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Outline of the main ideas and results

The cascade iteration for a suitable finite filter h = (h`, . . . , hL)
converges in the L2-sense to a function φ(t), the scaling function

The convergence is easier to handle in the frequency domain (making
use of the convolution theorem!)

Cascade iteration

shows that the scaling function φ(t) and the wavelet function ψ(t)
vanish outside finite intervals of length L− ` (compact support)
preserves the ONST property, which guarantees orthogonality for φ(t)
and ψ(t) and its scaled and translated versions

shows that necessarily φ̂(0) = 1 and ψ̂(0) = 0

Low-pass conds. (vanishing moments) like ψ̂(n)(0) = 0 (0 ≤ n < N)

ensure exact reproduction of low-degree polynomials in the
approximation spaces and makes them “transparent” in the wavelet
spaces
provide sharp bounds for the size of wavelet coefficients of (locally)
smooth functions
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Orthogonal filters, scaling and wavelet equations

The filters

h = (hk)k=`..L a finite filter satisfying the orthogonality conditions∑
k

hkh2k−m = δm,0 and
∑
k

hk =
√

2

Such a filter is called a (finite) quadrature mirror filter (QMF)
g = (gk)k=1−L..1−` the dual filter to h, defined by

gk = (−1)kh1−k ,

satisfying automatically the orthogonality conditions∑
k

gkg2k−m = δm,0

Orthogonality of h and g is a consequence∑
k

hkg2k−m = 0
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Orthogonal filters, scaling and wavelet equations

The Fourier picture
for the filter h

m0(s) =
1√
2
H(−2πs) =

1√
2

∑
k

hke
−2πiks =

1√
2

∑̂
k

hkδk(s)

m0(0) =
1√
2

∑
k

hk = 1

for the filter g

m1(s) =
1√
2
G (−2πs) =

1√
2

∑
k

gke
−2πiks =

1√
2

∑̂
k

gkδk(s)

= e−2πi(s+1/2) ·m0(s + 1/2)

orthogonality

|m0(s)|2 + |m0(s + 1/2)|2 ≡ 1

|m1(s)|2 + |m1(s + 1/2)|2 ≡ 1

m0(s) ·m0(s + 1/2) + m1(s) ·m1(s + 1/2) ≡ 0

low/highpass
m0(1/2) = m1(0) = 0

Volker Strehl cascade algorithm December 9, 2015 5 / 32



Orthogonal filters, scaling and wavelet equations

The scaling equation

(S) φ(t) =
√

2
∑
k

hk φ(2t − k)

The wavelet equation

(W ) ψ(t) =
√

2
∑
k

gk φ(2t − k)

The scaling equation in the frequency domain

(Ŝ) φ̂(s) = m0(s/2) · φ̂(s/2)

The wavelet equation in the frequency domain

(Ŵ ) ψ̂(s) = m1(s/2) · φ̂(s/2)
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The cascade iteration and its convergence

The cascade mapping in the time domain

C : f (t) 7−→(Cf )(t) =


√

2
∑

k hk f (2t − k)

= D2 (
∑

k hk f (t − k))

= D2 (
∑

k hk δk(t) ? f (t))

The cascade mapping in the frequency domain

Ĉ : f̂ (s) 7−→ (̂Cf )(s) =


D1/2

(∑̂
k hk δk(s) · f̂ (s)

)
= 1√

2

∑
k hk e

−2πik(s/2) · f̂ (s/2)

= m0(s/2) · f̂ (s/2)
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The cascade iteration and its convergence

Iterating the cascading operation

Cn : f (t) 7−→ C(Cn−1f )(t) = (C ◦ · · · ◦ C︸ ︷︷ ︸
n times

f )(t)

Iterating the cascading operation in the frequency domain

Ĉn : f̂ (s) 7−→ (̂Cnf )(s) =

m0(s/2) ·m0(s/4) · · ·m0(s/2n) · f̂ (s/2n)

= m[n](s) · f̂ (s/2`)

where
m[n](s) := m0(s/2) ·m0(s/4) · · ·m0(s/2n)

is an exponential polynomial of period 2n . . .

. . . but these cascade multipliers do not belong to L2(R)
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The cascade iteration and its convergence

Question: Is there a φ(t) ∈ L2(R) which satisfies the scaling equation

(S) φ(t) =
√

2
∑

k hk φ(2t − k) .

i.e., does the cascading operator have a fixed point in L2(R) ?
What one ideally would like to have:

η[0](t) = χ[0,1)(t) η̂[0] = sinc(s)

↓ ↓

η[n+1](t) =

{
Cη[n](t)√

2
∑

k hk η
[n](2t − k)

η̂[n+1](s) =

{
m0(s/2) · η̂[n](s)

= m[n](s) · sinc(s/2n)

↓n→∞ ↓n→∞

η[∞](t) =
√

2
∑

k hk η
[∞](2t − k) η̂[∞](s) =

{
m[∞](s) · sinc(s/2∞)

= m[∞](s)

Do limit functions η[∞](t) and m[∞](s) exist in L2(R)?
If so, what properties do they have? What tells this about the
properties of the wavelet transform based on h?
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The cascade iteration and its convergence

It appears that if

m[∞](s) =
∏
n≥1

m0(s/2n) = lim
N→∞

∏
1≤n≤N

m0(s/2n)

makes sense and belongs to L1(R)(R) ∩ L2, then its inverse Fourier
transform would satisfy(

m[∞]
)∨

(t) = η[∞](t)

and hence would be the φ(t) as desired . . .

Volker Strehl cascade algorithm December 9, 2015 10 / 32



The cascade iteration and its convergence

The good news

One can show that the infinite product

m[∞](s) =
∏
n≥1

m0(s/2n) = lim
N→∞

∏
1≤n≤N

m0(s/2n) = lim
N→∞

m[N](s)

converges absolutely and uniformly on every finite interval [−ρ, ρ] ⊂ R.
Thus it makes sense to speak of this expression as defining function
defined (and continuous) of R

The bad news

The multiplier for N-fold cascading

m[N](s) = m0(s/2) ·m0(s/4) · · ·m0(s/2N)

is a 2N -periodic function – so the m[N](s) (as m0(s)) do certainly
not belong to L2(R) and therefore cannot converge in L2(R) towards

m[∞](t)
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The cascade iteration and its convergence

Solving the problem

A common technique to resolve this kind of problem is to introduce
band-limited versions of these functions:

µ[n](s) = m[n](s) · χ[−2n−1,2n−1](s)

Check that

(∗) µ[n](s) = m0(s/2) · µ[n−1](s/2)

Band-limiting ensures that µ[`](s) ∈ L2(R) ∩ L1(R),
so these functions do have an inverse Fourier transform (µ[`])∨(t)
From (∗) one gets cascading in the time domain:

(µ[n])∨(t) = C(µ[n−1])∨(t)

It now makes sense to consider the sequence
(
µ[n](s)

)
`≥0

as a

sequence in L2(R) and ask for its convergence
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The cascade iteration and its convergence

Theorem:
If h is a QMF as above, for which there exists a constant c > 0 such
that |m0(s)| ≥ c for all |s| ≥ 1/4. Then one has L2-convergence

µ[n](s) −→n→∞ m[∞](s) = φ̂(s)

Consequently, by applying the inverse Fourier transform, one gets
L2-convergence

(µ[n])∨(t) −→n→∞ φ(t),

where the functions (µ[`])∨(t) are band-limited approximations of φ(t)

This can be used to show that, as desired, one has L2-convergence

η̂[n](s)→n→∞ φ̂(s) and η[n](t)→n→∞ φ(t)

as desired
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Compact support

A function f : R→ C has compact support, if it vanishes outside an
interval I ⊂ R of finite length

From the cascade iteration step for a QMF of length 2N

η[n+1](s) = Cη[n](t) =
√

2
∑L

k=` hk η
[n](2t − k)

one gets

if η[n](t) vanishes outside the interval [an, bn]

then η[n+1](t) vanishes outside the interval
[an+1, bn+1] = [(an + `)/2, (bn + L)/2]

by induction one gets in the limit that η[∞](t) = φ(t) vanishes

outside the interval [a∞, b∞] = [`, L] of length L− ` = 2N − 1

and by (W ) it follows that ψ(t)

vanishes outside the interval [−N + 1,N]
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Orthogonal families of translates

Orthogonality property of the cascade operator (1)
A family of translates { (Tk f )(t) }k∈Z = { f (t − k) }k∈Z of an
L2-function f (t) is orthonormal if and only if∑

n∈Z
|f̂ (s + n)|2 ≡ 1

Proof : 〈 f |Tk f 〉 = 〈 f̂ | T̂k f 〉 =

∫
R
f̂ (s) f̂ (s) e2πiksds

=
∑
n∈Z

∫ n+1

n

∣∣∣f̂ (s)
∣∣∣2 e2πiksds =

∑
n∈Z

∫ 1

0

∣∣∣f̂ (s + n)
∣∣∣2 e2πiksds

=

∫ 1

0

∑
n∈Z

∣∣∣f̂ (s + n)
∣∣∣2 e2πiksds

Hence in terms of Fourier series∑
k∈Z
〈 f |Tk f 〉 e−2πiks =

∑
n∈Z

∣∣∣f̂ (s + n)
∣∣∣2

Such a family with 〈Tk f |T`f 〉 = δk,` (k , ` ∈ Z) is called an
orthonormal system of translates (ONST)
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Orthogonal families of translates

Orthogonality property of the cascade operator (2)

Reminder: orthogonality of the filter h reads as

|m0(s)|2 + |m0(s + 1/2)|2 ≡ 1

If {Tk f }k∈Z is an ONST, then {Tk (Cf ) }k∈Z is again an ONST

∑
n∈Z

∣∣∣(̂Cf )(s + n)
∣∣∣2 =

∑
n∈Z

∣∣∣∣m0(
s + n

2
) · f̂ (

s + n

2
)

∣∣∣∣2 =
∑
n even

· · ·+
∑
n odd

· · ·

=
∣∣∣m0(

s

2
)
∣∣∣2 ∑

n′∈Z

∣∣∣f̂ (
s

2
+ n′)

∣∣∣2 +

∣∣∣∣m0(
s + 1

2
)

∣∣∣∣2 ∑
n′′∈Z

∣∣∣∣f̂ (
s + 1

2
+ n′′)

∣∣∣∣2
=
∣∣∣m0(

s

2
)
∣∣∣2 +

∣∣∣∣m0(
s + 1

2
)

∣∣∣∣2 ≡ 1

because m0(s) is a 1-periodic function
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Orthogonal families of translates

Orthogonality property of the cascade operator (3)

The family
{
Tkχ[1/2,1/2](t)

}
k∈Z is obviously an ONST

Then, by induction, all intermediate families{
Tkη

[n](t)
}
k∈Z

(n = 1, 2, 3, . . .)

are ONST

From L2-convergence η[n](t)→n→∞ φ(t) one gets:

{Tkφ(t) }k∈Z is an ONST
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Orthogonal families of translates

Integrals

If f (t) is integrable, then∫
R

(Cf )(t) dt =
√

2
∑
k

hk

∫
R
f (2t − k) dt =

1√
2

∑
k

hk

∫
R
f (t) dt =

∫
R
f (t) dt

hence from the cascade iteration

φ̂(0) =

∫
R
φ(t) dt = . . . =

∫
R
χ[0,1)(t) dt = 1

and from the wavelet equation (Ŵ )∫
R
ψ(t) dt = ψ̂(0) = m1(0) · φ̂(0) = m1(0) = 0
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QMF and polynomials

Now consider low-pass properties of the QMF h
as specified by

m
(n)
0 (1/2) = 0 (0 ≤ n < N)

or in terms of the moment conditions∑
k

(−1)khk k
n = 0 (0 ≤ n < N)

or else by

m0(s) = (
1 + e−2πis

2
)N · L(s)

with L(s) a trigonometric polynomial (finite Fourier series) of period 1

If any of these equivalent properties is satisfied,
then one says that the QMF h has N vanishing moments
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QMF and polynomials

By differentiating the scaling equation in the frequency domain form

φ̂(s) = m0(s/2) · φ̂(s/2)

one gets (remember φ̂(0) = 1)

φ̂(n)(k) = 0 for 0 ≤ n < N and k ∈ Z \ {0}

Hence the following Fourier series is a constant

(2πi)n
∑
k∈Z

t̂n φ(t)(k) e2πikt =
∑
k∈Z

φ̂(n)(k) e2πikt = φ̂(n)(0)

From Poisson’s formula one gets∑
k∈Z

t̂n φ(t)(k) e2πikt =
∑
`∈Z

(t + `)nφ(t + `)

and hence
φ̂(n)(0) = (2πi)n

∑
`∈Z

(t + `)nφ(t + `)
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QMF and polynomials

Now use the binomial theorem for 0 ≤ n < N

∑
`∈Z

φ(t + `) · `n =
∑
`∈Z

φ(t + `)
n∑

j=0

(
n

j

)
(t + `)j(−t)n−j

=
n∑

j=0

(
n

j

)
(−t)n−j

∑
`∈Z

(t + `)jφ(t + `)

=
1

(2πi)n

n∑
j=0

(
n

j

)
(−t)n−j φ̂(j)(0)

= pn(t)

which is a polynomial of degree n in t

Note: even though the sum
∑

`∈Z is infinite, for any specific t ∈ R it
contains only a finite number of non-zero summands, since φ(t) has
finite support
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QMF and polynomials

Since the polynomials pn(t) (0 ≤ n < N) are a basis in the vector
space of polynomials of degree < N, one gets

There are polynomials qn(t) =
∑n

j=0 qn,j t
j (0 ≤ n < N) such that

n∑
j=0

qn,j · pj(t) = tn (0 ≤ n < N)

and hence ∑
`∈Z

φ(t + `) · qn(`) = tn

Theorem:

For any polynomial r(t) of degree < N there are constants ρ` (` ∈ Z)
such that ∑

`∈Z
φ(t + `) · ρ` = r(t)

and by referring to the orthogonality of the translates of φ(t) one can
deduce what these constants really are:

ρ` = 〈 r(t) |φ(t + `) 〉
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The high-pass filter

Recall, that given a QMF h = (hk) one has

the dual filter g = (gk) defined by setting gk = (−1)kh1−k
with Fourier series

m1(s) =
1√
2

∑
k

gke
−2πiks = e−2πi(s+1/2)m0(s + 1/2)

This is indeed an orthogonal filter

|m1(s)|2 + |m1(s + 1/2)|2 ≡ 1

and

m1(0) =
1√
2

∑
k

gk =
1√
2

∑
k

(−1)k−1hk = −m0(1/2)

Thus if h is low-pass(m0(1/2) = 0) then g is high-pass (m1(0) = 0)
Orthogonality between h and g is expressed by

m0(s) ·m0(s + 1/2) + m1(s) ·m1(s + 1/2) ≡ 0
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The high-pass filter

Using the scaling function φ(t) belonging to the QMF h one defines
the wavelet function ψ(t) by the wavelet equation

(W ) ψ(t) =
∑
k

gk φ1,k(t) =
√

2
∑
k

gk φ(2t − k)

This is a finite sum, so ψ(t) is also a function with compact support
(as mentioned before)

The frequency picture is

ψ̂(s) = m1(s/2) · φ̂(s/2)

The scaling and wavelet functions φ(t) and ψ(t) can be translated
and dilated as usual

φj ,k(t) = D2jTkφ(t) = 2j/2φ(2j t − k)

ψj ,k(t) = D2jTkψ(t) = 2j/2ψ(2j t − k)
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The high-pass filter

As shown before, the family {Tkφ(t) }k∈Z is an ONST,
hence for any fixed j ∈ Z the family {φj ,k(t) }k∈Z is orthonormal

From the orthogonality property of g it follows that for any fixed
j ∈ Z the family {ψj ,k(t) }k∈Z is orthonormal

From the orthogonality between h and g it follows that
for any fixed j ∈ Z the families {φj ,k(t) }k∈Z and {ψj ,`(t) }`∈Z are
orthonormal

It is then easy to show that the family of all wavelet functions
{ψj ,k(t) }j ,k∈Z is an orthonormal family in L2(R)

L2-completeness is not guaranteed!
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Vanishing moments and smoothness

Remember that in the QMF cascading situation

ψ̂(0) =

∫
R
ψ(t) dt = 0

Theorem:

If {ψj ,k(t) }j ,k∈Z is any orthonormal family in L2(R)

with ψ(t) and ψ̂(s) integrable, i.e., ∈ L1(R).
Then ∫

R
ψ(t) dt = 0

Comment: Integrability of ψ(t) assures that the integral exists.
Integrability of ψ̂(t) plus the Riemann-Lebesgue Lemma says that
ψ(t) is uniformly continuous on R and vanishes at infinity

For a proof see the Lecture Notes
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Vanishing moments and smoothness

The previous theorem can be extended.

Theorem:

If {ψj ,k(t) }j ,k∈Z is an orthonormal family,

with tN · ψ(t) and sN+1 · ψ̂(s) integrable, i.e., ∈ L1(R).
Then ψ(t) has N vanishing moments:∫

R
tn ψ(t) dt = 0 (0 ≤ n < N)

In the context of a QMF h and its wavelet function ψ(t) this
vanishing moments property is indeed equivalent to the earlier
statements like

m
(n)
0 (1/2) = 0 (0 ≤ n < N)

or ∑
k

(−1)khk k
n = 0 (0 ≤ n < N)
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Vanishing moments and smoothness

Comments:

The proof goes by induction over N

The condition tN ψ(t) ∈ L1(R) guarantees existence of the integrals

The condition sN+1 · ψ̂(s) ∈ L1(R) says that ψ(t) is smooth:
it has N + 1 continuous derivatives, remember

(2πis)N+1 · ψ̂(s) = ψ̂(N+1)(s)

So ψ(N+1)(t) is uniformly continuous and vanishes as t → ±∞ (R-L)

A practical consequence:
If f (t) ∈ L2(R) behaves like a polynomial function of degree < N on
the support of ψj ,k (a finite interval), then 〈 f |ψj ,k 〉 = 0,
i.e., f becomes “invisible” or “transparent” for the detail parts of the
wavelet transformation

The smoothness of a wavelet function ψ(t) corresponds to the
number of vanishing moments
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Estimating the size of wavelet coefficients

The previous Theorem can be extended even further by making a
statement about the size of wavelet coefficients for smooth functions

Assume:

ψ(t) is a (real) wavelet function
(coming from an QMF h, with compact support [0, a]), so that

{ψj,k}j,k∈Z is an orthonormal family

Intervals Ij,k of length 2−ja are obtained from I0,0 = [0, a] by dilation
and translation

tj,k = 2−(j+1)a + 2−jk is the midpoint of Ij,k

ψ(t) has N vanishing moments
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Estimating the size of wavelet coefficients

Theorem:

For any N-times differentiable function f (t) on R with f (N)(t)
bounded, the size of its wavelet coefficients can be bounded:

i. There exists a constant CN,f > 0 such that for all j , k ∈ Z

|〈 f |ψj,k〉| ≤ CN,f · 2−jN2−j/2

ii. More precisely: for large j

|〈 f |ψj,k〉| ≈ 2−jN2−j/2

(
1

N!
f (N)(tj,k)

∫ a/2

−a/2

tnψ(t + a/2) dt

)
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Estimating the size of wavelet coefficients

About the proof

Use Taylor’s expansion with remainder term for f (t) around tj,k , noting
that

∫
Ij,k

(t − tj,k)nψj,k(t) dt = 0 for n < N to get

〈 f |ψj,k〉 =

∫
Ij,k

RN(t)ψj,k(t) dt

where

RN(t) =
1

N!
(t − tj,k)N f (N)(ξ)

for some ξ between t and tj,k
For t ∈ Ij,k

|RN(t)| ≤ 1

N!
2−N(j+1)aN max

t′∈Ij,k
|f (N)(t ′)|

With this estimate use Cauchy-Schwarz inequality . . .
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Estimating the size of wavelet coefficients

What the Theorem says is:

Wavelet coefficients for smooth functions decay rapidly as the
resolution parameter j increases!

This is (as ii. shows) a strictly local phenomenon:
If a function f (t) is N-times continuously differentiable at some point
t0 ∈ R, hence f (N)(t) is continuous in some interval J containing t0,
the estimate ii. holds for any j , k for which Ij,k ⊆ J

This means: wavelet coefficients belonging to smooth parts of a signal
are usually much smaller than wavelet coefficients for non-smooth parts

This has important practical consequences, e.g., for image compression
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