
Dr. Elli Angelopoulou
Lehrstuhl fŸr Mustererkennung (Informatik 5)

Friedrich-Alexander-UniversitŠt Erlangen-NŸrnberg

Artificial Neural Networks
Radial Basis Function Networks

 Seite 2

Page 2

Pattern Recognition Pipeline

! ! Classification
" ! Statistical classifiers

" ! Bayesian classifier
" ! Gaussian classifier

" ! Polynomial classifiers
" ! Non-Parametric classifiers

" ! k-Nearest-Neighbor density estimation
" ! Parzen windows
" ! Artificial neural networks

A/D Pre-processing
Feature Extraction
and Selection Classification fÕ f h c Ωκ

Learning Training samples

 Seite 3

Page 3

Artificial Neural Network (ANN)

! ! There is no precise agreed definition among
researchers as to what is an artificial neural network.

! ! Most would agree that it involves a network of simple
processing elements (neurons), which can exhibit
complex global behavior, determined by

" ! the connections between the processing elements and

" ! the element parameters.

! ! In a neural network model, simple nodes (neurons ,
or processing elements or units) are connected
together to form a network of nodes.

 Seite 4

Page 4

ANN Operation

! ! In general an ANN operates as a function .

! ! The “network” arises because the function is
defined as a composition of other functions ,
which can further be defined as a composition of
other functions, e.g. .

!

f : x " y

€

f (x)

!

gi(x)

!

hj (x)

!

h1

€

h2

€

h3
!

g1

€

g2

!

f

!

y

€

x

 Seite 5

Page 5

General Form of ANN

! ! There is great variation in ANNs, depending on:
" ! The number of layers
" ! Whether there are hidden layers or not
" ! The connectivity (We could have feedback loops.)
" ! The adaptability

! ! An ANN does not have to be adaptive. In practice,
part of their strength comes from adapting, changing
the weights of the connections in order to produce a
desired signal flow.

€

h1

€

h2

!

h3
€

g1

€

g2

€

f

!

y

!

x

Sometimes the
network is
abstracted as an
ANN black box.

 Seite 6

Page 6

Mathematical Description of an ANN

! ! A widely used type of composition is the nonlinear
weighted sum:

 where is a predefined function that forces the
output of a neuron to be in a certain range, typically
[0,1] or [-1,1].

! ! is often referred to as an activation function.

€

h1

€

h2

!

h3!

g1

!

g2

€

f

€

y

!

x

€

f (x) = φ wigi(x)
i
∑










€

φ

€

φ

 Seite 7

Page 7

Activation Function

! ! An activation function tries to mimic the firing of the
neuron if the incoming signal is sufficiently strong.

! ! Mathematically, this is usually
achieved with a sigmoid function,
e.g.:

! ! Sigmoid functions have the following characteristic
properties:
! ! They are differentiable
! ! They have 1 inflection point
! ! They have a pair of horizontal asymptotes

! ! Another typical sigmoid function employed in ANNs
is the hyperbolic tangent, .

€

φ(t) =
1

1+ e− t

€

φ(t) = tanh(t)

 Seite 8

Page 8

ANN and Classification

! ! The ANNs that we will examine are used in computing
discriminant functions.

! ! Recall that, a discriminant function for class Ωκ is a
polynomial that evaluates to 1 if the feature vector
belongs to that class. Otherwise it evaluates to zero.

! ! The input of such an ANN is a feature vector and
the output is a discriminant vector, .

€

dκ
 c () =

1 if  c ∈ Ωκ

0 otherwise




€

 c

!


d = (d1,d2,…,dK)

ANN

!


c

€

!
d

 Seite 9

Page 9

Radial Basis Function ANNs

! ! Radial Basis Function (RBF) networks use Radial Basis
Functions as their activation function.

! ! An RBF network is a feed-forward 3 layer network:
" ! input layer, in our case
" ! a hidden layer, where each node is a separate RBF
" ! an output layer, which is a weighted sum of the hidden layers.

!

c1

!

c2

!

cM

€

φ1

€

φ2

€

d1

!

" N

€



€



€

d2

!

dK

hidden layer

output layer input layer

!

 c

€

φi

 Seite 10

Page 10

Radial Basis Functions

! ! Radial basis functions were first used in 1987 by
Powell.

! ! He introduced RBFs as a means of mapping an input
vector to an output vector.

! ! A radial basis function (RBF) is a real-valued
function whose value depends only on the distance
from the origin, so that

! ! Alternatively, the RBF can be based on the distance
from some other point , called a center:

!

" (
!
x) = " (

!
x)

€

φ( x ,  q) = φ( x −

q)

€

!
q

 Seite 11

Page 11

Radial Basis Functions - continued

! ! So RBFs are a type of distance function.

! ! As a distance function, RBFs have the key
characteristic that response decreases
monotonically with distance from a central point.

! ! Its response radially decreases.

 Seite 12

Page 12

Different RBFs

! ! Any distance function that decreases radially can be
considered a radial basis function. Some commonly
used RBFs are:

! ! Two different forms of Gaussians:

! ! Multiquadric:

! ! Spline (a.k.a Logarithmic):

€

φ(
 x −  q) = e

−
(

x −

q)2

σ 2

€

φ( x −  q) =
1
2πΣ

e
−
1
2

x −

q ()T

Σ−1

x −

q ()

!

" (

x #

q) =

r 2 +

x #

q

2

r 2

!

" (
! x # ! q) =

! x # ! q 2
log

! x # ! q ()

 Seite 13

Page 13

RBF and Classification

! ! Within the context of classification, RBFs work as
follows.

! ! We are given a set of N training samples
and we want to find the best discriminant functions.

! ! One radial basis function (RBF) approach is to use a
set of N basis functions, each centered around one of
the training samples, i.e. .

! ! Given a new feature vector we use RBFs to
compute how far away it is from each of the training
samples.

!

!
c 1,

!
c 2,É , ! c N

€

 q i =
 c i

!

" ( c #

c i) = " i (


c)

!

 c

 Seite 14

Page 14

RBF and Classification – continued

! ! The discriminant function is then treated as a linear
combination of these radial basis functions.

! ! In this type of RBFs training corresponds to the
estimation of the weights from the training data.

! ! In more detail, recall that each is a binary
function. Thus the training set has the form:

 where is the discriminant function of the
class Ωκ(l) to which the sample belongs.

€

dκ (
 c) = wi

i=1

N

∑ φ( c −  c i) = wi
i=1

N

∑ φi(
 c)

€

wi

€

dκ (
! c)

€

T =
 c l ,dκ (l)(

 c l)(),l =1,2,…,N{ }

€

dκ (l)(
 c)

€

!
c l

 Seite 15

Page 15

RBFN Training

! ! So for each training pair we have:

! ! This can be written as a vector product:

€

dκ (l)(

c l) = wi

i=1

N

∑ φ(

c l −

c i)

€

 c l ,dκ (l)(
 c l)()

€

dκ (l)(
 c l) = w1,w2,…,wN()

φ( c l −
 c 1)

φ( c l −
 c 2)


φ( c l −
 c N)



















!

d" (l)(
 c l) = #( c l $

 c 1),#( c l $
 c 2),…,#( c l $

 c N)()

w1

w2



wN

%

&

'
'
'
'

(

)

*
*
*
*

 Seite 16

Page 16

RBFN Training - continued

! ! Since there are N samples in my training set, I have
N such equations.

 which can be written more compactly as:

!

d" (1)(
 c 1) = #( c 1 $

 c 1),#( c 1 $
 c 2),…,#( c 1 $

 c N)()  w

€

dκ (2)(
 c 2) = φ( c 2 −

 c 1),φ( c 2 −
 c 2),…,φ( c 2 −

 c N)()  w

€

dκ (N)(

c N) = φ(


c N −


c 1),φ(


c N −


c 2),…,φ(


c N −


c N)()  w

€

!

€

′

d =Φ

 w

!

"
 w = # + $


d

 Seite 17

Page 17

Important Comment on RBFN Training

! ! If we have many feature vectors in our training data
and we have an RBF estimate for each individual
training sample we end up with too many RBFs, too
many nodes => Slow training and Overfitting !!

! ! Solution: Use centers of clusters of feature vectors
for the RBFs, instead of the individual feature
vectors.

! ! Each RBF is now centered around
instead of :

€


µ j , j =1,2,…,s

€

! c i, i =1,2,É ,N

!

" (
 c #  µ j) = " j (

 c)

 Seite 18

Page 18

Updated Training of RBFNs

! ! 2-stage process:

1.! Unsupervised selection of RBF centers

 K-means:

 pick s values at random.

 Assign each training sample to its nearest .
Recompute as the mean value of the samples of
cluster j .

 Repeat this process until the s are stabilized.

 If using a Gaussian RBF, use MLE to compute

2.! The estimation of can be done as before via
linear algebra methods (e.g. SVD)

!


µ j

€

!
µ j

€


µ j

€

!
µ j

€

!
µ j

!

" j

€

 w

 Seite 19

Page 19

Weaknesses of the 2-stage Approach

! ! The estimation of and is not guided by the
discriminant function that is used to compute .

! ! Hence we have a non-symmetric approach.

! ! Stage 2 relies on the results of Stage 1.

! ! Thus, we have a propagation of estimation errors
which often means an amplification of errors.

! ! Better solution: use an integrated, fully supervised
approach like the Orthogonal Least Squares
approach.

€

!
µ j

€

Σ j

€


w

 Seite 20

Page 20

RBFN Training via Orthogonal Least Squares

! ! Main idea of OLS: Do not cluster as a preprocessing
step.

! ! Rather do a sequential selection of the centers
which leads to the largest reduction in the sum of
squared errors.

! ! Which sum of squared error (SSD)?

! ! The difference between the computed and the
expected result (value) of the discriminant
functions:

€


µ j

!

SSD=
 ö
d i "

d i

$
% &

'
(

i=1

N

)

 Seite 21

Page 21

Orthogonal Least Squares Algorithm

1.! Start with N pairs and s=0

3.! For each training pair i of the n=N-s features vectors

 2a. Add the current feature to the s centers

 The new vector becomes an additional

 2b. Compute the weights

 Use linear algebra as previously described.

 2c. Compute the sum of squared differences, SSD.

3.! Out of the n pairs, add the feature vector with the
smallest SSD to s.

4.! s++;

Repeat until all the desired # of clusters is reached.

!

! c l ,d" (l)(
! c l)()

!

 c i

€

!
µ j

€

! w

 Seite 22

Page 22

References

1.! The sigmoid function plot is courtesy of Wikipedia http://en.wikipedia.org/wiki/File:Logistic-curve.svg

2.! The RBF graph is courtesy of P. Sherrod http://www.dtreg.com/rbf.htm

