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Outline of the main ideas and results

@ The cascade iteration for a suitable finite filter h = (hy,..., h;)
converges in the £2-sense to a function ¢(t), the scaling function

@ The convergence is easier to handle in the frequency domain (making
use of the convolution theorem!)
o Cascade iteration
o shows that the scaling function ¢(t) and the wavelet function (t)
vanish outside finite intervals of length L — ¢ (compact support)
o preserves the ONST property, which guarantees orthogonality for ¢(t)
and ¢(t) and its scaled and translated versions
o shows that necessarily ¢(0) = 1 and (0) = 0

o Low-pass conds. (vanishing moments) like /(" (0) =0 (0 < n < N)
e ensure exact reproduction of low-degree polynomials in the
approximation spaces and makes them “transparent” in the wavelet
spaces
o provide sharp bounds for the size of wavelet coefficients of (locally)
smooth functions
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Orthogonal filters, scaling and wavelet equations

@ The filters
o h = (hi)k=¢.1 a finite filter satisfying the orthogonality conditions

Z hxhok—m = 0mo  and Z he = V2
k k
o Such a filter is called a (finite) quadrature mirror filter (QMF)
o g8 = (gk)k=1—1..1—¢ the dual filter to h, defined by
gk = (—1)*h s,

satisfying automatically the orthogonality conditions

ngng—m = 0m,0
K

e Orthogonality of h and g is a consequence

Z hxgak—m =10
K
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Orthogonal filters, scaling and wavelet equations

@ The Fourier picture
o for the filter h

1 —2miks 1 &,
mo(s) = —2H(—27rs) = 7 the = \ﬁ; hidk(s)

o for the filter g
1

my(s) = EG(*27TS) = \% ;gke*%"ks = \2; 8k0k(s)
— e 2mils+1/2) T D)
e orthogonality
[mo(s)[? + [mo(s +1/2)* =11
Imi(s))? + |mi(s +1/2)]P =1
mo(s) - mo(s +1/2) + mu(s) - mu(s +1/2) = 0

o low/highpass
mg(1/2) = my(0) =0
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Orthogonal filters, scaling and wavelet equations

@ The scaling equation

(S)  o(t) = V2 heo(2t — k)
k

@ The wavelet equation

(W) () =vV2)_ ekd(2t — k)
k

@ The scaling equation in the frequency domain

o~

(S)  o(s) = mo(s/2) - (s/2)

@ The wavelet equation in the frequency domain

—

(W) W(s) = mi(s/2) - 6(s/2)
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The cascade iteration and its convergence

o The cascade mapping in the time domain
V2, he (2t — K)
C:f(t) —(CH(t) = § = D2 (3o, he F(t — k)
= Do (34 hic 61 (t) * £(t))

@ The cascade mapping in the frequency domain

Dy (i hediels) - F(s))
C - f(s) — (Cf)(s) = :% S i e—2ﬂik(s/2)'f(s/2)

~

= mo(s/2) - (s/2)
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The cascade iteration and its convergence

@ lterating the cascading operation
C™": f(t) — C(C")(t) = (Co--- 0 CF)(t)
n times

@ lterating the cascading operation in the frequency domain

o~

L (mols/2) - mols/4)-mo(s/2") - F(s/2")
= ml(s) - F(s/2%)

where
ml™l(s) := mo(s/2) - mo(s/4) - - - mo(s/2")
is an exponential polynomial of period 2" ...

@ ...but these cascade multipliers do not belong to £L2(R)
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The cascade iteration and its convergence

o Question: Is there a ¢(t) € £L?(R) which satisfies the scaling equation

(S) o(t) = V2 3, hi ¢(2t — k)

i.e., does the cascading operator have a fixed point in £2(R) ?
@ What one ideally would like to have:

() = xo)(2) 79 = sinc(s)
{ {
i1l py ) C1(E) 5y _ [ mo(s/2) - lel(s)
T = {\ﬁ Sk hent(2t — k) meells) = {: mll(s) - sinc(s/2")
in—mo \l/n—>oo
W) = VIS b2t k) (s) = {Z[:][S])(;_;‘”C(S/ >)

@ Do limit functions 5[>I(t) and ml>l(s) exist in £L2(R)?
If so, what properties do they have? What tells this about the
properties of the wavelet transform based on h?
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The cascade iteration and its convergence

@ It appears that if

ml>®l(s) = Hmo(s/2” :N”j]oo H mo(s/2")

n>1 1<n<N

makes sense and belongs to £}(R)(R) N £, then its inverse Fourier
transform would satisfy

(m=) " () = =)

and hence would be the ¢(t) as desired ...
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The cascade iteration and its convergence

@ The good news
e One can show that the infinite product

0 _ n _ n _ | N
ml>l(s) = H mo(s/2") = Nlinoo H mo(s/2") = NlinOo mlM(s)
n>1 1<n<N

converges absolutely and uniformly on every finite interval [—p, p] C R.
Thus it makes sense to speak of this expression as defining function
defined (and continuous) of R

@ The bad news
o The multiplier for N-fold cascading

mM(s) = mo(s/2) - mo(s/4) - - - mo(s/2")

is a 2V-periodic function — so the m[M(s) (as my(s)) do certainly

not belong to £2(R) and therefore cannot converge in £L2(R) towards
[](t)

m
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The cascade iteration and its convergence

@ Solving the problem

e A common technique to resolve this kind of problem is to introduce
band-limited versions of these functions:

() = mih(s) - X1 20-11(5)
o Check that
(*) pll(s) = mo(s/2) - pl"~1(s/2)

o Band-limiting ensures that ull(s) € £2(R) N L(R),
so these functions do have an inverse Fourier transform (ul)Y(t)
o From (k) one gets cascading in the time domain:

(u™)Y (2) = c(ul" 1) (1)

o It now makes sense to consider the sequence (u["](s))bo asa

sequence in £2(R) and ask for its convergence
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The cascade iteration and its convergence

@ Theorem:
If his a QMF as above, for which there exists a constant ¢ > 0 such
that |mo(s)| > c for all |s| > 1/4. Then one has £?-convergence

ul(s) —nsoo m™N(s) = 6(s)

@ Consequently, by applying the inverse Fourier transform, one gets
L?-convergence

(M[n])v(t) —n—soo O(t),
where the functions (ul4)V(t) are band-limited approximations of ¢(t)

@ This can be used to show that, as desired, one has £2-convergence

~

() —noo B(s)  and () —nne B(2)

as desired
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Compact support

@ A function f : R — C has compact support, if it vanishes outside an
interval / C R of finite length

@ From the cascade iteration step for a QMF of length 2N
Am(s) = Coll(e) = V2 Sk, (2t~ K)
one gets

o if nl"l(t) vanishes outside the interval [a,, b,]

then 5["*1(t) vanishes outside the interval
[ant1; bria] = [(an +£)/2,(bn + L) /2]

o by induction one gets in the limit that 5[*(t) = ¢(t) vanishes
outside the interval [an., boo| = [¢, L] of length L — ¢ =2N —1

o and by (W) it follows that (t)
vanishes outside the interval [-N + 1, N]
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Orthogonal families of translates

@ Orthogonality property of the cascade operator (1)
o A family of translates { (Txf)(t) }xez = { f(t — k) }xez of an
L2-function f(t) is orthonormal if and only if

M Ifs+n)P=
ne7Z

=

Proof : <f|ka>:<f|fk\f>:/,?(S)Ee%iksds
R
n+1 2 ) 1 R 5 .
:Z/ ’f(s)’ e27rlk5d5:Z/ ’f(5+n)’ o2miks o
nez v "
/ Z‘fs+n‘ 27rlksds

neZ
Hence in terms of Fourier series
S (FI T ) e 2k = 3| (s + ]
keZ neZ
o Such a family with ( Txf | Tef ) = 0k (k,¢ € Z) is called an
orthonormal system of translates (ONST)
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Orthogonal families of translates

e Orthogonality property of the cascade operator (2)
e Reminder: orthogonality of the filter h reads as

mo(s)|? + [mo(s +1/2)]* = 1

o If { Tkf }kez is an ONST, then { Ty (Cf) }kez is again an ONST

2

S |@AE+nf =3 moED A = a3
neZ neZ n even n odd

2 2
Z}mo(g)‘zz‘f(g—kn’f—i- mo(s+1) Z ?(s+1+n”)

n' €z n" €7
2 2
= ‘mo(%)‘ + mo(s_gl)‘ =1

because mg(s) is a 1-periodic function

December 9, 2015 16 / 32

Volker Strehl cascade algorithm



Orthogonal families of translates

@ Orthogonality property of the cascade operator (3)

o The family {TkX[]_/271/2](t)}k€Z is obviously an ONST

o Then, by induction, all intermediate families

{Tkn["](t)}kez (n=1,2,3,...)

are ONST

o From £2-convergence nl"l(t) =, 00 #(t) one gets:
Ui

{ Tko(t) }hey,  is an ONST
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Orthogonal families of translates

@ Integrals
o If f(t) is integrable, then

/(Cf (t)dt = thk/ (2t — )dt:\%th/f(t)dt:/Rf(t)dt

e hence from the cascade iteration

:/Rqs(t)dt:...:/RX[OJ)(t)dt:l

e and from the wavelet equation (W)
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QMF and polynomials

@ Now consider low-pass properties of the QMF h

@ as specified by
m{(1/2) =0 (0< n<N)
@ or in terms of the moment conditions

> (-1)khck”=0(0<n<N)
k

@ or else by
1+ e—27ris
mo(s) = (*5 )" - 1(s)
with L(s) a trigonometric polynomial (finite Fourier series) of period 1

o If any of these equivalent properties is satisfied,
then one says that the QMF h has N vanishing moments
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QMF and polynomials

o By differentiating the scaling equation in the frequency domain form
(s) = mo(s/2) - #(s/2)
one gets (remember ¢(0) = 1)
dM(k)=0 for0<n<N and keZ\{0}

@ Hence the following Fourier series is a constant
27”) Z n ¢(t e2mikt Z¢ e2mikt _ (g(n)(o)
kez ke
@ From Poisson’s formula one gets
S T HE)(K) 2 = 37 (e 4 1) (e + )
keZ el

@ and hence

HM(0) = (2mi)" > (¢ +0)"g(t + 1)

LeZ
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QMF and polynomials

@ Now use the binomial theorem for 0 < n< N

D p(t+0)-0"=) ¢(t+0) Z()(t+€)f( £)"-

= =
- Z; (;’)(—r)“—%u Yo+ 0)
~ @ (§) o
= pn(t)

which is a polynomial of degree nin t

o Note: even though the sum }_,_; is infinite, for any specific t € R it
contains only a finite number of non-zero summands, since ¢(t) has
finite support
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QMF and polynomials

@ Since the polynomials p,(t) (0 < n < N) are a basis in the vector
space of polynomials of degree < N, one gets

o There are polynomials q,(t) = Y7o qnjt/ (0 < n < N) such that

n
an,j -pi(t)=t" (0<n<N)
j=0

and hence
D> Gt +0) - ga(t) =t
LETL

@ Theorem:

For any polynomial r(t) of degree < N there are constants p, (¢ € Z)
such that

D o(t+0) - po=r(t)

LeZ
and by referring to the orthogonality of the translates of ¢(t) one can
deduce what these constants really are:

pe = (r(t) [o(t+£))
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The high-pass filter

@ Recall, that given a QMF h = (hy) one has

o the dual filter g = (gx) defined by setting gx = (—1)*hy_x
e with Fourier series

1 ; . N
m(s) = S5 Y g = e P g 172)
k

e This is indeed an orthogonal filter
[my(s)]? + Imi(s +1/2)]* =1

and

m(0) = 738 = 55 S (1) = ~ml1/2)
k k

o Thus if h is low-pass(mg(1/2) = 0) then g is high-pass (m1(0) = 0)
e Orthogonality between h and g is expressed by

mg(s) - mo(s +1/2) 4+ my(s) - mi(s+1/2) =0
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The high-pass filter

e Using the scaling function ¢(t) belonging to the QMF h one defines
the wavelet function 1(t) by the wavelet equation

(W) () = gk pra(t) =V2) g d(2t — k)
p P

@ This is a finite sum, so ¢ (t) is also a function with compact support
(as mentioned before)

@ The frequency picture is

U(s) = mi(s/2) - 6(s/2)

@ The scaling and wavelet functions ¢(t) and ¢ (t) can be translated
and dilated as usual

k(1) = Dy Tyd(t) = 2/2¢(2t — k)
bj(t) = Dy Tih(t) = 229(2t — k)
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The high-pass filter

@ As shown before, the family { Tx(t) }kez is an ONST,
hence for any fixed j € Z the family { ¢; «(t) }«ez is orthonormal

@ From the orthogonality property of g it follows that for any fixed
J € Z the family {1 «(t) }kez is orthonormal

@ From the orthogonality between h and g it follows that

for any fixed j € Z the families { ¢; (t) }kez and {1j ¢(t) }ecz are
orthonormal

@ It is then easy to show that the family of all wavelet functions
{4 k() }j kez is an orthonormal family in £2(R)

o L2-completeness is not guaranteed!
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Vanishing moments and smoothness

@ Remember that in the QMF cascading situation

90 = [ v(ede=0

@ Theorem:
If {4 k() }j kez is any orthonormal family in £?(R)
with 9(t) and 1(s) integrable, i.e., € L}(R).

Then
/ P(t)dt =0
R

Comment: Integrability of ¥(t) assures that the integral exists.
Integrability of ¢(t) plus the Riemann-Lebesgue Lemma says that
¥(t) is uniformly continuous on R and vanishes at infinity

@ For a proof see the Lecture Notes
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The previous theorem can be extended.

@ Theorem:
If {4 k(t) }jkez is an orthonormal family,
with tN - (t) and sN*1 . (s) integrable, i.e., € L1(R).
Then ¢(t) has N vanishing moments:

/t”¢(t)dt:0 (0<n<N)

@ In the context of a QMF h and its wavelet function (t) this
vanishing moments property is indeed equivalent to the earlier
statements like

m{P(1/2)=0 (0<n<N)

or
S (-1)Fmck™=0 (0<n<N)
k
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Vanishing moments and smoothness

Comments:
@ The proof goes by induction over N
o The condition tN ¢(t) € L(R) guarantees existence of the integrals

e The condition sN*1 . ¢(s) € £1(R) says that ¢(t) is smooth:
it has N + 1 continuous derivatives, remember

(2ris)NL - i(s) = pND)(s)

So (Nt (t) is uniformly continuous and vanishes as t — +oo (R-L)
@ A practical consequence:
If f(t) € L?(R) behaves like a polynomial function of degree < N on
the support of v, (a finite interval), then (f |4); ) =0,
i.e., f becomes “invisible” or “transparent” for the detail parts of the
wavelet transformation
@ The smoothness of a wavelet function v(t) corresponds to the
number of vanishing moments
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Estimating the size of wavelet coefficients

@ The previous Theorem can be extended even further by making a
statement about the size of wavelet coefficients for smooth functions

@ Assume:

o t(t) is a (real) wavelet function
(coming from an QMF h, with compact support [0, a]), so that

o {¥j «}jkez is an orthonormal family

o Intervals /; s of length 2772 are obtained from Iy = [0, a] by dilation
and translation

o tjx =2"Uta 4+ 27k is the midpoint of /; x

e t(t) has N vanishing moments
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Estimating the size of wavelet coefficients

@ Theorem:

For any N-times differentiable function f(t) on R with f(N)(¢)
bounded, the size of its wavelet coefficients can be bounded:

i. There exists a constant Cy r > 0 such that for all j, k € Z
[(F )| < Cup-27N270/2

ii. More precisely: for large j

] ) a/2
[(F | y)] = 2242 <l\1”f(N)(tj7k)/ (e + 2/2) dt)

—a/2
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Estimating the size of wavelet coefficients

@ About the proof

o Use Taylor's expansion with remainder term for f(t) around t; x, noting
that [, (t — tjx)"Yj(t)dt =0 for n < N to get
s

(F ) = / Ru(t) .l ) dit

i,

where 1

Ru(t) = 17(t = 0" F(&)
for some & between t and t;
For t € ; «

R(D)] < 152 M3 max |F9(¢)

t'el k

With this estimate use Cauchy-Schwarz inequality . ..
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Estimating the size of wavelet coefficients

@ What the Theorem says is:

o Wavelet coefficients for smooth functions decay rapidly as the
resolution parameter j increases!

o This is (as ii. shows) a strictly local phenomenon:
If a function f(t) is N-times continuously differentiable at some point
to € R, hence f(N)(t) is continuous in some interval J containing t,
the estimate ii. holds for any j, k for which /; , C J

e This means: wavelet coefficients belonging to smooth parts of a signal
are usually much smaller than wavelet coefficients for non-smooth parts

e This has important practical consequences, e.g., for image compression
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