
Exercises for
Pattern Analysis
Marco Bögel, Sebastian Käppler
Assignment 2, 23.04.2015

General Information:
Lecture (3 SWS): Mo 08.30 – 10.00 (H16) and Tue 08.15 – 09.45 (H16)
Exercises (1 SWS): Tue 12.15 – 13.15 (02.134-113) and Thu 8.30 – 9.30 (E1.12)
Certificate: Oral exam at the end of the semester
Contact: marco.boegel@fau.de

sebastian.kaeppler@fau.de

Hard Clustering

Exercise 1 In this exercise, we study the K-means algorithm as one the simplest methods
for hard clustering. Given a set of n unlabled samples S = {x1,x2, . . . ,xn} and
K clusters, the objective of K-means is to cluster the samples in S such that the
sum of intraclass distances over all clusters is minimized.

(a) Write down the underlying optimization problem for K-means clustering and
outline the general structure of the K-means algorithm.

(b) Let S be the following example dataset that should be clustered into K = 2
clusters:

S =

{(
0.4
0.5

)
,

(
0.4
0

)
,

(
0.3
0.5

)
,

(
0.5
0.5

)
,

(
0.9
0.6

)
,

(
0.8
0.7

)
,

(
1
1

)
,

(
0.9
0.8

)}
Draw the given example data in the two-dimensional feature space.

(c) Initialize your cluster centers with µ1 = (0, 0)> and µ2 = (0.8, 0.8)> and use
the squared Euclidean distance to measure the distance between samples
and a cluster center. Perform 2 iterations of the K-means algorithm and
compute for each iteration:

• The updated cluster centers µ1 and µ2

• The clustering matrix C

(d) Consider the extended sample set S ′ = S∪{(0.1, 5)>}. What happens if you
apply K-means to S ′ compared to the clustering determined for S? Explain
an intuitive modification of the K-means algorithm to avoid this issue.

(e) Now, set µ1 = (0.1, 0.1)> and µ2 = (3, 2)> and perform again the clustering
for S using the squared Euclidean distance measure. Explain which problem
occurs and describe how it might be solved.

Exercise 2 In conventional hard clustering based on the K-means algorithm, the squared
Euclidean is used to calculate distances between samples and the different cluster
centers for the assignment of a sample to a cluster. This is feasible for spherical
distributed samples for each cluster. However, different distance measures or
kernel-based methods are required to deal with non-spherical distributed samples.
In this exercise, we replace the Euclidean distance with a simple measure to deal
with non-spherical data.



(a) Explain why the Euclidean distance is not appropriate for clusters with
samples that are non-spherical. Draw a two-dimensional example for K-
means clustering to visualize this problem.

(b) Replace the Euclidean distance by the Mahalanobis distance and write down
the objective function for K-means clustering. Explain the benefit of the
Mahalanobis distance compared to the Euclidean distance.

(c) Derive the update formulas for the cluster centers in our modified K-means
algorithm using the Mahalanobis distance.

Hint: You can assume that the cluster covariance matrix is known for the
estimation of the cluster centers.

(d) Explain how the covariance matrix for each cluster can be estimated for
K-means clustering.

Note: For this exercise, a simple strategy is sufficient. A more advanced
method to estimate the covariance matrices has been presented in:

Jianchang M.; Jain, A.K., A self-organizing network for hyperellipsoidal
clustering (HEC), IEEE Transactions on Neural Networks, vol. 7, no. 1,
pp.16–29, Jan 1996

Exercise 3 Matlab exercise

K-means clustering can be employed for image data compression by means of
color quantization. For this purpose, we consider 24-bit color images stored in
the RGB color space such that each image point is described by a red (R), green
(G) and blue (B) intensity value. In order to compress RGB images, we apply
K-means to represent 24-bit color values by K different clusters.

(a) Implement the K-means algorithm for a general number of clusters and
dimensions of the input samples in Matlab. You can assume that we use the
Euclidean distance measure for this exercise.

(b) Load the peppers.png test image available for Matlab and reorganize the
RGB color values for each pixel as three-dimensional feature vector.

(c) Cluster the RGB color values into K = 24 clusters using the K-means and
visualize the final clustering. You can select the cluster centers randomly
out of the RGB color space.

(d) Repeat the clustering for K = 16 and K = 32 and K = 64 and compare the
results.


