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Speckles

@ Generated by random distributed scatteres

e Multiplicative noise
OR

@ Feature of the tissue
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@ Advantages
— Inexpensive
— Noninvasive
@ Disadvantages

— Low contrast
— Inhomogeneous
— Low signal-noise-ratio



Backgrounds and Preliminaries
Renal Lesion Segmentation Based on Dempster-Shafer Evidence Tl Propos hod
Experimenta sults

content

© Renal Lesion Segmentation Based on Dempster-Shafer Evidence
Theory and C-V Model
@ Backgrounds and Preliminaries



Backgrounds and Preliminaries
od

Renal Lesion Segmentation Based on Dempster-Shafer Evidence Tl h
ntal Results

Backgrounds and Preliminaries

@ Chan-Vese Model
o Gabor Filter
@ Dampster-Shafer Evidence Theory
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Chan-Vese Model

F(p) = pu - Length(yp) + V/ |uo(x, y) — T [Pdxdy
inside(p)

[ Juey) - e P ddy
inside(y)

where 1 > 0 and AT, A\~ > 0. ¢ is the contour which splits the
image into two parts. ¢ and ¢~ are the average values of the
image inside and outside the contour, respectively.
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E(p) = / | VH(p) | dQ
- /Q[H(sO)/ogpl + (1 — H(p))logp2)]d2

where p; and po are probability densities of the two separated
parts, and H(s) is a Heaviside function
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The associated Euler-Lagrange equation:

Oy . Vo p1
— =9 v div + log—
5 = ol dir( ) + log 2

where §(s) is the derivative of H(s).
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Gabor Filter

A 2D Gabor function is defined as:

2 2,2 '
X" +7y X
g(x,yi 1, 0,0,7) = exp(——— 5= )exp(i(2n - +¢))
where x” = x cosf + y sinf and y' = —x cosf + y sinf.
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Dempster-Shafer Evidence Theory

@ Introduced by A.P.Dempster and formalized by G.Shafer
@ Described as a generalization of the Bayesian theory

@ Deal with the inaccuracy and uncertainty information
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Definitions

@ If © is a space of hypotheses:
© = {A1, A2, ..., An}

@ The basic probability assignment defined as:
m:2° = 0,1]
and satisfy:

m(¢)=0  and > m(Ay) =1

A, CO

@ Belief function:

Bel(A) = > m(A,)

A,CA
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Dempster's rule of combination

m(A) =(m@Pmep..E m,(A)

Zn H1 m;(Ax;)
AEA i=

B A Ay NAY, N-NAY,=A

- 1-K ’

where
AL ={X = (A1, X2, 0, An), Ay, €29 5.8 Ay = A}
In the same way,
/\g = {)\ = ()\1,)\2, -~-7)\k)7A>\j S 26,S.t. ﬂAA = gf)},
k
K= > II m;(Ay,) measures the degree of

AENK =1
o Ay, Ny, N NAy, =0

conflict between the evidences.
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Flow Chart

| Image Channel 1 | | [ Image Channel m
compute compute
P11 and P21 P1m and P2m
I compute mass functions m;(A) for i € {1,...,m} and A € 2° |

!

Fuse Information according to Dempster’s rule of combination

!

| compute ¢(t"11) |




@ Euler-Lagrange equation for CV model:

oC

-, =90 10g(p1 Yo p-di L&

vc

@ The new Euler-Lagrange equation:

oC _ 5(0) log Bel( foregrozmd) 3 e (
ot Bel (background) \VC \
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@ Comparison results of CV model and our method on the
ultrasound images for renal cyst
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Experimental Results

@ Comparison results of CV model and our method on the
ultrasound images for other renal parenchymal lesions
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@ Comparison results of CV model and our method with
different initializations
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Experlmental Results

@ Precisions of our approach and other three methods
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Automatic Medical Ultrasound Image Segmentation Based on Acti:

Experimental results

@ The isoperimetric inequality:

For any bounded Lipschitz domain Q € R", n > 2

where C,_1 = r2(7r"//2) 0f1 is the boundary of the domain €, and
|0€2|, |€2| are the measure of the domain and the surface measure

of its boundary, respectively.
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Automatic Medical Ultrasound Image Segmentation Based on Acti:

@ In image area, we have n = 2:
L% > 47 A,

it also can be written as:

where L is the length of 0€2, and A is the area of 2. The equality
is valid if and only if the domain is a disk.

S Guilwing |
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Automatic Medical Ultrasound Image Segmentation Based on Acti: ntation esion detection

@ compactness <> roundness

@ Shape energy term:

4 Area(inside(C))
length(C)?

Eshape = ( )p, (P < 0)
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Experimental results

@ The proposed energy functional:

E= HEshape + Ecv (9 > 0),

47 Area(inside(C)) )P
Length(C)?

+A1 / |uo(x, y) — c1|dxdy
inside(C)

E(C17C2, C) = 9(

+A2 / |uo(x, ) — c2|*dxdy,
outside(C)



ng shape prior

. h . . ion — Lesi 4 i
Automatic Medical Ultrasound Image Segmentation Based on Acti: on esion detection

With level set function ¢, the energy E(ci, ¢z, C) can be written as:

4m fQ B(x, y))dxdy
(Jq 0(o(x, ¥))IVo(x, y)|dxdy)?

Y /Q luo(x, y) — c1PH((x, y))dxdy

E(c,c,9) = 9( 5)°

Y /Q uo(x, ) — cal2(1 = H((x, ¥)))dxcly
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Automatic Medical Ultrasound Image Segmentation Based on Acti:

@ The Euler - Lagrange equation for ¢ is:

9 _ K - 6.(¢)[—L — 2A - div( Ve )]

ot | v &
+0e(@)[=A1(uo — c1)® + A2(uo — 2)7],

where
0(4m)? - p(A)!

L3 ’
and A = Area(¢ > 0), L = Length(¢ = 0)

K =
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Automatic Medical Ultrasound Image Segmentation Based on Acti:

@ Initialization

— Imaging area extraction; speckle reduction.
@ Preparatory thresholding

— Otsu'’s thresholding; inversion
o Conditional thresholding

— Otsu’s thresholding on selected areas
@ Score computation

— Intensity, compactness, location
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Comparative result Il:
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Rough segmentation — Lesion detection
Experimental results

our method
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Quantitative Evaluation

CV model  Proposed method

precision(%) 65.6(13.6) 96.0(3.1)
recall(%) 95.3(2.9) 84.3(6.5)
DICE(%) 77.0(9.4) 89.6(3.5)
MAD(pixel) 3.24(1.6) 0.07(0.1)
SMAD(pixel) 2.03(1.1) 0.19(0.11)
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Experimental results

Future work

@ Lesion Detection

@ Classification
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Automatic Medical Ultrasound Image Segmentation Based on Acti:

Thank You !
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