Intuitive and Smart Editing of 3D Geometrical Heart Valve Models from Cardiac CT Data Master Thesis Final Presentation

Félix Lades January 26, 2015 Computer Science Dept. 5 (Pattern Recognition) Friedrich-Alexander University Erlangen-Nuremberg

TECHNISCHE FAKULTÄT

Outline

- Motivation
- Methods
- Implementation
- Results
- Outlook
- Summarization

Motivation

Fully automatic vs. manual segmentation

- fully automatic detection is not always reliable
- manual segmentation can be very time-consuming

Fully automatic vs. manual segmentation

- fully automatic detection is not always reliable
- manual segmentation can be very time-consuming

 \Rightarrow Solution: Intuitive and Smart Editing after fully-automatic initialization

Fully automatic vs. manual segmentation

- fully automatic detection is not always reliable
- manual segmentation can be very time-consuming
- \Rightarrow Solution: Intuitive and Smart Editing after fully-automatic initialization

Goals

- efficiency: faster than fully manual modeling
- interactivity: computations should not cause a delay
- intuitiveness: simple to apply, without knowing the mathematics
- robustness: result should be improved after each editing step

3D Geometric Aortic Valve Model

Purpose: diagnosis, surgery and therapy-planning

e.g. Transcatheter Aortic Valve Implantation (TAVI)

Methods

Medical Background: Anatomy of the Heart

Fully-automatic detection

Hierarchically defined physiological aortic valve model

- 1. Global location and rigid motion model
- 2. Nonrigid landmark motion model
- 3. Surface model

Local Surface Editing

- move one vertex v_i to new position v'_i
- vertices \mathbf{v}_i in neighborhood are moved in same direction $\mathbf{d} = \mathbf{v}'_i \mathbf{v}_i$
- moving is damped by influence factor:

$$k_j = \frac{1}{2} \left(\cos\left(\pi \frac{\|\boldsymbol{v}_j - \boldsymbol{v}_i\|}{R} \right) + 1 \right)$$

• moving is damped by angle damping factor:

$$d_j = \cos(\sphericalangle(\mathbf{n}_j, \mathbf{n}_i)) = \mathbf{n}_j \cdot \mathbf{n}_i$$
 (\mathbf{n}_i is vertex normal of \mathbf{v}_i)

Local Surface Editing

- move one vertex v_i to new position v'_i
- vertices \mathbf{v}_i in neighborhood are moved in same direction $\mathbf{d} = \mathbf{v}'_i \mathbf{v}_i$
- moving is damped by influence factor:

$$k_j = \frac{1}{2} \left(\cos\left(\pi \frac{\|\boldsymbol{v}_j - \boldsymbol{v}_i\|}{R} \right) + 1 \right)$$

• moving is damped by angle damping factor:

$$d_j = \cos(\sphericalangle(\mathbf{n}_j, \mathbf{n}_i)) = \mathbf{n}_j \cdot \mathbf{n}_i$$
 (\mathbf{n}_i is vertex normal of \mathbf{v}_i)

$$\Rightarrow$$
 new vertex positions: $\mathbf{v}'_j = \mathbf{v}_j + k_j d_j d_j$

As-Rigid-As-Possible (ARAP) Surface Editing

- fix and move some constraints on the surface
- the remaining, free part of the surface is deformed physically plausible
- the global shape of the surface is preserved

- N_i : one-ring neighbors of v_i (all neighbors connected by an edge)
- **R**_i: rotation matrix

- N_i : one-ring neighbors of v_i (all neighbors connected by an edge)
- **R**_i: rotation matrix

Rigid transformation: $\forall j \in N_i$: $\mathbf{v}'_i - \mathbf{v}'_j = \mathbf{R}_i(\mathbf{v}_i - \mathbf{v}_j)$

- N_i : one-ring neighbors of v_i (all neighbors connected by an edge)
- **R**_i: rotation matrix

Rigid transformation: $\forall j \in \mathcal{N}_i$: $\mathbf{v}'_i - \mathbf{v}'_j = \mathbf{R}_i(\mathbf{v}_i - \mathbf{v}_j)$

Nonrigid energy:
$$E(\mathbf{v}'_i) = \sum_{j \in \mathcal{N}_i} \left\| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_i (\mathbf{v}_i - \mathbf{v}_j) \right\|^2$$

- N_i : one-ring neighbors of v_i (all neighbors connected by an edge)
- **R**_i: rotation matrix

Rigid transformation: $\forall j \in \mathcal{N}_i$: $\mathbf{v}'_i - \mathbf{v}'_j = \mathbf{R}_i(\mathbf{v}_i - \mathbf{v}_j)$

Nonrigid energy:
$$E(\mathbf{v}'_i) = \sum_{j \in \mathcal{N}_i} \left\| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_i (\mathbf{v}_i - \mathbf{v}_j) \right\|^2$$

SVD of Covariance matrix: $\boldsymbol{\Sigma}_i = \sum_{j \in \mathcal{N}_i} (\boldsymbol{v}_i - \boldsymbol{v}_j) (\boldsymbol{v}'_i - \boldsymbol{v}'_j)^T = \boldsymbol{U}_i \boldsymbol{S}_i \boldsymbol{V}_i^T$

- N_i : one-ring neighbors of v_i (all neighbors connected by an edge)
- **R**_i: rotation matrix

Rigid transformation: $\forall j \in \mathcal{N}_i$: $\mathbf{v}'_i - \mathbf{v}'_j = \mathbf{R}_i(\mathbf{v}_i - \mathbf{v}_j)$

Nonrigid energy:
$$E(\mathbf{v}'_i) = \sum_{j \in \mathcal{N}_i} \left\| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_i (\mathbf{v}_i - \mathbf{v}_j) \right\|^2$$

SVD of Covariance matrix: $\boldsymbol{\Sigma}_i = \sum_{j \in \mathcal{N}_i} (\boldsymbol{v}_i - \boldsymbol{v}_j) (\boldsymbol{v}'_i - \boldsymbol{v}'_j)^T = \boldsymbol{U}_i \boldsymbol{S}_i \boldsymbol{V}_i^T$

Best-aligning rotations: $\boldsymbol{R}_i = \boldsymbol{V}_i \boldsymbol{U}_i^T$

$$\operatorname{E}_{ARAP}(\boldsymbol{V}') = \sum_{i=1}^{|\mathcal{V}|} \sum_{j \in \mathcal{N}_i} \left\| (\boldsymbol{v}'_i - \boldsymbol{v}'_j) - \boldsymbol{R}_i (\boldsymbol{v}_i - \boldsymbol{v}_j) \right\|^2 \to \min$$

$$\operatorname{E}_{ARAP}(\boldsymbol{V}') = \sum_{i=1}^{|\mathcal{V}|} \sum_{j \in \mathcal{N}_i} \left\| (\boldsymbol{v}'_i - \boldsymbol{v}'_j) - \boldsymbol{R}_i (\boldsymbol{v}_i - \boldsymbol{v}_j) \right\|^2 \to \min$$

\Rightarrow nonlinear optimization problem

$$\operatorname{E}_{ARAP}(\boldsymbol{V}') = \sum_{i=1}^{|\mathcal{V}|} \sum_{j \in \mathcal{N}_i} \left\| (\boldsymbol{v}'_i - \boldsymbol{v}'_j) - \boldsymbol{R}_i (\boldsymbol{v}_i - \boldsymbol{v}_j) \right\|^2 \to \min$$

\Rightarrow nonlinear optimization problem

Solve by iterative optimization

- 1. fix vertex-positions \mathbf{v}'_i , compute best-aligning rotations \mathbf{R}_i (as shown)
- 2. fix \mathbf{R}_i , solve for \mathbf{v}'_i in sparse linear system:

$$\operatorname{E}_{ARAP}(\boldsymbol{V}') = \sum_{i=1}^{|\mathcal{V}|} \sum_{j \in \mathcal{N}_i} \left\| (\boldsymbol{v}'_i - \boldsymbol{v}'_j) - \boldsymbol{R}_i (\boldsymbol{v}_i - \boldsymbol{v}_j) \right\|^2 \to \min$$

 \Rightarrow nonlinear optimization problem

Solve by iterative optimization

- 1. fix vertex-positions \mathbf{v}'_i , compute best-aligning rotations \mathbf{R}_i (as shown)
- 2. fix \mathbf{R}_i , solve for \mathbf{v}'_i in sparse linear system:

$$LV' = B$$

- problem: artifacts at constrained positions
- good portion of ARAP energy is located at constraints
- when deformation contains stretching: peaks at constraints

- · problem: artifacts at constrained positions
- good portion of ARAP energy is located at constraints
- when deformation contains stretching: peaks at constraints

\Rightarrow incorporate energy smoothness

• minimize energy difference in neighborhood

• minimize energy difference in neighborhood

For one edge $e_k = e_{ij}$: $E_{SMOOTH}(e_{ij}) = (E_{ARAP}(\mathbf{v}'_i) - E_{ARAP}(\mathbf{v}'_j))^2$

• minimize energy difference in neighborhood

For one edge $e_k = e_{ij}$: $E_{SMOOTH}(e_{ij}) = (E_{ARAP}(\mathbf{v}'_i) - E_{ARAP}(\mathbf{v}'_j))^2$

For all edges: $E_{SMOOTH}(\mathbf{V}') = \sum_{k=1}^{|\mathcal{E}|} E_{SMOOTH}(\mathbf{e}_k) \rightarrow min$

• minimize energy difference in neighborhood

For one edge $e_k = e_{ij}$: $E_{SMOOTH}(e_{ij}) = (E_{ARAP}(\mathbf{v}'_i) - E_{ARAP}(\mathbf{v}'_j))^2$

For all edges: $E_{SMOOTH}(V') = \sum_{k=1}^{|\mathcal{E}|} E_{SMOOTH}(e_k) \rightarrow min$

Use regularization parameter β :

$$E_{TOTAL}(\mathbf{V}') = (1 - \beta)E_{ARAP}(\mathbf{V}') + \beta E_{SMOOTH}(\mathbf{V}')$$

Implementation

Implementation

MeVisLab: platform to develop clinical prototypes

- modular C++ interface
- · combine algorithms to pipelines and networks
- Open Inventor for interaction and 3D visualization

Eigen C++ template library for linear algebra

- Sparse matrix manipulations
- Solving sparse linear systems, e.g. Sparse Cholesky factorization
- SVD

Prototype GUI

Edge snapping

Original image

Gradient image

Illustration: voxel sampling

Edge snapping

Original image

Illustration: voxel sampling

- moved vertex snaps into edge
- · here: maximum gradient along moving direction
- highly extendable (e.g. higher level edge detection)

Gradient image

Results

Energy Smoothness Regularization

Initialization with mean shape model

5 constraints, $\beta = 0$

Energy Smoothness Regularization

\Rightarrow smoother results with energy smoothness regularization

Energy Smoothness Regularization (energy color-coded)

Initialization with mean shape model

5 constraints, $\beta = 0$

5 constraints, $\beta = 0.33$

\Rightarrow smoother results with energy smoothness regularization

User study: editing of the aortic root

Data set	1	2	3	4	5	6
d _{avg,init} [mm]	2.21	1.13	1.05	1.68	1.39	2.43
d _{max,init} [mm]	6.40	3.41	3.80	4.29	4.43	12.10
d _{avg,edit} [mm]	0.50	0.47	0.57	0.37	0.38	0.60
	± 0.07	\pm 0.05	\pm 0.04	\pm 0.03	± 0.02	± 0.15
d _{max,edit} [mm]	2.04	2.25	1.82	1.84	1.98	2.43
	\pm 0.08	\pm 0.36	\pm 0.17	\pm 0.06	± 0.11	± 0.23
Var _{avg,inter} [mm]	0.41	0.47	0.37	0.37	0.37	0.60
Var _{max,inter} [mm]	0.46	0.52	0.41	0.41	0.43	0.79
time [s]	216	126	134	205	143	416
	± 89	\pm 67	\pm 34	± 74	± 51	\pm 254
constraints set	47	32	40	82	47	52
	± 4	± 12	\pm 12	± 43	± 15	± 22

Initialization

ARAP Editing

Local Editing

Initialization

ARAP Editing

Local Editing

- valve closed after initial fully-automatic detection
- image data shows an open valve
- valve opening as editing step

Initialization

ARAP Editing

Local Editing

Initialization

ARAP Editing

Local Editing

- · acute angles at leaflet tip vertices in the middle are detail features
- detail features can not be easily eliminated with ARAP
- · better results here with local editing

Outlook

Outlook

Evaluation for ...

- ... mitral valve editing
- ... editing of the right heart valves
- ... four-chamber segmentation editing
- ... other organs like e.g. the liver

Outlook

Evaluation for ...

- ... mitral valve editing
- ... editing of the right heart valves
- ... four-chamber segmentation editing
- ... other organs like e.g. the liver

Snapping and shape validation based on other image features

- Canny edge detector
- · features obtained by learning-based methods

Intuitive and Smart Editing after fully-automatic initialization

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully-automatic detection

Intuitive and Smart Editing after fully-automatic initialization

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully-automatic detection

As-Rigid-As-Possible Surface Editing

- ... is a very nice and intuitive approach
- fix and move some constraints on the surface
- ... and the remaining, free part is deformed physically plausible
- · use energy smoothness regularization for smoother results

Intuitive and Smart Editing after fully-automatic initialization

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully-automatic detection

As-Rigid-As-Possible Surface Editing

- ... is a very nice and intuitive approach
- fix and move some constraints on the surface
- ... and the remaining, free part is deformed physically plausible
- · use energy smoothness regularization for smoother results

Enhance efficiency and accuracy by involving image data ("edge snapping")

Sources

- Ionasec, R.I.; Voigt, I.; Georgescu, B.; Yang Wang; Houle, H.; Vega-Higuera, F.; Navab, N.; Comaniciu, D.: Patient-Specific Modeling and Quantification of the Aortic and Mitral Valves From 4-D Cardiac CT and TEE. Medical Imaging, IEEE Transactions on, Vol. 29, 2010
- Sorkine, O. ; Alexa, M.: As-Rigid-As-Possible Surface Modeling. EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, Vol. 27, 2007
- Martinez Esturo, J.; Rössl, C.; Theisel, H.: Smoothed Quadratic Energies on Meshes. ACM Trans. Graph., Vol. 34, 2014

Thank you for your attention!