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A Simple MLP 

n  Multilayer Perceptrons were popular in the 1980s. 
n  Could solve non-linear problems. 
n  Were trained via back-propagation. 
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Multilayer MLPs 

n  The use of multiple hidden layers is feasible. 
n  They can be trained via back-propagation. 
n  Learning time does not scale well with multiple hidden 

layers. 
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What Next? 

n  How do we overcome the training limitations of 
single MLP?  

n  Two approaches: 
n Convolutional Neural Networks (1998) 
 Influenced by additional observations that on 
certain types of neurons in biological systems, 
the topological layout of the stimuli is also 
exploited. 

 
n Deep Belief Networks (2000) 
 Based on the observations of Judea Pearl that 
even if two hidden causes are independent, then 
can become dependent when we observe an 
effect that they can both influence. 
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Convolutional Neural Networks 

n  Convolutional Neural Networks (CNN) are considered 
a variant of Multilayer Perceptrons. 

n  The biggest difference lies in the connectivity 
between layers. 

n  A hidden node in layer m, is only connected to a local 
subset of spatially contiguous nodes in layer m-1. 

MLP CNN 
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Regional Response 

n  It has been known since 1968 that particularly in 
the visual system (visual cortex) some cells are 
sensitive to small sub-regions of the input space. 

n  These small sub-regions (receptive fields) are tiled 
in such a way that they cover the entire visual field. 

n  The cells that respond to these local receptive fields 
act as local filters.  

n  This local filter operation is well-suited for 
exploiting: 
§  Topological characteristics of the input signal 
§  Spatially local correlations that are present in natural 

images 
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Connectivity of CNNs and Receptive Fields 
n  For an intuitive example, let layer m-1 be the retina, 

the light sensitive tissue lining the inner surface of 
the eye.  

n  The nodes in layer m have receptive fields (operate 
on local regions) of width 3. 

n  They nodes in layer m are connected to only 3 
adjacent neurons in layer m-1. 

CNN 
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Connectivity of CNNs and Receptive Fields 

n  The nodes in layer m are local filters that operate on 
3-elt wide regions.  

n  During training, the CNN learns the best filters, the 
filters that produce the strongest response. 

n  Stacking such layers leads to increasingly larger 
filters. 

CNN 

n  Layer m+1 encodes a non-
linear filter (feature) which 
operates on receptive fields 
of width. 
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Second Motivation Behind CNN 
n  The recognition pathway in the visual cortex has 

multiple stages.  



 Seite 11 

Page 11 

Deep Convolutional Networks 

n  By stacking multiple hidden layers, where each node 
has only limited regional support, one creates a 
stack of filters each operating over a larger region. 

n  At layer m+1 information is shared on disjoint 
computations at layer m. 

n  Each successive layer 
computes a more complex 
function/feature 

n  Each successive layer 
introduces a higher level of 
abstraction.  
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High-level 
Features 

Learning Representations and Classifiers 

Low-Level 
Features 

Mid-level 
Features 

Classification 
f’ 
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Key Concepts of Convolutional Nets 

n  Local Connectivity 
n  Shared Weights 
n  Convolutional Layer 

n  Pooling Layer 
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Local Connectivity 

n  Allows for the gradual introduction of levels of 
abstraction. 

n  Exploits topological cues in input. 
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Shared Weights 

n  Each node (filter) hi is replicated across the entire 
visual field. 

n  The replicated local nodes form a feature map. 
n  All nodes in a feature map have the same weight 

vector. 

n  Hence each node performs the same operation in 
different local regions. 

n  Easier to train via gradient descent. 
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Convolutional Layer 

n  Recall that we can apply LSI filters via convolution: 

n  One can thing of the filter kernel H as a matrix of 
weights wij that are used to compute a weighted sum. 

n  A CNN node can then compute a feature map by 
locally convolving the input image with an LSI filter, 
adding a bias and then applying an non-linear 
activation function.   

R(x, y) = I *H = I(x − i, y− j)H (i, j)
j=−k

k

∑
i=−k

k

∑

hij
m = tanh (Wm * x)ij + bm( )
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Convolutional Layer Example 

n  The figure shows two convolutional layers. Layer 
m-1 contains 4 feature maps. Layer m contains 2 
feature maps. 
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Key Concepts of Convolutional Nets 
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Pooling Layer 

n  Consecutive convolutional layers, each multiple 
feature maps can result in a very computationally 
expensive network. 

n  Employ a 2nd type of layer, a pooling layer, which 
performs non-linear down-sampling. 

n  Most widely used is the max-pooling method. 

n  Max-pooling partitions the input image into a set of 
non-overlapping rectangles and outputs the 
maximum value of the rectangle. 

n  Interleave pooling layers and convolution layers. 



 Seite 23 

Page 23 

Full Model of CNN 

n  Typically a Deep Convolutional Neural Network will 
then have the following form: 
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n  Use many different copies of the 
same feature detector with different 
positions. 
§  Could also replicate across scale and 

orientation (tricky and expensive) 
§  Replication greatly reduces the number of 

free parameters to be learned. 

n  Use several different feature types, 
each with its own map of replicated 
detectors. 
§  Allows each patch of image to be 

represented in several ways. 
	
  

Connections of the 
same color have 
the same weight. 

Replicating Features 
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n  The back-propagation 
algorithm must be adapted 
in order to incorporate 
linear constraints between 
the weights. 

n  We compute the gradients 
as usual, and then modify 
the gradients so that they 
satisfy the constraints. 
§  So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them. 

To constrain: w1 = w2
we need: Δw1 = Δw2

compute: ∂E
∂w1

and ∂E
∂w2

use ∂E
∂w1

=
∂E
∂w2

for w1 and w2

Back-propagation with Weight Constraints 
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n  Equivariant activities: Replicated features do not 
make the neural activities invariant to translation. 
The activities are equivariant.  

n  Invariant knowledge: If a feature is useful in some 
locations during training, detectors for that feature 
will be available in all locations during testing. 

representation 
by active 
neurons 

image 

translated 
representation 

translated      
image 

Why Feature Replication 



 Seite 27 

Page 27 

Why Pooling 

n  Get a small amount of translational invariance 
at each level by averaging four neighboring 
replicated detectors to give a single output to 
the next level. 
§  This reduces the number of inputs to the next layer of 

feature extraction, thus allowing us to have many 
more different feature maps. 

§  Taking the maximum of the four works slightly better. 

n  Problem: After several levels of pooling, we 
have lost information about the precise 
positions of things. 
§  This makes it impossible to use the precise spatial 

relationships between high-level parts for recognition. 
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n  Yann LeCun and his collaborators developed a 
really good recognizer for handwritten digits by 
using back-propagation in a feed-forward net with: 
§  Many hidden layers 
§  Many maps of replicated units in each layer. 
§  Pooling of the outputs of nearby replicated units. 
§  A wide net that can cope with several characters at once 

even if they overlap. 
§  A clever way of training a complete system, not just a 

recognizer.  
n  This net was used for reading ~10% of the checks 

in North America. 
n  Demos of LENET can be found at http://

yann.lecun.com 

Le Net 
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The Architecture of LeNet5 
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Notice that most of the 
errors are cases that 
people find quite easy. 

The human error rate is 
probably 20 to 30 errors 
but nobody has had the 
patience to measure it. 

The 82 Errors of LeNet5 



 Seite 31 

Page 31 

§  We can put our prior 
knowledge about the task 
into the network by 
designing appropriate: 
§  Connectivity. 
§  Weight constraints. 
§  Neuron activation functions 

§  This is less intrusive than 
hand-designing the 
features. 
§  But it still prejudices the 

network towards the 
particular way of solving the 
problem that we had in mind. 

§  Alternatively, we can use 
our prior knowledge to 
create a whole lot more 
training data. 
§  This may require a lot of 

work (Hofman&Tresp, 1993) 
§  It may make learning take 

much longer.  

§  It allows optimization to 
discover clever ways of 
using the multi-layer 
network that we did not 
think of. 
§  And we may never fully 

understand how it does it. 

Priors and Prejudice 
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The Brute Force Approach 

n  LeNet uses knowledge 
about the invariances to 
design: 
§  the local connectivity 
§  the weight-sharing 
§  the pooling.  

n  This achieves about 80 
errors. 
§  This can be reduced to 

about 40 errors by using 
many different 
transformations of the 
input and other tricks 
(Ranzato 2008) 

n  Ciresan et al. (2010) inject 
knowledge of invariances 
by creating a huge amount 
of carefully designed extra 
training data: 
§  For each training image, they 

produce many new training 
examples by applying many 
different transformations. 

§  They can then train a large, 
deep, dumb net on a GPU 
without much overfitting. 

n  They get about 35 errors. 
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The top printed digit is the 
right answer. The bottom two 
printed digits are the 
network’s best two guesses. 
 
The right answer is almost 
always in the top 2 guesses. 
 
With model averaging they 
can now get about 25 errors. 
 
 

The Errors by the Ciresan et al. Net 
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Traditional MLPs vs. CNNs 

n  Consider a 200x200 image 
§  A fully connected MLP with 400K hidden nodes has 16 billion 

parameters 
§  A locally connected CNN with 400K hidden nodes each operating on 

10x10 receptive fields has 40 million parameters.  



 Seite 35 

Page 35 

Example CNN Setup 

n  Consider a 200x200 image 
§  Set up 10 feature maps, each of size 200x200. 
§  Each hidden node is applied on a 10x10 region. 
§  10 different filters applied simultaneously on the image. 
§  10 filters, each 10x10 => 1000 parameters  

Schematic representation 
of a single feature map. 
This is repeated 10 times. 
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Multiple Convolutions with Different Kernels 

n  By using many different filters, 
one can detect multiple motifs at 
each location. 

n  The collection of nodes looking at 
the same local patch is 
comparable to a feature vector 
for that patch.  

Feature vector 
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Example: Multistage Hubel-Wiesel System 



 Seite 38 

Page 38 

Typical CNN Layout  

n  Stacking multiple stages of [Normalization -> Filter Bank -> 
Non-Linearity -> Pooling]. 

n  Normalization: variations on “whitening” like high-pass 
filtering, subtraction of average, local contrast normalization, 
variance normalization. 

n  Filter Bank: dimension expansion, projection on new basis 

n  Non-Linearity: sparsification, sigmoid, lateral inhibition, 
winner-takes-all 

n  Pooling: aggregation over space or feature type 
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Typical CNN Layout - continued  

n  Filter Bank -> Non-Linearity allows for non-linear embedding 
in high dimensions. 

n  Feature Pooling allows for dimensionality reduction, 
smoothing, contraction.  

n  Filter Banks are learned at every stage 
n  Hierarchy of features: 

§  Basic elements inspired by the visual (or auditory cortex). 
§  This hierarchy follows the Simple Cell + Complex Cell model of Hubel and 

Wiesel, 1962. 
§  Many “traditional” feature extraction methods like SIFT, HoG, SURF, GIST 

use such hierarchies. 

n  Very active field since the mid-2000s. 
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Ideas from Neuroscience and Psychophysics 

n  Combination of simple cells and complex cells 
n  Local receptive fields 
n  Self-similar receptive fields over the visual fields 

(convolutions) 
n  Complex cells (pooling) 

n  Rectified linear units (non-linearity) 
n  Band-pass filtering and contrast normalization of 

input. 

n  Lateral inhibition (divisive contrast normalization) 
n  Sub-sampling in V1-V2-V4 
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ConvNet (circa 1990) 
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ConvNet - continued 
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Typical Recognition Pipeline 2006-2012 
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Deep CNNs Very Successful (Best) At 

n  Handwriting recognition 
n  OCR in the wild (2011) 
n  Traffic sign recognition (2011) 

n  Pedestrian detection (2013) 
n  Volumetric brain image segmentation (2009) 
n  Human action recognition (2011) 

n  Object recognition (2012) 
n  Scene parsing (2012) 
n  Scene parsing from depth images (2013) 

n  Speech recognition (2012) 
n  Breast cancer cell mitosis detection (2011) 
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Examples 
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Object Recognition (Krizhevsky et al. 2012) 
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Object Recognition (Krizhevsky et al. 2012) 
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A large portion of the material on these slides is taken from:  


