluation of a mobile VNC Client with Multitouch Transfer and Gesture Recognition System using the Android SDK

Richard Haus — Final presentation of bachelor's thesis — February 9, 2015 Computer Science Dept. 5 (Pattern Recognition) Friedrich-Alexander University Erlangen-Nuremberg Advisors: Dr. Ing- Stefan Steidl, Mario Amrehn M. Sc.

TECHNISCHE FAKULTÄT

Table of Contents

Motivation

Methods

Client Implementation of Multitouch Transfer Gesture Detection AddOn for Multitouch client Issue of Membership Remote Control Local Control Need for a well Trained Classifier for Gesture Recognition Implementation of the Pipeline of Gesture Recognition Survey

Results of the Survey and Conclusion

Summary & Outlook

Discussion

Motivation

4

Need for a Multitouch VNC Client

- In General: More intuitive handling during remote control
- Economy: Controlling machine tools from afar

Fig.: Telematic Control Unit (TCU)

Need for a Multitouch VNC Client

- In General: More intuitive handling during remote control
- Economy: Controlling machine tools from afar
- Private: Better handling of multimendia applications (photo viewer)

Fig.: Windows Photo Viewer

Need for a Gesture Recognition AddOn

- improved user interface
 - \Rightarrow no menu crawling for special action
 - e.g. sending special key combinations

Fig.: open menu tree of such a mobile VNC Client

Need for a Gesture Recognition AddOn

- improved user interface
 - \Rightarrow no menu crawling for special action e.g. sending special key combinations
- huge spectrum of realizable functions without a seperate GUI e.g. gesture "Santas House" causes mail with certain content to predefined person

Methods

Client Implementation of Multitouch Transfer

Internalize existing VNC functionallity - the RFB protocol

1. Handshake

arrange connection parameters authentication, encoding, color depth, screen resolution

2. Server: Framebuffer updates

send only regions of change encoded with agreed encoding per default, uncompressed at tiny areas

3. Client: controlling

send instructions mouse moving, keyboard input, update connection parameters if required

Client Implementation of Multitouch Transfer

- Internalize existing VNC functionallity the RFB protocol
- Extend the protocol with the modified GII

In advance

define datastrcture for Multitouch input array of single touch points:

x-pos	y-pos	pressed flag	primary flag	timestamp
-------	-------	--------------	--------------	-----------

During handshake

arrage GII using with the server by adding extra encoding type

Client Implementation of Multitouch Transfer

- Internalize existing VNC functionallity the RFB protocol
- Extend the protocol with the modified GII
- Wrap Multitouch input on device into protocol
 - 1. Pick up single touch points in callback function
 - 2. Convert the position to server screen space (scale & shift)
 - 3. Assign global unique finger ID's
 - 4. Treat special cases
 - 5. Pack points in datastructure and send

Gesture Detection AddOn for Multitouch Client

So far:

- Multitouch transfer comfortable handling of Multitouch applications on server
- \mathbb{I} No possibility for shifting or scaling the image section
- Sending key combinations as difficult as before

Gesture Detection AddOn for Multitouch Client

So far:

- Multitouch transfer comfortable handling of Multitouch applications on server
- No possibility for shifting or scaling the image section
- Sending key combinations as difficult as before

General Problem: **Issue of membership** of display input *No chance to decide, whether input belongs to local control or to server*

Issue of Membership

Flagfield := rectangular area on corner of display
 Has two states like binary flag: SET_(pressed) or UNSET_(not pressed)
 If SET ("activated") ⇒ touch input gets redirected for special purpose

Local Control Flagfield

Remote Control Flagfield

Issue of Membership

Activation via double click into its area

Same difficulty as original problem of membership (double click could be intended for controlling the server)

Issue of Membership

Activation via double click into its area

Same difficulty as original problem of membership (double click could be intended for controlling the server)

Solution with time limits and input buffering

signal = 1 \Leftrightarrow finger on flagfield

Remote Control

Effect server reaction by sending keyboard shortcuts

Choose reaction by drawing certain gesture

If activated by *Remote Control Flagfield* all further touch inputs are redirected into *Gesture Recognition System*

- classifier delivers class label
- mapping from label to reaction
- send accordant combination of (meta) keys

Remote Control - Mapping from class laben to action

gesture		shortcut to send	function
"circle"	0	F5	update or reload
"triangle"	∇	Ctrl+Alt+Del	open taskmanager
"audi"	000	Super + D	swap to desktop
"dia to upper left"	/	Escape	escape
"zoom in"	1	Ctrl + '+'	zoom in screen
"zoom out"	1	Ctrl + '-'	zoom out screen
"double circle"	0	Ctrl + 0	reset zoom to 100%
"pan left"	+	Arrow left	move left
"pan right"	→	Arrow right	move right
"pan up"	1	Arrow up	move upwards
"pan down"	Ļ	Arrow down	move downwards
"hook up"	^	Page up	scroll page up
"hook down"	\sim	Page down	scroll page down
"two finger circle"	Ø	Alt + Tab(without release)	choose other application
"double hook down"	~	Alt + Tab _(release)	jump to choosen application

Local Control

Purpose: Scale or Shift the image section

If activated by Local Control Flagfield two functions are available

- 1 finger on the display: Moving image section with this finger
- 2 fingers on the display: Scale image section by distance of the fingers
 - (> 2 fingers on the display: no reaction)

14

Local Control

Purpose: Scale or Shift the image section

If activated by Local Control Flagfield two functions are available

- 1 finger on the display: Moving image section with this finger
- 2 fingers on the display: Scale image section by distance of the fingers
 - (> 2 fingers on the display: no reaction)

Local Control cannot be integrated into Gesture Recognition System!

- Loss of direct feedback
- Need for unlimited gestures for each panning direction and scaling size

Need for a well Trained Classifier for Gesture Recognition

VNC App is not the right environment for training and defining new gestures

 \Rightarrow seperate **GesDe-Application**

图

Need for a well Trained Classifier for Gesture Recognition

VNC App is not the right environment for training and defining new gestures

⇒ seperate GesDe-Application

Need for a well Trained Classifier for Gesture Recognition

VNC App is not the right environment for training and defining new gestures

\Rightarrow seperate **GesDe-Application**

Classical setup of a gesture recognition system:

- 1. Recording
- 2. Preprocessing
- 3. Feature extraction
- 4. Training
- 5. Classification

Recording & Proprocessing (merged)

Store all single touch points of one finger in a separate list

N lists \mathbf{f}_k each with n_k	points $P_{k,}$	$i \in \mathbb{N}^3$	$\left(\begin{array}{c} P_{k,} \\ P_{k,} \\ \tau_{k,i} [n] \end{array} \right)$	i(x) i(y) nsec]
$\mathbf{f}_0 := list \; of \; finger_0$	$\{P_{0,0},$	$P_{0,1}$,	,	P_{0,n_0-1} }
$\mathbf{f}_1 := \text{list of finger}_1$	$\{P_{1,0},$	P _{1,1} ,	···,	P_{1,n_1-1} }
:	•	:	•.	:
$\mathbf{f}_k := \text{list of finger}_k$	$\{P_{k,0},$	$P_{k,1},$,	P_{k,n_k-1}

additional: list of distances of synchronous occuring single points

Feature extraction

Create feature vector with 46 entries (incl. class label)

Feature extraction Number of corners

first approach search for small curvature angles

Fig.: estimated curvature angle at $P_{k,i}$

further tests for local minima of angles

Feature extraction Number of corners

first approach search for small curvature angles

Fig.: estimated curvature angle at $P_{k,i}$

further tests for local minima of angles

second approach search for strong bending

- normalize point list to arc length
- approximate first derivative

$$P'_{k,i} = P_{k,i+1} - P_{k,i-1}$$
 (1)

compute second derivative

$$P_{k,i}'' = P_{k,i+1}' - P_{k,i-1}'$$
 (2)

• look for local maxima of $||P_{k,i}''||_2$

Feature extraction Closeness of finger traces

For differentiation between opened and closed pattern

 $f_{6} := \frac{1}{BB_{dia}} \cdot \|P_{0,n_{0}-1} - P_{0,0}\|_{2}$ (primary finger)

 $f_{22} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \sum_{k=0}^{F-1} \left\| P_{k,n_k-1} - P_{k,0} \right\|_2$ (average over all finger traces)

Normalize with lenth of diagonal of bounding box to abstract from the size of the gesture

$$BB_{dia} = \left\| \begin{pmatrix} BB_{Width} \\ BB_{Height} \end{pmatrix} \right\|_{2} = \left\| \begin{pmatrix} \max_{\substack{0 \le k < F \\ 0 \le i < n_{k}}} \left(P_{k,i(x)} \right) - \min_{\substack{0 \le k < F \\ 0 \le i < n_{k}}} \left(P_{k,i(y)} \right) \\ \max_{\substack{0 \le k < F \\ 0 \le i < n_{k}}} \left(P_{k,i(y)} \right) - \min_{\substack{0 \le k < F \\ 0 \le i < n_{k}}} \left(P_{k,i(y)} \right) \end{pmatrix} \right\|_{2}$$

Feature extraction Opening direction of gesture

Inspect vector vfrom focus μ to midpoint of endpoints M

$$\mu = \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_k} \sum_{i=0}^{n_k-1} P_{i,k}$$

$$M = \frac{1}{2} \cdot (P_{0,0} + P_{0,n_0-1})$$

Feature extraction Length of touch traces

 $len_k = \sum_{i=1}^{n_k-1} \|P_{k,i} - P_{k,i-1}\|_2$ $f_9 := \frac{1}{BB_{dia}} \cdot \sum_{k=0}^{F-1} len_k$ (full length over all traces) $\mu_{len} = \frac{1}{F} \cdot \sum_{k=0}^{F-1} len_k$ (average length of each finger trace) $f_{10} := \frac{1}{BB_{din}} \cdot \mu_{len}$ $f_{11} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \cdot \sum_{k=0}^{F-1} \left(len_k - \mu_{len} \right)^2$ (standard deviation)

Feature extraction Standard deviation of distance to center

Measurement of "roundness" of a pattern

$$dist_{avg} = \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_k} \sum_{i=0}^{n_k-1} \|P_{k,i} - \mu\|_2$$
$$f_{13} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_k} \sum_{i=0}^{n_k-1} \left(\|P_{k,i} - \mu\|_2 - dist_{avg} \right)^2$$

Feature extraction Standard deviation of distance to center

Measurement of "roundness" of a pattern

$$dist_{avg} = \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_k} \sum_{i=0}^{n_k-1} \|P_{k,i} - \mu\|_2$$
$$f_{13} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_k} \sum_{i=0}^{n_k-1} \left(\|P_{k,i} - \mu\|_2 - dist_{avg} \right)^2$$

same computation per single finger trace with μ_k and $dist_{avg(k)}$

$$\mu_{k} = \frac{1}{n_{k}} \sum_{i=0}^{n_{k}-1} P_{k,i} \quad \text{and} \quad dist_{avg(k)} = \frac{1}{n_{k}} \sum_{i=0}^{n_{k}-1} \|P_{k,i} - \mu_{k}\|_{2}$$
$$f_{21} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \sum_{k=0}^{F-1} \frac{1}{n_{k}} \sum_{i=0}^{n_{k}-1} \left(\|P_{k,i} - \mu_{k}\|_{2} - dist_{avg(k)} \right)^{2}$$

Feature extraction Average distance of start points and focus

$$f_{14} := \frac{1}{BB_{dia}} \cdot \frac{1}{F} \sum_{k=0}^{F-1} \left\| \boldsymbol{P}_{k,0} - \boldsymbol{\mu} \right\|_2$$

Well suited for differentiation of *zoom in* and *zoom out* gestures

$$\frac{l_1+l_2}{2} \gg \frac{l_3+l_4}{2}$$

General: measure for expanding or reducing movement

Feature extraction Distance of synchronous occuring touch points

(Use list of distances of synchronous occured points from recognition)

Normalized average tells how far multiple fingers are away from each other

$$f_{26} := rac{1}{BB_{dia}} \cdot rac{1}{G} \sum_{t=t_{start}}^{t_{end}} dist_t$$

(G is the number of relevant measurements with more than 1 finger)

Standard deviation tells how "parallel" fingers move

$$f_{27} := rac{1}{BB_{dia}} \cdot rac{1}{G} \sum_{t=t_{start}}^{t_{end}} \left(\textit{dist}_t - f_{26}
ight)^2$$

Feature extraction Eccentric main components

Inspect vector ${\it q}$ from center of bounding box ${\it Z}$ to focus μ

Length of q as measure of eccentricity of the gesture

$$f_{24} := \frac{1}{BB_{dia}} \cdot \|\mathbf{q}\|_2$$
, mit $\mathbf{q} = \mu - Z$

Angle λ for direction of the main components

$$f_{25} := \lambda = \triangleleft \mu Z(Z + \begin{pmatrix} 1 \\ 0 \end{pmatrix})$$

Feature extraction Time & Speed

Number of touch points of some trace \sim execution time of this trace (due to equidistant time sampling of the display)

 $f_{35} := \sum_{k=0}^{F-1} n_k$ ~ time to execute all touch traces sequently

Average speed as defined original $\frac{\delta distance}{\delta time}$

$$f_{43} := \sum_{k=0}^{F-1} \frac{\frac{1}{\rho_{\text{Display}}} \cdot \text{len}_k}{\tau_{k,n_k-1} - \tau_{k,0}} = \frac{1}{\rho_{\text{Display}}} \cdot \sum_{k=0}^{F-1} \frac{\text{len}_k}{\tau_{k,n_k-1} - \tau_{k,0}}$$

For independence of display resolution, normalize with $\rho_{Display}$ (Note: By normalizing with BB_{dia} the factor $\rho_{Display}$ would be cut)

Feature extraction Basic characteristics

 $f_{12} := F$ total number of used fingers for the gesture

$$f_{15} := \max_{t_{start} \le t \le t_{end}} \begin{pmatrix} F_{-1} & n_k - 1\\ \sum\limits_{k=0}^{r} & \sum\limits_{i=0}^{r} 1\\ \tau_{k,i} = t \end{pmatrix}$$

maximum number of used fingers at the same time

 $f_{28} := rac{1}{
ho_{\textit{Display}}} \cdot \textit{BB}_{\textit{dia}}$ differ same shape but different scaled gestures

$$f_{31} := \frac{BB_{Width}}{BB_{Height}}$$
 propotions of gesture (rather vertical or horizontal or compact)

Training

Progress so far:

- 1. User draws (multitouch) gesture, points are recorded
- 2. Lift last finger, compute all entries of feature vector

Now:

- Add class label to vector as "last feature"
- Store all the taining data for building classifier later
- Build and train classifier

Classification

Store build classifier object in file \rightsquigarrow VNC App can use it Nice option for testing classifier in *GesDe* App

Classification

Store build classifier object in file \rightsquigarrow VNC App can use it Nice option for testing classifier in *GesDe* App

Classification

Store build classifier object in file \rightsquigarrow VNC App can use it Nice option for testing classifier in *GesDe* App

Survey

Main goals:

- \Rightarrow Find best classifier for VNC Application
- \Rightarrow Rating of the quality of the features

Secundary goals:

- $\rightarrow\,$ Analyse, whether the gesture recognition rate depends on the experience with touch devices
- $\rightarrow\,$ Analyse, whether gesture recognition depends on the age

Survey

Main goals:

- \Rightarrow Find best classifier for VNC Application
- \Rightarrow Rating of the quality of the features

Secundary goals:

- $\rightarrow\,$ Analyse, whether the gesture recognition rate depends on the experience with touch devices
- $\rightarrow\,$ Analyse, whether gesture recognition depends on the age Need for representative participant distribution

age [years]	number of participants	fraction [%]
5-17	4	16
18-39	10	40
39-60	7	28
61+	4	16
Σ	25	100

Survey

Environment setup

Studie application for survey as modified brach of GesDe app

Advantages:

- automatic supervision of the number of samples per gesture
- automatic generation of new dataset for each participant
- request for age and experience per GUI and link information with dataset
- · suited for unsupervised participation due to datailed instruction
- suited for digital spreading due to built-in return of dataset per mail

Klicken Sie auf eine Geste um sie zu trainieren

Linie (verschiedene Richtungen)		0
Kreis	0	0
Quadrat		0
Dreieck	∇	2
Zoom In - Vergrößern	1	0
Zoom Out - Verkleinern	and the second s	0
OK-Haken (2 Finger)	V	0
Buchstabe L (2 Finger)	L	0
Drehe im Uhrzeigersinn	\bigcirc	0
Drehe gegen Uhrzeigersinn	9	0
Welle (2 Finger)	~~	0
Rechtecks-Welle (2 Finger)	men.	0
Flick-Schuss-Geste (schnell -		0

Survey

Content setup

- force 20 repetitions of each single gesture
- animate participant to vary size and accuracy
- idealised previews
- German language
- choice of gestures:
 - some standard gestures
 - always bundle of similar pattern

Choise of classifiers for testing

- 1. Bayes Net
- 2. Naive Bayes
- 3. Classification via regression
- 4. J48
- 5. Random Forest
- 6. Random Tree

All parameters of adjustable classifiers are default values

10-fold Cross-Validation based on 28 single datasets

results of 10-fold Cross-Validation based on single datasets

10-fold Cross-Validation based on one merged dataset

results of 10-fold Cross-Validation based on the concatinated dataset

Relation of age of participants to their best recogintionrate

relation of age and best recognitionrate of participants

38

Results of the survey and conclusion

Relation of experience of participants to their best recognition rate

Comparison of the recognitionrates of different gestures

relation of Naive-Bayes and Random-Forest recognizing single gestures

40

Summary & Outlook

Summary

- Multitouch transfer per extended VNC
- Issue of belonging solved by flagfields
- Embedded gesture recognition for smart control
- Separate application for training the classifier and introduce gestures
- Survey for comparing different classifiers
- Random Forest algorithm reached best result
- In general recognitionrate is independent of age
- Experience with touch devices influences the recognition
- · Some differences on recognitionrate of different gestures

Outlook

Multitouch VNC

- Dynamic mapping from classlabel to reaction
- · Build overview of existing gesture-to-reaction-mapping
- VNC in general:
 - introduce better compressing algorithms for higher framerate

Gesture recognition

- More or better features to differentiate the worse differentiated gestures
- · Feature selection on existing features
- Consider other gesture schemas e.g.numbers or letters
- Realtime recognition
- Detect non connected gestures

Discussion

Discussion

Thanks for your attention