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Motivation 
  ● Dimensionality Reduction 
● Statistical Analysis and Modeling 
● Nomenclature 
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● Curse of dimensionality 
● No statistical significance due to sparse sampling 
● Distance metrics not meaningful 
● Computational burden 

 
● Visualization 

● Intuitive feel what the data looks like 
● Analysis of machine learning algorithms 

 
● Underlying forces 

● How are samples created? 
● Important features and structures 
● Removal of misleading features 

 

Dimensionality Reduction 
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● Statistical analysis  
● Describe, understand and predict a population based on  

sample datasets (inference) 
● Characterize data in a short and compact form 
● Out-of-sample problem 

 

● Statistical modeling 
● Reconstruction of a complex entity from a  

compact statistical description 
● Pre-image problem 

 

 

Statistical Analysis and Modeling 
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Underlying statistical model? 
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● High-dimensional (mean-centered) input points 
 
 

● Low-dimensional output points 
 

 
● Matrix notation 

 
 
● Inner products 

 
 
 
 

Nomenclature 
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● Out-of-sample problem 
● For an unseen sample                                     what is its             

corresponding low-dimensional representation              ? 
● This may be a non-trivial task... 

 
● Pre-image problem 

● Given an arbitrary low-dimensional representation             ,  
what is the corresponding vector                in input space? 

● For many dimensionality reduction techniques, the exact pre-image 
simply does not exist! 

 
 
 
 

Nomenclature 
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Linear Dimensionality Reduction 
● Principal Component Analysis (PCA) 
● Multidimensional Scaling (MDS) 
● Applications 
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Principal Component Analysis (PCA) 

● Find the directions (i) along which the data has maximum variance 
and (ii) the relative importance of these directions 

 
● Minimum reconstruction error: 

 
 
 
 
subject to  
 

● Solution given by Eigen-decomposition of the covariance matrix 
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Principal Component Analysis (PCA) 

● Out-of-sample problem 
● Principal axes     derived from the training set 
● For an unseen sample                its low-dimensional representation is: 

 
 

● Pre-image problem 
● For an arbitrary low-dimensional representation               the 

corresponding vector in input space is 
 

● This follows from the orthonormality of  
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This is straight-forward... 
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Principal Component Analysis (PCA) 

● PCA requires the data to lie on a   -dimensional linear subspace 
● This will introduce some error in practice 
● Will definitely fail for curved manifolds 
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Figure: PCA applied to samples drawn from a sine curve. 

Second mode essentially for  
error compensation 
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Principal Component Analysis (PCA) 

● PCA yields global modes of variation 
● Sparsity is sacrificed for the sake of variance maximization 
● Remedies: Factor-Rotations [1], Sparsity-Regularization [2,3] 
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Figure: PCA and varimax rotations applied to corpus callosum annotations [1]. 
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Multidimensional Scaling (MDS) 

● Compute low-dimensional representation that  
preserves mutual inner products 
● Pairwise distances (equals PCA) 
● Mutual angles 
● Generalized metrics 

 
● Objective function 

 
 
 

● Solution given by spectral decomposition of the Gram matrix 
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Applications 

● Statistical shape models for  
3D medical image segmentation 
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Heimann T, Meinzer HP.  
Statistical shape models for 3D medical image segmentation: A review 
In: Medical Image Analysis. Vol. 13(4), pp. 543-563, 2009 

On the one hand, the PCA approach employed by 
the vast majority of studies unquestionably has its 

weaknesses: A number of modeled shapes will 
certainly not feature Gaussian distributions and the 
linear approximation model will be suboptimal. On 

the other hand, PCA is fairly robust to the input 
data distribution and generally just works. 
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Applications 

● Model-based segmentation 
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Spiegel M, Hahn D, Daum V, Wasza J, Hornegger J.  
Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration  
In: Computerized Medical Imaging and Graphics. Vol. 33, pp. 29-39, 2009 

Figure: First mode of variation. Figure: Kidney segmentation using ASMs. 
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Applications 

● 4-D shape priors for respiratory motion management 
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Wasza J, Bauer S, Hornegger J.  
Real-time Motion Compensated Patient Positioning and Non-Rigid Deformation Estimation using 4-D Shape Priors 
In: MICCAI 2012, accepted for publication 

Figure: Motion compensated patient positioning 
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Applications 

● Respiratory model of anatomical motion 
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Zhang Q, Pevsner A, Hertanto A, Hu Y, Rosenzweig K, Ling C, Mageras G. 
A patient-specific respiratory model of anatomical motion for radiation treatment planning 
In: Medical Physics. Vol. 34(12), pp. 4772-4781, 2007 

Figure: Actual CT and reconstructed volume. 
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Non-linear Dimensionality Reduction 
● Kernel Principal Component Analysis (KPCA) 
● Manifold Learning and Graph-Based Methods 
● Applications 
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Kernel Principal Component Analysis (KPCA) 

● Basic idea [4]: compute PCA in a feature space                   instead of 
the original input space               
● In general:  
● Kernel trick:  

 

● Covariance matrix in feature space 
 

 
 
● This is equivalent to non-linear MDS 

● Kernel matrix contains generalized inner products in feature space 
● Spectral decomposition of the Gram matrix in feature space 

20 



02.08.2012   |   J. Wasza   |   Pattern Recognition Lab (CS 5)   |   Dimensionality Reduction 

Kernel Principal Component Analysis (KPCA) 

● Eigendecomposition of the kernel matrix 
 
 
 

● Note that the number of modes equals the number of samples! This is 
in contrast to conventional PCA. 
 

● Projection on the   -th Eigenvector       
 

 
● Note that we assume the data to be mean-centered in feature space. 

This in general not valid, for details see [4]. 
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Kernel Principal Component Analysis (KPCA) 

● Out-of-sample problem 
● Not as easy as with conventional PCA 
● Related to the Nyström extension [5] 
 
 

 
● Pre-image problem 

● In feature space like regular PCA 
● From feature space to input space an ill-posed problem 
● Usually approximated by minimizing an error function [5] 
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Kernel Principal Component Analysis (KPCA) 

● Choosing the kernel function 
● Radial basis functions (RBF) 
● Polynomial kernels 
● Linear functions 
● See also Kernel-SVM and Kernel-SVR 

 
● Parameters 

● Highly depend on the problem 
● Slightly different parameters usually produce complete different results 
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There is no rule which kernel to choose and 
how to select its parameters! 
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Kernel Principal Component Analysis (KPCA) 
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Figure: Dimensionality reduction using KPCA. 
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Manifold Learning and Graph-Based Methods 

● Basic idea: duplicate the behavior of PCA on manifolds instead of 
linear subspaces 

● Manifolds:  
● Low-dimensional structure embedded in a high-dimensional space 
● Geodesic distances vs. euclidean distances 
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Figure: The swissroll manifold. Left: original data. Middle: connected data. Right: unfolded. 
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Manifold Learning and Graph-Based Methods 

● Multitude of approaches (see [6,7] for overviews) 
● Isomap 
● Locally Linear Embedding 
● Laplacian Eigenmaps  
● Maximum Variance Unfolding 
● ... 

 

● Key issues 
● Discrete manifold approximations (graphs) 
● Geodesic distances (shortest paths) 
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Manifold Learning: Isomap 

● Idea: Preserve distances between input patterns as measured along 
the manifold from which they were sampled       Geodesic distances 
 

● Estimation of geodesic distances 
● k-nearest neighbor graph  

 
 

● Geodesic distance matrix 
 
 

● Classical MDS on the geodesic distances 
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Manifold Learning and Graph-Based Methods 

● Out-of-sample problem 
● Depends on the method 
● Often related to the Nyström extension 

 

● Pre-image problem 
● Depends on the method 
● Closely related to the out-of-sample problem 

 
● Common problems 

● All algorithms require a neighborhood size 
● Theoretical performance results often not available 
● Target dimensionality must be specified in general 
● Do real world data exhibit manifold structures? 
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Applications 

● Image-based breathing gating 
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Wachinger C, Yigitsoy M, Rijkhorst E, Navab N.  
Manifold learning for image-based breathing gating in ultrasound and MRI 
In: Medical Image Analysis, Vol. 16(4), pp.806-818, 2012 

Figure: Image-based breathing signal obtained by manifold learning. 
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Applications 

● Registration, Segmentation and Classification 
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Aljabar, P, Wolz R, Rueckert D.  
Manifold Learning for Medical Image Registration, Segmentation and Classification 
In: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, 2012 

Figure: Schematic overview of manifold learning in medical imaging. 
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