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Abstract. Convolutional neural networks (CNNs) have recently become
the state-of-the-art tool for large-scale image classification. In this work
we propose the use of activation features from CNNs as local descriptors
for writer identification. A global descriptor is then formed by means of
GMM supervector encoding, which is further improved by normalization
with the KL-Kernel. We evaluate our method on two publicly available
datasets: the ICDAR 2013 benchmark database and the CVL dataset.
While we perform comparably to the state of the art on CVL, our proposed
method yields about 0.21 absolute improvement in terms of mAP on the
challenging bilingual ICDAR dataset.

1 Introduction

In contrast to physiological biometric identifiers like fingerprints or iris scans,
handwriting can be seen as a behavioral identifier [31]. It is influenced by factors
like schooling or aging. Finding an individual writer in a large data corpus is
formally defined as writer identification. Typical applications lie in the fields of
forensics or security. However, writer identification recently also raised interest
in the analysis of historical texts [3,10].

The task can be categorized into a) online writer identification, for which
temporal information of the text formation can be used, and b) offline writer
identification which relies solely on the handwritten text. The latter can be further
categorized into allograph-based and textural -based methods [4]. Allograph-based
methods rely on local descriptors computed from small letter parts (allographs).
Subsequently, a global document descriptor is computed by means of statistics
using a pretrained vocabulary [5,9,10,15,28]. In contrast, textural-based methods
rely on global statistics computed from the handwritten text, e. g., the ink width
or angle distribution [3,8,12,28,21]. Both methods can be combined to form a
stronger global descriptor [4,25,29].

In this work we propose an allograph-based method for offline writer identifica-
tion. In contrast to expert-designed features like SIFT, we use activation features
learned by a convolutional neural network (CNN). This has the advantage of
obtaining features guided by the data. In each additional CNN layer the script is
indirectly analyzed on a higher level of abstraction. CNNs have been widely used
in image retrieval and object classification, and are among the top contenders on
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challenges like the Pascal-VOC or ImageNet [19]. However, to the best of our
knowledge CNNs have not been used for writer identification so far. A reason
might be that typically the training and test sets of current writer identification
datasets are disjoint making it impossible to train a CNN for classification. Thus,
we propose to use CNNs not for the classification task but to learn local activation
features. Subsequently, the local descriptors are encoded to form global feature
vectors by means of GMM supervector encoding [5]. We also propose to use the
Kullback-Leibler kernel, instead of the Hellinger kernel, on top of mean-only
adapted GMM parameters. We show that this combination of activation features
and encoding method performs at least as well as the current state of the art on
two public datasets Icdar13 and Cvl.

2 Related Work

Allograph-based methods rely on a dictionary trained from local descriptors. This
dictionary is subsequently used to collect statistics from the local descriptors
of the query document. These statistics are then aggregated to form the global
descriptor that is used to classify the document. Jain and Doerman proposed the
use of vector quantization [14] as encoding method. More recent work concentrates
on using Fisher vectors for aggregation [9,15]. While Fiel and Sablatnig [9] propose
to use solely SIFT descriptors as the local descriptor, Jain and Doermann [15]
suggest to fuse multiple Fisher vectors computed from different descriptors. In
contrast, we will rely on the findings of Christlein et al. [5]. They showed that
a very well known approach in speaker recognition, namely GMM supervector
encoding, performs better than both Fisher vectors and VLAD encoding.

CNNs have been widely used in the field of image classification and object
recognition. In the ImageNet Large Scale Visual Recognition Challenge for
example, CNNs are among the top contenders [19]. In document analysis, CNNs
have been used for word spotting by Jaderberg et al. [13], and for handwritten
text recognition by Bluche et al. [2]. However, to the best of our knowledge, they
have not been used in the context of writer identification.

Compared to regular feed forward neural networks, convolutional neural
networks have fewer parameters that need to be trained due to sharing the
weights of their filters across the whole input patch. This makes them easier to
train, while not sacrificing classification performance for a smaller sized network.
Instead of using a CNN for direct classification, one can choose to use a CNN to
extract local features by interpreting the activations of the last hidden layer as
the feature vector. Bluche et al. [2] propose to use features learned by a CNN
for word recognition in conjunction with HMMs, and show that the learned
features outperform previous representations. Gong et al. [11] employ a similar
approach for image classification. Their local activation features are computed
by calculating the activation of a pretrained CNN on the image itself, and on
patches of various scales extracted from the image. The activations for each scale
are then aggregated using VLAD encoding. The final image descriptor is formed
by concatenating the resulting feature vectors from each scale.
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Fig. 1: Overview of the encoding process. The two main steps are the feature
extraction using a pretrained CNN, and the encoding step, where the local
features are agreggated using a pretrained GMM.

3 Writer Identification Pipeline

Our proposed pipeline (cf. Figure 1) consists of three main steps: the feature ex-
traction from image patches using a CNN; the aggregation of all the local features
from one document into one global descriptor; and the successive normalization
of this descriptor. A pretrained CNN and a pretrained GMM are required for
feature extraction and encoding, respectively.

3.1 Convolutional Neural Networks

In our pipeline the CNN is only used to calculate a feature representation of a
small image patch, but not for directly identifying the writer. The training of the
CNN, however, has to be performed by backpropagation, which requires labels
for the individual patches. Therefore, during the training phase, the last layer
of our network consists of 100 SoftMax nodes, representing the writer IDs of
the Icdar13 training set. After the training, this last layer is discarded and the
remaining layers are used to generate the feature representation for the image
patches. The architecture of the CNN we use is shown in Figure 2, where the
dashed box marks the part of the CNN that is kept after the training procedure.

The CNN consists of 6 layers in total. The first layer is a convolutional
layer, followed by a pooling layer. In the convolutional layer, the input patch is
convolved with 16 filters. The pooling layer is then used to reduce the dimensions
of the filter responses by performing a max pooling over regions of size 2× 2 or
3× 3. The two subsequent layers follow the same principle: a convolutional layer
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Fig. 2: Schematic representation of the used CNN. C1 and C2 are convolutional
layers (red connections). P1 and P2 are max pooling layers (blue connections).
The last three layers are fully connected (gray connections). After training only
the part of the net inside the dashed box (activation features) is kept. The
activations of the hidden layer become the local descriptor for the image patch.

with 256 filters is followed by a pooling layer. These first four layers constitute
the convolutional part of the network. The output of the second pooling layer is
next transformed into a 1-D vector which is fed into a layer of hidden nodes. For
all of these layers rectified linear units (ReLU) are used as nodes. The last layer
then consists of 100 nodes with a SoftMax activation function. They are used for
classification during the training.

The training set consists of patches extracted from the Icdar13 training
set that are centered on the contour of the writing. For each of the 100 writers,
Icdar13 contains four images, two of Greek handwritten text and two of English
handwritten text. We further divided this set into a training and test set, by
using patches from the first English and Greek text for training, and patches from
the second English and Greek text for testing the trained convolutional network.
The training and test set consist independently of 4 million image patches of size
32× 32. The image patches are not preprocessed in any manner.

The training is performed by using the CUDA capabilities of the neural net-
work library Torch [6]. All the CNNs are trained using the Torch implementation
of stochastic gradient descent (SGD) with a learning rate of 0.01 for 20 epochs.
For the first five epochs of training a Nesterov momentum m = 0.9 is used to
speed up the training process.

3.2 GMM Supervector Encoding

Given the local activation features, we need to aggregate them to form one
global descriptor for each document. For this task we use a variant of the GMM
supervector approach of Christlein et al. [5].

In the training step a Gaussian mixture model (GMM) is trained as the
dictionary from a set of ZCA-whitened activation features. This dictionary is
subsequently used to encode the local descriptors by calculating their statistics
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with regard to the dictionary. The K-component GMM is denoted by λ =
{wk, µk, Σk |k = 1, . . . ,K}, where wk, µk and Σk are the mixture weight, mean
vector and diagonal covariance matrix for mixture k, respectively. The parameters
λ are estimated with the expectation-maximization (EM) algorithm [7].

Given the pretrained GMM and one document, the parameters λ are first
adapted to all activation features extracted from the document by means of a
maximum-a-posteriori (MAP) step. Using a data-dependent mixing coefficient
they are coupled with the parameters of the pretrained GMM. This leads to
different mixtures being adapted depending on the current set of activation
features [23]. Given the descriptorsX = {xt,xt ∈ RD, t = 1, . . . T} of a document,
first the posterior probabilities γt(k) for each xt and Gaussian mixture gk(x) are
computed as:

γt(k) =
wkgk(xt)∑K
j=1 wjgj(xt)

. (1)

Since the covariances and weights give only a slight improvement in accu-
racy [5], we chose to adapt only the means of the mixtures, thus, reducing the
size of the output supervector and lowering the computational effort. The first
order statistics are computed as:

µ̂k =
1

nk

T∑
i=1

γt(k)xt , (2)

where nk =
∑T

t=1 γt(k). Then, these new means are mixed with the original
GMM means:

µ̃k = αkµ̂k + (1− αk)µk , (3)

where αk denotes a data dependent adaptation coefficient. It is computed by
αk = nk

nk+τ , where τ is a relevance factor. The new parameters of the mixed

GMM are then concatenated forming the GMM supervector: s =
(
µ̃⊤

1 , . . . , µ̃
⊤
K

)⊤
.

This global descriptor s is a KD dimensional vector which is eventually used for
nearest neighbor search using the cosine-distance as metric.

3.3 Normalization

While contrast-normalization is an often used intermediate step in CNN train-
ing [1], we employ ZCA whitening to decorrelate the activation features followed
by a global L2 normalization. We will show that the accuracy of the GMM
supervector benefits greatly from this normalization step.

Additionally, our GMM supervector is normalized, too. Christlein et al.
suggested to normalize the full GMM supervector (consisting of the adapted
weight, mean and covariance parameters) using power normalization with a power
of 0.5 prior to a L2 normalization [5]. Effectively this results in applying the
Hellinger kernel. In contrast, we employ a kernel derived from the symmetrized
Kullback-Leibler divergence [30] to normalize the adapted components:

µ̊k =
√
wkσ

− 1
2

k µ̃k , (4)
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where σk is the vector of the diagonal elements of the covariance matrix Σ of the
trained Gaussian mixture k. This implicitly encodes information contained in the
variances and weights of the GMM, although only the means were adapted in the

main encoding step. The normalized supervector becomes s̊ =
(
µ̊⊤

1 , . . . , µ̊
⊤
K

)⊤
.

3.4 Implementation Notes

For the computation of the posteriors, we set all but the ten highest posterior
probabilities computed from each descriptor to zero. Consequently, we compute
the adaptation only for the data having non-zero posteriors. This has the effect
of reducing the computational cost with nearly no loss in accuracy. Similar to
the work of Christlein et al. [5], we used 100 Gaussian mixtures, but raised the
relevance factor τ to 68 which was found to slightly improve the results.

4 Evaluation

4.1 Datasets

We use two different datasets for evaluation: the Icdar13 benchmark set [20]
and the Cvl dataset [18]. Both are publicly available and have been used in
many recent publications [5,9,15].

ICDAR13 [20] The Icdar13 benchmark set is separated into a training
set consisting of documents from 100 writers and a writer independent test set
consisting of documents from 250 writers. Each writer contributed four documents.
Two are written in Greek, and two are written in English. This provides for a
challenging cross-language writer identification.

CVL [18] The Cvl dataset consists of 310 writers. The dataset is split in
a training set and a test set without overlap of the writers. The training set
contains 27 writers contributing seven documents each. The test set consists of
283 writers who contributed five documents each. One document out of the five
(seven) documents is written in German, the others in English. Note that we
binarized the documents using Otsu’s method.

4.2 Metrics

To evaluate our experiments we use the mean average precision (mAP) and the
hard TOP-k scores. Both are common metrics in information retrieval tasks.
Given a query document from one writer, an ordered list of documents is returned,
where the first returned document is regarded as being the closest to the query
document. The mAP then is the mean of the average precision (aP) over all
queries. aP is defined as

aP =

∑n
k=1 P (k) · rel(k)

#relevant documents
. (5)
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Table 1: Evaluation of different CNN configurations on the Icdar13 training set

Filter configuration C1 P1 C2 P2

A 5× 5 2× 2 5× 5 2× 2
B 7× 7 2× 2 5× 5 3× 3

(a) Convolutional and pooling layer configurations of the CNN

Filter size
No. hidden nodes

64 128 256

A 38.2/23.2 49.3/23.7 55.0/24.5
B 40.3/21.0 45.6/22.4 53.5/23.0

(b) Classification accuracy [%] using the classi-
fication layer of the CNN (train/test)

Filter size
No. hidden nodes
64 128 256

A 0.937 0.926 0.895
B 0.948 0.929 0.910

(c) Averaged mAP of VLAD encoding

Given the ordered list of documents for a query document, the aP averages over
P (k), the precision at rank k, that is given by the number of documents from
the same writer in the query up to rank k divided by k. rel(k) is an indicator
function that is one if the document retrieved at rank k is from the same writer
and zero otherwise.

The hard TOP-k scores are determined by calculating the percentage of
queries, where the k highest ranked documents were from the same writer, e. g.,
the hard TOP-3 denotes the probability that the three best ranked documents
stem from the correct writer.

4.3 Convolutional Neural Network Parameters

With the CNN architecture fixed to two convolutional and one hidden layer there
are two main parameters that are essential for the performance of the trained
activation features: the filter size, and the number of hidden nodes in the last
layer, i. e., the size of the output descriptor. We conducted some preliminary
experiments using the Icdar13 training set to determine the optimal parameters
for the chosen network architecture. We evaluated two different setups of the
filter and pooling sizes for the convolutional layers. The values for the two
configurations A and B are shown in Table 1a. Comparing the two configurations
shows that, B uses larger filters and pooling sizes and should therefore be more
insensitive to translations of the patches. For both filter sizes we also evaluated
the effect of the output feature size by using three different numbers of hidden
nodes in the last layer: 64, 128, and 256.

For these preliminary experiments we used VLAD encoding [17] instead
of GMM supervectors due to its faster computation time. VLAD is a non-
probabilistic version of Fisher vectors which hard-encodes the first order statistics,
i. e., sk =

∑
xt∈X̃(xt −µk), where X̃ refers to the set of descriptors for which the
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Table 2: The influence of different parts of the pipeline on the Icdar13 test set

Method mAP

RootSIFT + SVwmc,ssr+l2 [5] 0.671
RootSIFT + SVm,kl 0.680
SURF + SVm,kl 0.718
CNN-AF + SVm,kl 0.860

(a) Comparison of different local descrip-
tors

Method mAP

CNN-AFpwh + SVm,kl 0.880
CNN-AFzwh + SVm,kl 0.886
CNN-AFzwh + SVwmc,ssr+l2 0.877
CNN-AFzwh + FV 0.866

(b) Influence of different whitening and
encoding methods

cluster center µk is the closest one. The dictionary can be efficiently computed
by using a mini-batch version of k-means [26]. We report the average mAP over
the results of 10 VLAD-encoding runs.

Besides the network configurations, Table 1 shows the classification accuracy
obtained with the CNN including the classification layer on the test set after 20
epochs of training in part (b) and the averaged mAP of 10 runs of VLAD encoding
in part (c). Interestingly, the results for both evaluation approaches are almost
complementary. The CNN alone reaches the best results for smaller filters and a
large number of hidden nodes, while the VLAD encoding prefers larger filters
and a smaller size of the activation features vector (i. e., number of hidden nodes).
A possible explanation might be that, for a larger number of hidden nodes the
activations of the hidden layer are less descriptive for discerning between writers
because the connections between the hidden and the classification layer take over
that part. In contrast, for a small number of hidden nodes, the descriptiveness
of the activations of the hidden layer seems to be higher, making them more
suitable for use as features independent from the classification layer of the CNN.
It should also be noted that the classification accuracy of the CNN is already
quite impressive considering that the classification is performed using only a
single patch of size 32× 32 for 100 different writers/classes. Since configuration
B shows the highest mAP, this configuration of the CNN is used for all of the
following experiments.

4.4 Performance Analysis

We now investigate the influence of the individual steps in our pipeline. We replace
the CNN activation features by other local descriptors. We also examine the
influence of applying ZCA- and PCA-whitening to the CNN activation features.
Lastly, we evaluate the replacement of the GMM supervectors with other encoding
methods.

Table 2a compares the learned activation features with SURF and RootSIFT.
Both have been used successfully for offline writer identification by Jain and
Doermann [15] and Christlein et al. [5], respectively. Interestingly, SURF performs
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better than RootSIFT. However, our proposed activation features outperform
both descriptors by 0.14 and 0.18 mAP, respectively.

Table 2b shows the effect of decorrelating the activation features using PCA
and ZCA whitening (CNN-AFpwh + SVm,kl vs. CNN-AFzwh + SVm,kl) and the
comparison with the other encoding methods. CNN-AFzwh+SVwmc,ssr+l2 is using
GMM supervectors as proposed by Christlein et al. [5] and CNN-AFzwh + FV
uses Fisher vectors as proposed by Sanchez et al. [24]. The SV encoding by
Christlein et al. adapts all components (weights, means, covariances) while the FV
encoding uses the means and covariances. Both methods use power normalization
(power of 0.5) followed by l2 normalization instead of the KL-kernel normalization.

The decorrelation of the features brings an improvement of 0.02 mAP, with
ZCA giving slightly better results than PCA. The decorrelated score with the
proposed method also outperforms the two other encoding methods.

4.5 Comparison with the State of the Art

Table 3a and Table 4 show the results achieved with the complete pipeline on
the Icdar13 and Cvl test sets, respectively. We compare with the state of the
art 1 and SURF descriptors encoded with GMM supervectors, cf. Table 2a. Since
the Cvl training set is too small to compute a comparable GMM, we used the
GMM and ZCA transformation matrix estimated on the Icdar13 training set
for evaluating the pipeline on the Cvl dataset. On both datasets the proposed
pipeline using CNN activation features outperforms the previous methods in terms
of mAP. The increase in performance is particularly evident on the complete
Icdar13 test set, where our method achieves an absolute improvement of 0.21
mAP. This is significantly better than the state of the art [5] (permutation test:
p ≪ 0.05). On the Cvl dataset we achieve comparable results to the state of
the art (permutation test: p = 0.11). However note that a) the Icdar13 dataset
is much more challenging due to its bilingual nature, and b) that we have not
trained explicitly for the CVL dataset. Thus, our results show that the features
learned from the ICDAR training set can generally be used for other datasets,
too. We believe that the results could be further improved if the Cvl training
set would be incorporated into the training of the CNN activation features.

Table 3b shows the results for evaluating the Greek and English subsets of the
Icdar13 test set independently. Again, the proposed method further improves
the already high scores of the previous methods.

5 Conclusion

The writer identification method proposed in this paper exploits activation fea-
tures learned by a deep CNN, which in comparison to traditional local descriptors
like SIFT or SURF yield higher mAP scores on the Icdar13 and Cvl datasets.
On the Icdar13 test set, an increase of about 0.21 mAP is achieved with this

1 The methods [15] and [12] did not provide results on the full Icdar13 dataset.
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Table 3: Hard criterion TOP-k scores and mAP evaluated on Icdar13 (test set)

TOP-1 TOP-2 TOP-3 mAP

CS [14] 0.951 0.196 0.071 NA
SV [5] 0.971 0.428 0.238 0.671
SURF 0.967 0.551 0.273 0.718
Proposed 0.989 0.832 0.613 0.886

(a) Complete Icdar13 test set

Greek English
TOP-1 mAP TOP-1 mAP

∆-n H. [12] 0.960 NA 0.934 NA
Comb. [15] 0.992 0.995 0.974 0.979
SURF 0.950 0.965 0.956 0.964
Proposed 0.996 0.998 0.976 0.981

(b) Icdar13 language subsets

Table 4: Hard criterion and mAP evaluated on Cvl

TOP-1 TOP-2 TOP-3 TOP-4 mAP

FV [9] 0.978 0.956 0.894 0.758 NA
Comb [15] 0.994 0.983 0.948 0.829 0.969
SV [5] 0.992 0.981 0.958 0.887 0.971
SURF 0.986 0.973 0.948 0.836 0.958
Proposed 0.994 0.988 0.973 0.926 0.978

new set of features. We show in our experiments that the retrieval rate is strongly
influenced by the design choices of the CNN architecture. The local activation
features are encoded using a modified variant of the GMM supervectors approach.
However, we adapt only the means of the Gaussian mixtures in the aggregation
step. Subsequently, the supervector is normalized using the KL-kernel. By implic-
itly adding information contained in the weights and covariances of the mixtures
in the normalization step, the performance is increased while at the same time
halving the dimensionality of the global descriptor.

For future work, we would like to explore larger and more complex CNN
architectures and recent discoveries like the benefit of Lp-pooling [27] instead of
max pooling and normalization of activations after convolutional layers of the
network. There is also still room for improvement in the encoding step of the
local descriptors, where democratic aggregation [16] or higher order VLAD [22]
could further improve the writer identification rates.

Acknowledgments

This work has been supported by the German Federal Ministry of Education and
Research (BMBF), grant-nr. 01UG1236a. The contents of this publication are
the sole responsibility of the authors.



12 V. Christlein et al.

References

1. Bengio, Y.: Deep Learning of Representations for Unsupervised and Transfer
Learning. In: Unsupervised and Transfer Learning, Challenges in Machine Learning.
vol. 7, pp. 19–41. Bellevue (Jun 2011)

2. Bluche, T., Ney, H., Kermorvant, C.: Feature Extraction with Convolutional Neural
Networks for Handwritten Word Recognition. In: 2013 12th International Conference
on Document Analysis and Recognition. pp. 285–289. Buffalo (Aug 2013)

3. Brink, A., Smit, J., Bulacu, M., Schomaker, L.: Writer Identification Using Direc-
tional Ink-Trace Width Measurements. Pattern Recognition 45(1), 162–171 (Jan
2012)

4. Bulacu, M., Schomaker, L.: Text-Independent Writer Identification and Verification
Using Textural and Allographic Features. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 29(4), 701–17 (Apr 2007)

5. Christlein, V., Bernecker, D., Honig, F., Angelopoulou, E.: Writer Identification
and Verification Using GMM Supervectors. In: Applications of Computer Vision
(WACV), 2014 IEEE Winter Conference on. pp. 998–1005 (Mar 2014)

6. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A Matlab-like Environment for
Machine Learning. In: Big Learning, Workshop on Advances in Neural Information
Processing Systems 24 (NIPS 2011). Granada (Dec 2011)

7. Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological) 39(1), 1–38 (1977)

8. Djeddi, C., Meslati, L.S., Siddiqi, I., Ennaji, A., Abed, H.E., Gattal, A.: Evaluation
of Texture Features for Offline Arabic Writer Identification. In: Document Analysis
Systems (DAS), 2014 11th IAPR International Workshop on. pp. 8–12. Tours (Apr
2014)

9. Fiel, S., Sablatnig, R.: Writer Identification and Writer Retrieval using the Fisher
Vector on Visual Vocabularies. In: Document Analysis and Recognition (ICDAR),
2013 12th International Conference on. pp. 545–549. Washington DC (Aug 2013)

10. Gilliam, T., Wilson, R., Clark, J.: Scribe Identification in Medieval English
Manuscripts. In: Pattern Recognition (ICPR), 2010 20th International Confer-
ence on. pp. 1880–1883. Istanbul (Aug 2010)

11. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale Orderless Pooling of Deep
Convolutional Activation Features. In: Fleet, D., Pajdla, T., Schiele, B., Tuyte-
laars, T. (eds.) Computer Vision – ECCV 2014, vol. 8695, pp. 392–407. Springer
International Publishing, Zurich (Sep 2014)

12. He, S., Schomaker, L.: Delta-n Hinge: Rotation-Invariant Features for Writer
Identification. In: Pattern Recognition (ICPR), 2014 22nd International Conference
on. pp. 2023–2028. Stockholm (Aug 2014)

13. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep Features for Text Spotting. In:
Computer Vision – ECCV 2014, vol. 8692, pp. 512–528. Springer International
Publishing, Zurich (Sep 2014)

14. Jain, R., Doermann, D.: Writer Identification Using an Alphabet of Contour Gradi-
ent Descriptors. In: Document Analysis and Recognition (ICDAR), International
Conference on. pp. 550–554. Buffalo (Aug 2013)

15. Jain, R., Doermann, D.: Combining Local Features for Offline Writer Identifica-
tion. In: Frontiers in Handwriting Recognition (ICFHR), 2014 14th International
Conference on. pp. 583–588. Heraklion (Sep 2014)



Writer Identification Using CNN Activation Features 13

16. Jégou, H., Zisserman, A.: Triangulation Embedding and Democratic Aggregation
for Image Search. In: Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on. pp. 3310–3317. Columbus (Jun 2014)

17. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating
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