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A Simple MLP b

m Multilayer Perceptrons were popular in the 1980s.
m Could solve non-linear problems.
m Were trained via back-propagation.




Multilayer MLPs b

B The use of multiple hidden layers is feasible.
B They can be trained via back-propagation.

B Learning time does not scale well with multiple hidden
layers.
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What Next? i

®m How do we overcome the training limitations of
single MLP?

B Two approaches:
m Convolutional Neural Networks (1998)

Influenced by additional observations that on
certain types of neurons in biological systems,
the topological layout of the stimuli is also

exploited.

m Deep Belief Networks (2000)

Based on the observations of Judea Pearl that
even if two hidden causes are independent, then
can become dependent when we observe an
effect that they can both influence.
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Convolutional Neural Networks A

m Convolutional Neural Networks (CNN) are considered
a variant of Multilayer Perceptrons.

B The biggest difference lies in the connectivity
between layers.

B A hidden node in layer m, is only connected to a /ocal
subset of spatially contiguous nodes in layer m-1.

output layer layer m+ |
hidden layer |ayer m
input layer |ayer m-|

MLP CNN



Regional Response A

m It has been known since 1968 that particularly in
the visual system (visual cortex) some cells are
sensitive to small sub-regions of the input space.

B These small sub-regions (receptive fields) are tiled
in such a way that they cover the entire visual field.

B The cells that respond to these local receptive fields
act as local filters.

m This local filter operation is well-suited for
exploiting:
= Topological characteristics of the input signal

= Spatially local correlations that are present in natural
images



Connectivity of CNNs and Receptive Fields A

B For an intuitive example, let layer m-1 be the retina,
the light sensitive tissue lining the inner surface of
the eye.

B The nodes in layer m have receptive fields (operate
on local regions) of width 3.

m They nodes in layer m are connected to only 3
adjacent neurons in layer m-1.

layer m+ | O

layer m

layer m-|

Ciliary body

Fig. 1.1. A drawing of a section through the human eye CN N
with a schematic enlargement of the retina.



Connectivity of CNNs and Receptive Fields A

B The nodes in layer m are local filters that operate on
3-elt wide regions.

® During training, the CNN learns the best filters, the
filters that produce the strongest response.

m Stacking such layers leads to increasingly larger

filters.
layer m+ | (i)
m Layer m+1 encodes a non- t
linear filter (feature) which  layer m
operates on receptive fields
of width.

layer m-|

CNN
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Second Motivation Behind CNN Ay

B The recognition pathway in the visual cortex has

multiple stages.

WHERE? (Motion,
Spatial Relationships)
[Parietal stream]

WHAT? (Farm, Color})
[Inferotemporal stream]
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Deep Convolutional Networks A

m By stacking multiple hidden layers, where each node
has only limited regional support, one creates a
stack of filters each operating over a larger region.

B At layer m+1 information is shared on disjoint
computations at layer m.

B Each successive layer
layer m+ | (i)

computes a more complex
function/feature layer m

B Each successive layer
introduces a higher level of
abstraction.

layer m-|
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Learning Representations and Classifiers
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Key Concepts of Convolutional Nets A

B Local Connectivity
m Shared Weights

m Convolutional Layer
m Pooling Layer
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Local Connectivity A

m Allows for the gradual introduction of levels of
abstraction.

m Exploits topological cues in input.

layer m+ | (i)

4

layer m

layer m-|
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Key Concepts of Convolutional Nets N

B Local Connectivity
m Shared Weights

m Convolutional Layer
m Pooling Layer



Shared Weights N

m Each node (filter) h; is replicated across the entire
visual field.

B The replicated local nodes form a feature map.

m All nodes in a feature map have the same weight
vector.

B Hence each node performs the same operation in
different local regions.

m Easier to train via gradient descent.

feature m

layer m

erm1 OO OO O
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Key Concepts of Convolutional Nets N

B Local Connectivity
m Shared Weights

m Convolutional Layer
m Pooling Layer
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Convolutional Layer A

m Recall that we can apply LSI filters via convolution:
R(x,y)=1*H = E El(x i,y - )HH(@, ])

i=—k j=-

B One can thing of the filter kernel H as a matrix of
weights w;; that are used to compute a weighted sum.

B A CNN node can then compute a feature map by
locally convolving the input image with an LSI filter,
adding a bias and then applying an non-linear
activation function.

h = tanh((W’" X)), + bm)
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Convolutional Layer Example A

m The figure shows two convolutional layers. Layer
m-1 contains 4 feature maps. Layer m contains 2
feature maps.

layer m-| hidden layer m
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Key Concepts of Convolutional Nets A

B Local Connectivity
m Shared Weights

m Convolutional Layer
m Pooling Layer
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Pooling Layer A

m Consecutive convolutional layers, each multiple
feature maps can result in a very computationally
expensive network.

m Employ a 2" type of layer, a pooling layer, which
performs non-linear down-sampling.
B Most widely used is the max-pooling method.

B Max-pooling partitions the input image into a set of
non-overlapping rectangles and outputs the
maximum value of the rectangle.

B Interleave pooling layers and convolution layers.



Full Model of CNN I

m Typically a Deep Convolutional Neural Network will
then have the following form:

Input layer (S1) 4 feature maps

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

| convolution layer l sub-sampling layer | convolution layer l sub-sampling layer l fully connected MLPl
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Replicating Features A

B Use many different copies of the Connections of the

same feature detector with different same color have
_ the same weight.
positions.

= Could also replicate across scale and O O
orientation (tricky and expensive) e it

= Replication greatly reduces the number of
free parameters to be learned. O

m Use several different feature types,
each with its own map of replicated

detectors.

= Allows each patch of image to be
represented in several ways.
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Back-propagation with Weight Constraints Ay

m The back-propagation
algorithm must be adapted
in order to incorporate
linear constraints between

To constrain: w, =w,

we need: Aw, =Aw,

the weights.
B We compute the gradients E OE
as usual, and then modify compute: P and P
the gradients so that they : :
satisfy the constraints.
= So if the weights started off ) ) )
satisfying the constraints, use = for w, and w,
they will continue to satisfy w,  ow,

them.



Why Feature Replication N

B Equivariant activities: Replicated features do not
make the neural activities invariant to translation.
The activities are equivariant.

repres_entation L . . translated
by active .. . """ | representation
neurons - "

image fcranslated
;2 Q image

B Invariant knowledge: If a feature is useful in some
locations during training, detectors for that feature
will be available in all locations during testing.




Why Pooling A

B Get a small amount of translational invariance
at each level by averaging four neighboring
replicated detectors to give a single output to
the next level.

= This reduces the number of inputs to the next layer of
feature extraction, thus allowing us to have many
more different feature maps.

= Taking the maximum of the four works slightly better.

B Problem: After several levels of pooling, we
have lost information about the precise
positions of things.

= This makes it impossible to use the precise spatial
relationships between high-level parts for recognition.
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Le Net A

B Yann LeCun and his collaborators developed a
really good recognizer for handwritten digits by
using back-propagation in a feed-forward net with:

= Many hidden layers

= Many maps of replicated units in each layer.

= Pooling of the outputs of nearby replicated units.

= A wide net that can cope with several characters at once
even if they overlap.

= A clever way of training a complete system, not just a
recognizer.

B This net was used for reading ~10% of the checks

in North America.

B Demos of LENET can be found at http://
yann.lecun.com



The Architecture of LeNet5 Ay

C3:f. maps 16@10x10
oo S4: 1. maps 16@5x5

C5.layer Fg; jayer  OUTPUT
120 g 0

C1: feature maps

INPUT
30430 6@28x28

S, maps
L 601414

| .
" Fullconnection | Gaussian

Subsampling Convolutions ~ Subsampling Full connection

Convolutions



The 82 Errors of LeNet5 i
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Priors and Prejudice N
= We can put our prior = Alternatively, we can use
knowledge about the task our prior knowledge to
into the network by create a whole lot more

designing appropriate: training data.

= Connectivity. = This may require a lot of

= Weight constraints. work (Hofman&Tresp, 1993)
= Neuron activation functions = It may make learning take

much longer.
= This is less intrusive than

hand-designing the n It_ allows optimization to
features. dls_cover cIevelj ways of
= But it still prejudices the using the mUItI_IaYer
network towards the HEtWOI’k that we dld nOt
particular way of solving the think of.
problem that we had in mind. = And we may never fully

understand how it does it.



The Brute Force Approach A

m | eNet uses knowledge m Ciresan et al. (2010) inject
about the invariances to  knowledge of invariances

design: by creating a huge amount
= the local connectivity of carefully designed extra
= the weight-sharing training data:
= the pooling. = For each training image, they
_ _ produce many new training
| Th'S aCh|eveS abOUt 80 examp|es by app|y|ng many
errors. different transformations.
= This can be reduced to = They can then train a large,
about 40 errors by using deep, dumb net on a GPU
many different without much overfitting.
transformations of the
input and other tricks B They get about 35 errors.

(Ranzato 2008)
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The Errors by the Ciresan et al. Net N
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The top printed digit is the
right answer. The bottom two
printed digits are the
network’s best two guesses.

The right answer is almost
always in the top 2 guesses.

With model averaging they
can now get about 25 errors.
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Traditional MLPs vs. CNNs A
m Consider a 200x200 image

= A fully connected MLP with 400K hidden nodes has 16 billion
parameters

= A locally connected CNN with 400K hidden nodes each operating on
10x10 receptive fields has 40 million parameters.
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Example CNN Setup N

] Con5|der a 200x200 image

Set up 10 feature maps, each of size 200x200.
= Each hidden node is applied on a 10x10 region.

= 10 different filters applied simultaneously on the image.
= 10 filters, each 10x10 => 1000 parameters

Schematic representation
of a single feature map.
This is repeated 10 times.
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Multiple Convolutions with Different Kernels

B By using many different filters,
one can detect multiple motifs at
each location.

B The collection of nodes looking at

the same local patch is
comparable to a feature vector

for that patch.

Multiple
convolutions



Page 37

Example: Multistage Hubel-Wiesel System A

LocaDiigie TN P23°E"3: redi gg:::f o Liew Obiect
Normalization - X KX IR ’ Cassfer  Categoies / Postions
20x7x7 kemels kernels kermels kemels xemels —
W *ﬁ )
JJJJ;: JJJJ_.‘ 2 6 8 1 ratbuy)
: . Nx23x2d  “J
Input Image Normalized Image e
15500x5 4. 222
1%500%500 ¥500x500 01 0y9x3t

C3 20170117

“Simple cells”

‘{ g ;} }31 :X«,y-c]

“Complex cells™

05 2002421

# Training is supervised

# With stochastic gradient
descent

pooling
Multiple

subsamplmﬁ/'
convolutions \

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]
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Typical CNN Layout A
Filt Non- | | featr i -
Norm b ter L) .on | fea .lre Norm'l’Fl]ter L I\.Ton Ll featlllre Classifier
Bank | |Linear| |Pooling Bank | |Linear| |Pooling

m Stacking multiple stages of [Normalization -> Filter Bank ->
Non-Linearity -> Pooling].
m Normalization: variations on “whitening” like high-pass

filtering, subtraction of average, local contrast normalization,
variance normalization.

m Filter Bank: dimension expansion, projection on new basis

B Non-Linearity: sparsification, sigmoid, lateral inhibition,
winner-takes-all

m Pooling: aggregation over space or feature type

5

— 1
L,V X}, PROB: 7 log
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Typical CNN Layout - continued A
Norm |} Filter | | I\.Ton- Ll fearl.lre Norm'l’Fi]ter L I\.Ton- Ll featlllre L) Classifier
Bank | |Linear| |Pooling Bank | |Linear| |Pooling

m Filter Bank -> Non-Linearity allows for non-linear embedding
in high dimensions.

m Feature Pooling allows for dimensionality reduction,
smoothing, contraction.

m Filter Banks are learned at every stage

m Hierarchy of features:

= Basic elements inspired by the visual (or auditory cortex).

= This hierarchy follows the Simple Cell + Complex Cell model of Hubel and
Wiesel, 1962.

= Many “traditional” feature extraction methods like SIFT, HoG, SURF, GIST
use such hierarchies.

Very active field since the mid-2000s.
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Ideas from Neuroscience and Psychophysics

m Combination of simple cells and complex cells
B Local receptive fields

m Self-similar receptive fields over the visual fields
(convolutions)

B Complex cells (pooling)
m Rectified linear units (non-linearity)

B Band-pass filtering and contrast normalization of
iInput.

B Lateral inhibition (divisive contrast normalization)
B Sub-sampling in V1-V2-V4
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ConvNet (circa 1990) N\
Layer 3
256@6x6 Layer4
ayer | 256@1x1 Output
64x75x75 ~ LAyer2 @I o1

mput 64@14x14
83x83

0x9 | 10x10 pooling.  convolution 6x6 pooling
convolution 5x5 subsampling (4096 kemels) —I . ., samp
(64 kemels) sl

# Non-Linearity: half-wave rectification, shrinkage function, sigmoid
# Pooling: average, L1, L2, max
# Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)
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Typical Recognition Pipeline 2006-2012 N
Filter I .Non-' L featl.u'e Filter L .Non-. L fean’n‘e Ll Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented Winner Histogram K-means Spatial Max  Apy simple
Edges  Takes All (sum)/ ~ Sparse Coding Or average (lassifier
VT . \/ -
Fixed (SIFT/HoG/...) Unsupervised Supervised

# Fixed Features + unsupervised mid-level features + simple classifier
» SIFT + Vector Quantization + Pyramid pooling + SVM

@ [Lazebnik et al. CVPR 2006]

» SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM
@ [Boureau et al. ICCV 2011]

» SIFT + Fisher Vectors + Deformable Parts Pooling + SVM
@ [Perronin et al. 2012]



Deep CNNs Very Successful (Best) At A

B Handwriting recognition

OCR in the wild (2011)

Traffic sign recognition (2011)

Pedestrian detection (2013)

Volumetric brain image segmentation (2009)
Human action recognition (2011)

Object recognition (2012)

Scene parsing (2012)

Scene parsing from depth images (2013)
Speech recognition (2012)

Breast cancer cell mitosis detection (2011)
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Examples )

#@ Traffic Sign Recognition (GTSRB) @ House Number Recognition (Google)
» German Traffic Sign Reco » Street View House Numbers

Bench » 94.3 % accuracy

» 99.2% accuracy I«‘ -m..h] .s“
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Object Recognition (Krizhevsky et al. 2012) by

P R
container shi motor scooter leopard
mite container ship motor scooter leopard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
P » H " [~
v = 9 |
s — ‘.'a A ¢ K
v 'ﬁ‘ . " A
grilie musnroom cherry adagascar cat
__convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry | titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’s-fingers currant howler monkey
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Object Recognition (Krizhevsky et al. 2012) by
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