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Motivation

e Dimensionality Reduction

e Statistical Analysis and Modeling
e Nomenclature
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Dimensionality Reduction

e Curse of dimensionality
o No statistical significance due to sparse sampling
e Distance metrics not meaningful
o Computational burden

e Visualization
o Intuitive feel what the data looks like
o Analysis of machine learning algorithms

e Underlying forces
e How are samples created?
o Important features and structures
o Removal of misleading features
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Statistical Analysis and Modeling

e Statistical analysis

e Describe, understand and predict a population based on
sample datasets (inference)

o Characterize data in a short and compact form
o Out-of-sample problem

e Statistical modeling

e Reconstruction of a complex entity from a
compact statistical description

e Pre-image problem

Underlying statistical model?
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Nomenclature

e High-dimensional (mean-centered) input points
{33?;}?:1 , Ly € RD , ZZE@' =0

e Low-dimensional output points
y, €cRY d<< D

e Matrix notation

e Inner products

a:'Tw; = (@, xj) = (Ti - ;)

(A



FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

£
Y;
1|

Nomenclature

e Qut-of-sample problem

e Foranunseen sample z ¢ R” | ¢ {z;}"_, whatis its
corresponding low-dimensional representation y € RY 2

e This may be a non-trivial task...

e Pre-image problem
o Given an arbitrary low-dimensional representation y € R?
what is the corresponding vector = € R” in iInput space?

o For many dimensionality reduction techniques, the exact pre-image
simply does not exist!



Linear Dimensionality Reduction
e Principal Component Analysis (PCA)

e Multidimensional Scaling (MDS)

e Applications
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Principal Component Analysis (PCA)

e Find the directions (i) along which the data has maximum variance
and (ii) the relative importance of these directions

e Minimum reconstruction error:

d
2
Toon =3 o= 3 (@ie)es| =l — By
: j=1 i
subject to (e; - e;) = 1, i=
1 J 0’ ?:#j

e Solution given by Eigen-decomposition of the covariance matrix

1
C=-> xxz/ =EAE" , A=diag(\,...,\p)
n 7
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Principal Component Analysis (PCA)

e Qut-of-sample problem
e Principal axes E derived from the training set {x; },_,
e For an unseen sample * ¢ R” its low-dimensional representation is:

y=E'z

e Pre-image problem

o For an arbitrary low-dimensional representation 3§ € R? the
corresponding vector in input space is

x = Ey
o This follows from the orthonormality of E

This Is straight-forward...
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Principal Component Analysis (PCA)

e PCA requires the data to lie on a d-dimensional linear subspace
e This will introduce some error in practice
o Will definitely fail for curved manifolds

Second mode essentially for

Figure: PCA applied to samples drawn from a sine curve.

02.08.2012 | J.Wasza | Pattern Recognition Lab (CS5) | Dimensionality Reduction 11
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Principal Component Analysis (PCA)

e PCA yields global modes of variation
o Sparsity is sacrificed for the sake of variance maximization
o Remedies: Factor-Rotations [1], Sparsity-Regularization [2,3]

Figure: PCA and varimax rotations applied to corpus callosum annotations [1].
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Multidimensional Scaling (MDS)

e Compute low-dimensional representation that
preserves mutual inner products
o Pairwise distances (equals PCA)
o Mutual angles
e Generalized metrics

e Objective function
2
JMDs = Z (i -z, —y, - y,)

e Solution given by spectral decomposition of the Gram matrix
Gij =i z;
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Mesizal Image Analyels 13 [2005) 343563

Contents lists available at ScianceDirsct

Medical lmage Analysis

Applications

journal homepage: www.elsevier.com/locate/media
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Statistical shape models for 3D medical image segmentation: A review

Tobias Heimann =, Hans-Peter Meinzer

e Statistical shape models for
3D medical image segmentation

Div. of Masica! ant Sisiogicst Informarics, Germes Concer Resecroh Cemcer, In Neuenbaimer Fefd 380, D-S9320 Hetdaibarg, Germany

ARTICLE INFO AESTRACT

Aricie Rt

Recelves 27 Aogust 2007

Recelves in sevises form 24 February 2008
Accemes 18 May 2003

Avallabie caline 27 May 2009

Statistical shape matiels (S5Ms) have By now been firmly established as a ragust tool for segmencatian of
medical images. While 20 madels have Besn in use since the arly 19605, wicsspread wilizatian of
three-dimensional mocels sppearsd anly in recen: years, primarily macs pessisie by breakthreughs in
autoematic decection af shape correspondences. in this arcile, we review the technizuss reguired &0 cres
ate and employ these 300 SEMs. While we an landmarkshased shape
hevenaghly xarmine e mcst papalar varsants of Arive Shape and Active ASpeMance miadsls, we sl
dessribe several altemacive approaches o statistical shape modeling Seructured inta the topics of shape
medsl ice, shape denice, local models and search alga-
rithms. we presen: an overview of the current state of the art in the field We canclude with 2 survey
of apglicasicns in the medical field and 2 discssion of future developments

Keywaras:
Sucimizal shape mads!
Defarmabis surface
Aczive Shage mael
Aczive Appearance model

' 2002 Els=vier B All rights reserved.

On the one hand, the PCA approach employed by

1. Introduetion

Inn £he 250 Dwo decades, model-based segmentarion approdches
have been established as one of the mast successful methods far
image analysis. By marching a model which containg infoemaricn

concenirate on methads for valumerric images. However, many
modeling meghods have caly been applied to 2D so far. Ta the
exrent that such methods can be generalized or extended o the
30 case, we have included them in the present review. We have
furthermare included some methads which have shown 1o be very

about the expected shape and af the finter-
850 [0 AEW iraged, [he Segmentation is conducted in A top-down
faghion. Due o the inherent a-peiori information, this appeaach
is more stable against local image artifacts and perurbations than
conventional low-level algorithms. While a single template shape
is an adequate model for industrial applications where mass-
produced, rigid objects need o be detected, this method is prone
o fail in case of biological objecs du 1o their consideraile natural
iability. Infoemation aboul Comman VAriarions thus has @ be
in the model. A stesight-forward approach to gather this
i Lo exanting  nuember of Kraining shapes by statisti-

o siatistizal shape models [S5Ms )
ceview methods and proceduces for gen-
staristical models of shape and
mentation. Specifically. we
jc models which can be
best-known meth-

ods in That area are
and Active Appearance models
et al I addition, we will discuss relaced

Due 1o the constantly increasing impartance of 3D imaging and
the urgent need for SegMmentarion in That particular area, we will

= Corresponding auther.
Emefl  ofdremes: T
Helmann].

135184155 - s2e Tunr mamer & 2005 Ssevier BV, All rignss resanves.
geiz10,101 6]).med1a 2008.05.004

Heimann T, Meinzer HP.
Statistical shape models for 3D medical image segmentation: A review
In: Medical Image Analysis. Vol. 13(4), pp. 543-563, 2009
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in 20, but which are technically not feasible in 30 -
simply to emphasize the difference.

The chjective of This article is To peovide the reader with a
surnmary of the current sare of the &rT with regard 1o 3D statistical
shape models, to demaonstrate what has been done wntil now. but
also 1o present socme ideas of what might yer be done. To ensure
cormgrehensive coverage, we have screened all publicaticas in-
cluded in IEEE Transactions oo Medical Imaging and Medical Image
Analysis curing the last 10 years for articles related 1o shape med-
els. [n addirion, we have included a large number of articles from
other international journals, but also numerous conference and
workshop papers which present goed ideas, bur which have nat
been published in any journal yer. Our main source of references
was the Interner; we have searched for the terms shape mpde!
and starisrical moded on PubMed, [EEE-Xplore. Citeseer and Google.
We have also fallowed the references encouritered in papers fram
these sites, until we had collected a comprehensive library of maee
than 4D0 articles on The topic. [n cage we encountered several pa-
pers froen one author abeut the same subject, we generally picked
the most detailed one foe this review.

LI. Retared work
Before reviewing statistical shape maodels. let us fiest defing

what we regard as related work that will nog be discussed further
in this article.

15
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Applications

e Model-based segmentation

Figure: First mode of variation. Figure: Kidney segmentation using ASMs.

Spiegel M, Hahn D, Daum V, Wasza J, Hornegger J.
Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration
In: Computerized Medical Imaging and Graphics. Vol. 33, pp. 29-39, 2009
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Applications

e 4-D shape priors for respiratory motion management

M St~ R(M®)+1

Figure: Motion compensated patient positioning

Wasza J, Bauer S, Hornegger J.
Real-time Motion Compensated Patient Positioning and Non-Rigid Deformation Estimation using 4-D Shape Priors
In: MICCAI 2012, accepted for publication

02.08.2012 | J.Wasza | Pattern Recognition Lab (CS 5) | Dimensionality Reduction 17
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Applications

e Respiratory model of anatomical motion

Figure: Actual CT and reconstructed volume.

Zhang Q, Pevsner A, Hertanto A, Hu Y, Rosenzweig K, Ling C, Mageras G.
A patient-specific respiratory model of anatomical motion for radiation treatment planning
In: Medical Physics. Vol. 34(12), pp. 4772-4781, 2007



Non-linear Dimensionality Reduction
e Kernel Principal Component Analysis (KPCA)

e Manifold Learning and Graph-Based Methods

e Applications

02.08.2012 | J.Wasza | Pattern Recognition Lab (CS5) | Dimensionality Reduction
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Kernel Principal Component Analysis (KPCA)

e Basic idea [4]: compute PCA in a feature space ¢ (x;) € ‘H instead of
the original input space x; € R”
e Ingeneral: H = R
o Kernel trick: ¢ (z;) - ¢ (x;) =k (xz;, ;)

e Covariance matrix in feature space ‘H

1
C = ; Z ¢ (%) ¢ (CU?:)T

e This is equivalent to non-linear MDS
o Kernel matrix contains generalized inner products in feature space
e Spectral decomposition of the Gram matrix in feature space
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Kernel Principal Component Analysis (KPCA)
e Eigendecomposition of the kerrT1eI matrix K, ; =k (x;, ;)
K = EAE" = EA? (EA‘)
E = [e?;,...,en} , A= d&(},g ()\1,...,)\”)

e Note that the number of modes equals the number of samples! This is
In contrast to conventional PCA.

e Projection on the p-th EigenvectorV?
y; = VP o (x;i) =/ pe]

e Note that we assume the data to be mean-centered in feature space.
This in general not valid, for detalils see [4].
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Kernel Principal Component Analysis (KPCA)

e OQOut-of-sample problem
o Not as easy as with conventional PCA
e Related to the Nystr'c')m extension [5]

g’ =VP. Ze (X)) = \/L)T ie{)k (x;,
" P =1

e Pre-image problem
o In feature space like regular PCA
o From feature space to input space an ill-posed problem
o Usually approximated by minimizing an error function [5]

= argmin ||V ¢ (x) — @“2
xr
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Kernel Principal Component Analysis (KPCA)

e Choosing the kernel function
o Radial basis functions (RBF)
o Polynomial kernels
e Linear functions
o See also Kernel-SVM and Kernel-SVR

e Parameters
e Highly depend on the problem
o Slightly different parameters usually produce complete different results

There is no rule which kernel to choose and
how to select its parameters!
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Figure: Dimensionality reduction using KPCA.
| J.Wasza | Pattern Recognition Lab (CS 5) | Dimensionality Reduction
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Manifold Learning and Graph-Based Methods

e Basic idea: duplicate the behavior of PCA on manifolds instead of
linear subspaces
e Manifolds:
o Low-dimensional structure embedded in a high-dimensional space
o Geodesic distances vs. euclidean distances

Figure: The swissroll manifold. Left: original data. Middle: connected data. Right: unfolded.
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Manifold Learning and Graph-Based Methods

e Multitude of approaches (see [6,7] for overviews)
e Isomap
e Locally Linear Embedding
e Laplacian Eigenmaps
e Maximum Variance Unfolding

e Key issues
o Discrete manifold approximations (graphs)
e Geodesic distances (shortest paths)
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Manifold Learning: Isomap

e Idea: Preserve distances between input patterns as measured along
the manifold from which they were sampled — Geodesic distances

e Estimation of geodesic distances
o k-nearest neighbor graph G, = (V, &)

V=A{xi}i_y , & = {llzi —x;| |=; e N (2:)}

e Geodesic distance matrix
D; ; = ShortestPath (g’z T, g;})

e Classical MDS on the geodesic distances
2
JisoMDS = Z (Dij —y:-y;)
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Manifold Learning and Graph-Based Methods

e OQOut-of-sample problem
e Depends on the method
o Often related to the Nystrom extension

e Pre-image problem
e Depends on the method
o Closely related to the out-of-sample problem

e Common problems
e All algorithms require a neighborhood size
o Theoretical performance results often not available
e Target dimensionality must be specified in general
e Do real world data exhibit manifold structures?
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Applications

e Image-based breathing gating

1-5 I I I I ! I I ! I I ! 1 I I ! I I | I I I I I I

1
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Figure: Image-based breathing signal obtained by manifold learning.

Wachinger C, Yigitsoy M, Rijkhorst E, Navab N.
Manifold learning for image-based breathing gating in ultrasound and MRI
In: Medical Image Analysis, Vol. 16(4), pp.806-818, 2012
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Applications

e Registration, Segmentation and Classification

' ™
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Figure: Schematic overview of manifold learning in medical imaging.

Aljabar, P, Wolz R, Rueckert D.
Manifold Learning for Medical Image Registration, Segmentation and Classification
In: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, 2012
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