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Pattern Recognition Pipeline A
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B Heuristic feature extraction methods

B Analytic feature extraction methods
= Principal Component Analysis (PCA)
= Minimal Intra-class Distance
= Maximal Inter-class Distance
= Linear Discriminant Analysis (LDA)

= Optimal Feature Transform



Analytic Methods for Feature Computation A

B Analytic feature extraction methods derive a linear

transformation ¢ that satisfies a specific optimality

criterion. Z = CI)f

m So far we have seen optimality criteria that are
related to the postulates of pattern recognition:

= Finding principal components that can explain the variability of
the data.

= Tight clusters for each class.

= Distinct clusters for different classes.

®m What about an optimality criterion that is directly

related to the goal of pattern recognition itself:
Good recognition (classification) rates



Optimal Feature Transform N

B There exists an analytic feature extraction method
whose goal is to minimize the number of
misclassifications.

m Alternatively one can think of the dual problem
which is maximizing the number of correct
classifications.

B The resulting features are then optimal for the
overall goal of pattern recognition.

B Thus, such a feature extraction method is called an
Optimal Feature Transform (OFT).



Optimality Criterion of OFT A

B The goal of OFT is to derive a transformation matrix
d that minimizes misclassifications.

B Expressing this goal mathematically requires us to
precisely define misclassification.

B This implies that we have to set up the basics for
describing classification itself.

m [t is a long derivation, so keep in mind that at the
end we want to derive an optimization function

S6(<I>) =...

that describes misclassifications.



Gaussian Distributed Features I

m We can not design a feature transform that will be
optimal for any possible input signal.

B Rather we design optimal feature transformations for
particular cases.

B S0, let's look at one such particular case.

B Special case: Features are normally distributed, i.e.
the probability density function of ¢ is a Gaussian

. . 1 (e-i.) = (6-q
¢ = N, 5, = e ) B
X/Zn‘ZK‘
where N'is a Gaussian distribution with amplitude ¢ ,
mean W, and variance X .
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Different Decision Regions A
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Distance Function A

m Consider a function u() which is a measure of how far

a point in feature space is from the center of a cluster.

= u4() is a distance measure to the center of cluster 1.
= U,() is a distance measure to the center of cluster 2.

m If for a specific feature vector ¢, , u,(c¢;) <u,(c;,) then
we classify ¢, as belonging to class Q;.

A

Gy




Decision Boundary A

B There is a region, where it is ambiguous whether
the data belongs to class 1, Q4, or class 2, Q,.

B This region is called the decision boundary.
m [t is the area where u,()= u,().

m It is the where we are most probable to have
misclassifications for both classes.

Cy
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OFT and Decision Boundary A

m Recall that the goal of OFT is to derive a transformation
matrix ® that minimizes misclassifications.

B We also know that the misclassifications will most
probably occur at the decision boundary (u;()= u,()).

B So we have to focus our derivation of the optimization

function for the computation of ® on the decision
boundary and the distance functions.

B Assuming that the feature vectors within each class are
normally distributed, an appropriate distance function

IS. .
U, (E) = (C — Uy )T 2;1 (E - taic) mzraar:igobls
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Decision Boundary Manifold A

B The decision boundaries are the manifolds where the
points belonging to them are equidistant to different

class centers:
u, (€)= u,(€)]

where H_, is the decision boundary between classes
Q_and Q,.

m What does the shape of H,, look like?
= Straight line?
= Section of a Circle?
= Section of an Ellipse?

H,, ={¢

B To answer that we must look at the distance function.
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Shape of the Decision Boundary A

m At the decision boundary u, (¢)=u,(c)
m Using the Mahalanobis distance metric

u (¢)=u,(@) =@ -i) =Ne-n,)=(¢-i,) =(¢ - i)

where u. and X. are constants for each class 2.

B This equation shows that, for classes whose features
follow a Gaussian distribution, H_, is quadratic in the
components of the vector c.

®m This means that in a 2D feature space H_, will look
like a parabola.
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On the Mahalanobis Distance I

B Consider the case where all the feature vectors that
belong to class Q_are equidistant from the mean
value of that class, U.:

u(é)=a, YéeEQ,
where o is a constant.
m Plot such a distribution.
m If u_() is the Euclidean distance, then we get a
circle of radius a which is centered around .

B Looking at the definition of the Mahalanobis
distance, u (¢)=(¢-g,.) 2, (¢ - i), we get a circle
only when the variance matrix is the identity 2_=1.
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On the Mahalanobis Distance - cont. I

B In general case the (co-)variance matrix is not the
identity matrix I, S =1

m In 2D think of a Gaussian with independent standard
deviations in each of the two axes, O, %0, What
one gets is an oblong 3D bel! shape.

m If we consider a set of feature pomts c that are
equidistant to the class mean i, i.e. u(¢)=a, For
this general case, we get an ellipsoid.

m Thus H, is an ellipsoid.



Ellipsoids and Classification
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m There is an ellipsoid in class Q2. that just touches the
decision boundary H_,. There is an ellipsoid in class

Q2, that just touches the decision boundary H,, .

A
G,

This “touching”
ellipsoid gives

a classification
guarantee.

A
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Ellipsoids and Classification - continued N

m Consider the maximal ellipsoid for class €2 _that is

still completely lies on the Q2 _side of the decision
boundary H, .

m For all the points inside that ellipsoid u _(¢) <u,(c).

B So as long as we stay within the ellipsoid, there is
no ambiguity about our classification decision, there
IS no misclassification.

Cy




OFT and Ellipsoids A

B The goal of OFT is to derive a transformation matrix
¢ that minimizes misclassifications.
B Find a ® that transforms the input signal f to a

feature vector ¢ so that the radius of the “touching’
ellipsoid is maximal.

(4

m In that way we will have the largest possible region
in the feature space where we will be getting correct
classifications.

m Still missing: A mathematical definition of the
touching ellipsoid.

B Keep in mind that there may be more than 2 classes.
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Guarantee Ellipsoid and Decision Boundary

m Let u_, be the minimum distance of a feature vector ¢
on the decision boundary, ¢ € H, to the mean value
of class €2_:

U, =min u (5)
KA ced,, ~

m In other words, We walk on the decision boundary. We
compute u _(c) for each point on the decision
boundary H_, . For one such point «,(¢) will be
minimal. This "minimal” point is where the
“guarantee” ellipse of class €2_ touches the boundary.

B We can have more than 2 classes. So we get a
decision boundary H, for every pair of classes Q
and €2;. For each H,; we geta U.
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Multiclass Decision Boundaries A
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Using the Guarantee Ellipsoids A

m As long as we are inside a “guarantee” ellipse, we
have ideally no misclassifications.

B In a multiclass setup, we will possibly end up with
intersecting ellipses.

B In order to preserve the “"no misclassification
property” of the guarantee ellipse, we must avoid
intersections that result from the different decision
boundaries.

B Thus, we must be conservative. For each particular
class €2 we must examine each decision boundary
with that class, H,,.H,4.H,,.... , and pick the ellipse
that is closest to the mean of the cluster.



Page 21

Using the Guarantee Ellipsoids - continued A

m For each particular class @_we must examine each
decision boundary with that class, H,,.H.H,, ...,
and pick the ellipse that is closest to the mean of the
cluster.

B We can use the minimal distance to find such an
ellipse: U, =minu,

K
m K#=A

B A pattern will be correctly classified if the feature
vector ¢ lies inside the ellipsoid with radius u, .

m For each class Q2 we get a radius that ensures
correct separation of the classes ©_and €2,. To be
able to separate all classes, we take the smallest

radius among all classes €2, .
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Probability of Misclassification N

B What happens outside the ellipse?

B There may still be points outside the conservative
ellipse that belong to class €2, but get mistakenly
classified as belonging to another class.

B What is the probability of my making this mistake?

P, (€)= plu,, <u(c))

m So for the overall error probability, for all the
classes is the sum weighted by the probability of the
class occurrlng

Perr = Ep P (€)=Y p(Q,)p(u,, < u(C))
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Probability of Misclassification- continued N

m So for the overall error probability, for all the
classes is the sum weighted by the probability of the
class occurring'

Do = Ep Jp; (€ Ep )(u,, <u(c))

m Use Chebyshev S |nequaI|ty.

p(uK < uK(E)) < M , where M = dim(¢)
! u

K

m

B The objective function for the OPT becomes:

K
M
K=1

Km
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Linear Transformations in Feature Space A

m What happens if we apply a linear transformation to
the feature vector c?

B Consider for example the case, where ¢'is related to
vector ¢' by an invertible linear transformation B:

¢ = B¢
B Are the mean values of vectors ¢ and c¢'related?
i, =E{c}

u. =E{Bc}=BE{c} =Bq,

B So the new expected value is just the original expected
value transformed by B.



Linear Transformations in Feature Space 2

m Are the covariances of vectors ¢ and ¢’ related?
3, =E{(e - )¢ -5,)" |
3 =B{(c- i) - i)}
E{ (B¢ - B, )(Bé - Bi,)' |
E{B(c - i, )¢ - i) B'}
BE{(¢ -, )(c-&,) }B'
=BX B’

B The covariance of the linearly transformed vector is
linearly related to the covariance of the original vector.
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Invariance of the Mahalanobis Distance i

®m How is the Mahalanobis distance of the transformed
vector ¢’ affected?

(€)= (€ - i) =7 - )
- (B¢ - Bii, )' (B=,B") (BE - Bii,)
-(¢-@,) B"(B") ='B"B(¢ - )
-(¢-a,) /(e - &)
= u,(C)
m Conclusion: The Mahalanobis distance metric u () is

independent of regular (aka invertible) linear
transformations.
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Impact of the Mahalanobis Invariance A

B Can we use this invariance property to simplify the
optimization problem of computing the transformation

matrix for the Optimal Feature Transform?

K
. . M
D = argqt)nln 5. (P) = argqr)mn;=1 p(QK)u—

Va\

K

m

g ®E R" Y with MN unknowns.

m Can we reduce the MN search space for an optimal
solution by using the invariance property of u_()?

m Recall that: ¢ = ®f

®m What happens when we apply to the feature vector ¢
a regular linear transformation?



Page 28

Impact of the Mahalanobis Invariance — cont

m When we apply a reqular linear transformation B to ¢ :
¢' = B¢ = BOf = ®'f , where @' = B

m Due to the invariance of the Mahalanobis distance to
regular linear transformations, ¢ has the same u ()

and therefore the same optimal solution to s.(P).

m Thus, @' is also an optimal feature transformation
matrix.

B Can we select a regular linear transformation B so that
deriving the elements of the transformation matrix @’
involves a smaller search space?



Impact of the Mahalanobis Invariance — cont

B B must be an MxM invertible matrix.

m Let us choose a B so that &' has the following form:

o= . . D
00 - 1

where @”" is multiplied to the left with an MxM
identity matrix.

m Why should @' have this form?

B Because the search space is reduced from MN
dimensions to MN-M-2,
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Remarks on Computing @ A\

B We reduced the search space, but we still have to

estimate ®' .
@' = argmin s, (P')

D

m Deriving the elements of P is not trivial.

B Keep trying to simplify the problem as much as
nossible.

B For example, we saw how one can exploit the
invariance of u.() to invertible linear
transformations in order to reduce the very large
search space.



