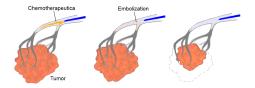
Design and Implementation of a Power Watershed based Image Segmentation Method of Hepatic Lesion Detection Final Presentation

Anna Werner November 16, 2015 Computer Science Dept. 5 (Pattern Recognition) Friedrich-Alexander University Erlangen-Nuremberg

TECHNISCHE FAKULTÄI

Overview

- Motivation
- Methods
- Experiments and Results
- Summary and Outlook


Hepatic Lesions

- = every disfunction, injury and violation of the liver
 - In common sense: tumors
 - Number of new patients with liver cancer increased by more than 3% yearly
 - In 2012: 745000 liver cancer related deaths worldwide
 - Five-year survival rate for liver cancer is 14%
 - Liver as a prime candidate for metastases

TACE - Transarterial Chemoembolization

- · Palliative or bridging therapy
- Pre-procedure workup
 - · Precise location within the liver
 - · Quantification of tumor volume
 - · Overview on integration into the blood vessel system

Fig.: Model of a transarterial chemoembolization procedure

TACE - Transarterial Chemoembolization

Procedure

- Initial imaging to gain overview on vascularization
- Injection of chemotherapeutica in the feeding blood vessel
- Blocking of those blood vessels with embolization particles

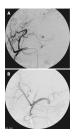


Fig.: (A) Initial imaging of vascularization and (B) after embolization

Methods

Power Watershed: A Unifying Graph-Based Optimization Framework

- article by C. Couprie, L. Grady et al. published in 2011
- · graph-based segmentation algorithms built using set of core algorithms
 - graph cuts
 - random walker
 - shortest paths
 - watersheds
- all placed in common framework
- seen as instances of general seeded segmentation algorithm with different choices of two parameters

Power Watershed Algorithm

New segmentation model defined by searching an optimum x as the probability belonging to a label

$$\begin{split} \min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q} + \sum_{v_{i}} w_{Fi}^{p} |x_{i}|^{q} + \sum_{v_{i}} w_{Bi}^{p} |x_{i} - 1|^{q}, \\ \text{s.t.} \quad x(F) = 1, \quad x(B) = 0, \\ s_{i} = 1 \text{ if } x_{i} \geq \frac{1}{2}, \quad 0 \text{ if } x_{i} < \frac{1}{2}. \end{split}$$

- e_{ii}: edge connecting vertices v_i and v_i
- *w_{ij}*: weight of the edge *e_{ij}*
- p and q: parameters to model special algorithms

Power Watershed Algorithm

p q	0	finite	∞
1	Collapse to seeds	Graph cuts	Watershed
2	<i>I</i> ₂ norm Voronoi	Random walker	Power watershed $q = 2$
∞	<i>I</i> ₁ norm Voronoi	<i>I</i> ₁ norm Voronoi	if p=q, Shortest paths

Tab.: Segmentation algorithms generated by the framework according to the choice of the parameters p and q.

Power Watershed Algorithm

- Basically Kruskal's algorithm for maximum spanning trees with two differences:
 - A forest is computed instead of a tree
 - Optimization performed on plateaus (a maximal set of nodes connected with edge of same weight)
- Advantages:
 - Asymptotic complexity in best-case scenario
 - Providing a unique segmentation

Experiments on Weighting Functions

- Examination of the effect of weighting functions on performance
- Same functions reoccur between different graph-based algorithms
- Two possible changes:
 - Choice of parameter β
 - Replacing with another weighting function

Gaussian Weighting Function

- · Common choice for generating weights from image intensities
- Recommended troughout the segmentation literature
- β is freely selectable and the best value can be found empirically

Reciprocal Weighting Function

- Based on image intensities like Gaussian weighting function
- Claimed to outperform Gaussian function when applied to random walker and graph cuts

$$w_{ij} = rac{1}{\operatorname{dist}(v_i, v_j)} rac{1}{1 + eta(g(v_i) - g(v_j))^2}$$

· No outstanding values when applied to medical data

Comparison to other segmentation algorithms - Random Walker

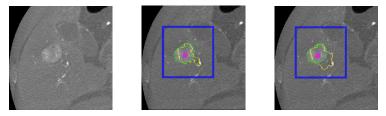


Fig.: Initial data, result of the power watershed algorithm and result of the random walker algorithm.

Comparison to other segmentation algorithms - Random Walker

Metrics Algorithm	DC	MSE	ARI	НОМ	COMPL
PW	0.758	0.012	0.743	0.542	0.607
RW	0.680	0.018	0.658	0.504	0.436

Comparison to other segmentation algorithms - Watersheds

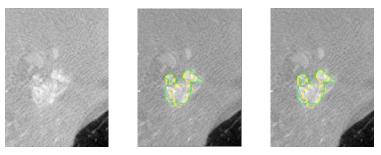


Fig.: Initial data, result of the power watershed algorithm and result of the watershed algorithm.

Comparison to other segmentation algorithms - Watersheds

Metrics Algorithm	DC	MSE	ARI	НОМ	COMPL
PW	0.656	0.020	0.633	0.382	0.568
WS	0.669	0.017	0.641	0.396	0.567

Strength Map of Labels

- · Points out which labels are the most uncertain
- Helps the user to gain a better segmentation
- Time saving because the next placement of seeds is predefined

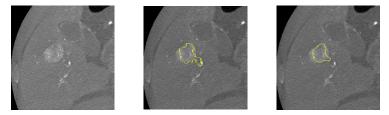


Fig.: The most uncertain labels are highlighted in green, the segmentation result is drawn in yellow and on the right after an additional placement of seeds.

Summary

- Power watershed is an algorithm that is robust
- · Better computation time than random walker
- · But in case of too many plateaus high computation time
- Manipulation of the weighting function brought no improvement
- A strength map can simplify the work for the user

Outlook

- Reduce computation time to make it capable of real-time segmentation
- Broadening to multilabel segmentation for vessel segmentation
- Improvement through combination with preprocessing steps

Thank you for your attention!