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© Continuos wavelet transform (CWT)

© Edges and wavelet coefficients

© Discrete approximation of the CWT in MRA context
@ The a-trous scheme

© 2-dimensional separable CWT

© Edges in images
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Continuos wavelet transform (CWT)

o Initial event:
A. GrRossMANNund J. MORLET,
Decompositions of Hardy functions into square integrable wavelets of
constant shape, SIAM J. Math. Analysis, 1984

(Analysis of seismic signals)

@ ... but there were precursors ...e.g.
A. P. CALDERON,
Intermediate Spaces and Interpolation, the Complex Method,
Studia Mathematica, 1964

@ see:
S. JAFFARD, Y. MEYER, R. RyaAN,
Wavelets, Tools for Science and Technology, SIAM 2001,
in particular: Chap. 2: Wavelets from a Historical Perspective
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Continuos wavelet transform (CWT)

o Let 1y : R — C be a “suitable” wavelet function
@ now: continuous dilation and translation of v

toalt) = v

e continuous wavlet transform (CWT) of a signal f : R — C using ¥(t)
defined as

F9(s,8) = (F,hs.) = /R F(£) Taal®) dt = /T3] /R (st + 2) 0(0) dit

) (s,aeR)

o Intuitively: f¥(s,a) represents the behavior of f(t) in the vicinity of
a € R in resolution (scaling) s € R:

1) = woalOIP = £ + 50 B)]12 = 2R [ £(5, )|

Only the R-term depends on s and a !
Minimizing ||f(t) — s.a(t)||> means maximizing . ..

WTBV WS 2014/15 CWT and edges January 23, 2015 4 /39



Continuos wavelet transform (CWT)

o Let 1(t) be a wavelet function with [|1[|?> = 1 (w.l.o.g.),

then t — |4)(t)|? can be viewed as a probability density on R with
average u and variance o

— [eluPd o= [(t-w oo d

e Parseval-Plancherel: ||1//1\||2 = [|(t)]]? =
Also \ — \{p\()\)|2 is a probability density with average [ and variance

~2

ag

= / MDANPdr 82 = / (A — 2% [P dA
@ For s > 0,a € R one has

Ds2()]1? = [¥s,a (D)2 = [l0(0)]? =
Dsa(N) = V/se 2T (s))
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Continuos wavelet transform (CWT)

@ Localization in the time domain
Hs,a :/”"‘?s,a(m2 dt=...=su+a
o= [t e eaf e = = 22

@ Localization in the frequency domain

N — 1
Hs,a = / t‘¢s,a(t)|2 dt=...= gu
R — 1 =R
0-573 - /(t N /‘1’5,3)2 |¢s,a 2 dt - 5720-2

@ The “uncertainty” aia : 8373 is independent of s and a
O'ia . Eia =02 .52
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Continuos wavelet transform (CWT)

A W
20
Tl
s=1/2
| .
e — — o
1 s=1 E 20
T — S |t~
| | | t
p/2+a p+a 2 +a

Figure: Heisenberg boxes for 95 ,, s =1/2,1,2
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Continuos wavelet transform (CWT)

@ HAAR wavelet function

1 0<t<1/2
¢haar(t) =<¢-1 1/2 <t<l1

0 otherwise

@ mexican-hat wavelet
Umex(t) = (1 —2t2) et

@ MORLET wavelet
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Continuos wavelet transform (CWT)
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Figure: mexican-hat wavelet (in red) and its spectrum (in blue)
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Continuos wavelet transform (CWT)

Figure: MORLET wavelet (in red and its spectrum (in blue)
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Continuos wavelet transform (CWT)

@ Fourier transforms

— 4(sin(1/45))%e"1/2is _
fhaar(S) = ( ( / s )) fhaar(o) =0
E,;(s) =1/2 s2e*1/452\/% ﬁn;(O) =0

— 2 _ /o m
fmor (8) = /7 cosh (1/2 ST \(€)> o~ U/4s*1/2 7 fmor(0) = 0.0014
n

@ admissibility constants

0o f/\r 2
Chaar - / M ds =2 |n(2)
s

- sl
| fmex(s)?
Cmex = / 7| = (S)| ds=m
s=oo 9]
| Fmor(s)?
Cmor = / ‘ |S(|5)| ds = oo
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Continuos wavelet transform (CWT)

@ Intuitively:

F (s, ) :/: f(2) \1|FS’¢(t§a)dt

represents the behavior of f(t) in the vicinity of a € R in resolution
(scaling) se R

@ The data
(F(s.2))
s>0,aeR

give a highly redundant representation of the function f(t)

@ Problem: how can one recover f(t) from these data ?
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Continuos wavelet transform (CWT)

o CALDERON's reconstruction formula:

- /ER/ (5.2) U alt) da &

V)2
0<C¢_/ el d\ < oo
reR A

@ Note that the condition C; < oo implies

/ (t) dt = 3(0) = 0
R

where
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Continuos wavelet transform (CWT)

e If vy : R — R is a real wavelet function, then CALDERON's formula

can be written as
ds
C />0/ 53¢sa()d357

> 2
0<C1/z;_/ Md)\<oo
A>0

where

A
@ This simplification is justified by the symmetry property

() = (=2

=)

for any real function v (t)
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Continuos wavelet transform (CWT)

e Lemma (1) [ Fourier transform w.r.t. t ]

[1s.a(t)]"(N) = V/Is| e 272 (As)

e Lemma (2) [ Fourier transform w.r.t. a ]

ef27rit)\ 1;()\5)

[ws,a(t)] (/\) = ﬁ

e Lemma (3) [ Fourier transform w.r.t. a |

) ~

M) (\s
\/E(W( )

[F(s,2)] " (A) =
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Continuos wavelet transform (CWT)

e Consequence of Lemma (3):

S

Vsl
- \/SH /R F(\) D(As) €273 g\

@ This indicates an efficient way for computing the wavelet coefficients
f¥(s, a) based on the FFT:

~

©Q compute ()
Q@ compute ¥(A)
(NB v is explicitly known in many cases)

o~ =

© multiply £(A) - ¥(As)
© apply the inverse FFT

(s, a) = [ F(N) zZ(/\s)]
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Continuos wavelet transform (CWT)

Proof (sketch) of CALDERON's reconstruction formula
e From Parseval-Plancherel and Lemmas (2) and (3) one gets

[P a)tsalt) da = (F¥(s.2). Va0
= (s, O, Tl )
2

= = (F) D), e 2 xs)

52 ~ ~ .
> . A\ A 2 _2Tit\ d\

[ FoeeRe
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Continuos wavelet transform (CWT)

@ and then

ds oy g2 [ 1DOS)P
fd) < da — = f )\ 27t d d)\
/SGR/aGR (s, a)d}’ (&) 352 /)\GR (e /s |s] °
a2
— |7 2 itA M
/}\ (Ne /s 5] ds d\

=Cy- / F(A) €2 d
AER

=Gy - f(1)
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Continuos wavelet transform (CWT)

@ Theorem
@ If ¢(t) is a continuous function with

U(t) de =

teR

@ and if there are positive constants A, B s.th.
(1) < Ae Bl (e R)

(exponentially rapid vanishing at infinity)

then
Com [ B0 gy
AR A

and CALDERON's reconstruction formula holds for all f € £2(RR)
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Continuos wavelet transform (CWT)

@ Remarks on condition Cy, < oo
o Eponentially rapid vanishing of v(t) at infinity implies ¥(t) € £2(R)
and P(\) € L£2(R) and ¢()) € C1(R) (differentiability)
o Decompose the integral into two parts

- 2
cw:/ W 4y — +/
rer A IA|<1 IA[>1

e Taylor expansion of 12()\) at A =0 and

3(0) = / () dt =0

shows that the first integral || is finite

[Al<1-r
@ As for the second integral,

[ [P <01 < o
|A[=1

shows that this is finite too
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Edges and wavelet coefficients

e The HAAR wavelet function 4., (t) can be regarded as a derivative

J t 0<t<1/2
Yhaar(t) = EA(t) mit A(t)=<q1-t 1/2<t<1
0 otherwise

@ The mexican-hat wavelet function ¥mex(t) is a derivative

d/ o\ d?—et
Umec(t) = e (167) = g2

WTBV WS 2014/15 CWT and edges January 23, 2015

21/ 39



Edges and wavelet coefficients

Figure: mexican-hat wavelet as second derivative of a Gaussian
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Edges and wavelet coefficients

Let ¢(t) be a wavelet function in the sense of the Theorem
Let ¢/(t) be the derivative of a “smoothing function” 6(t)

w(e) = 2 001

Scaling of 6(t)
@ Then J
(%) fw(s, a) = —s73/2 E(f* <9—5)(3)

@ Note: f Z is a Z—smoothed version version of f
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Edges and wavelet coefficients

@ Interpretation:
Edges in the graph of f(t) can be recognized by absolutely large
values of the wavelet coefficients f¥(s, a) over many scales (s values)
@ Proof of (x)

We have
(b)) = [ A0 bia o= ﬂf(r)ie(t;a)dr
and hence
SEE@ = [ e e
= [ o ut ) de= =)
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Discrete approximation of the CWT in MRA context

@ Assume that the wavelet function 1(t) belongs to a MRA with
scaling function ¢(t)
@ Scaling and wavelet identities are

=V2)  hep(2t — k)

keZ
=V2) g2t — k)
keZ
@ Approximation and detail coefficients of a function 7(t), using dyadic
scaling and integer translation (s, a) = (2™, n), are

dm,n = <f7 ¢2m,n> mn = < 7/)2’" >

@ Recursion formulas

n

pomi1 p(t) =27 (m+1)/z¢(2m+1 =...= th Pom nikam(t)
n

QzZ}2m+17 ( ) = 2 (m+1)/2w(m . = ng ¢2m n+k2”’( )
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Discrete approximation of the CWT in MRA context

@ Recursion formulas for approximation and wavelet coefficients

am41,n = Z hk am,n+k2m (I'I € Z)
kEZ

dmi1n =Y Gk amnikam (n € Z)
kez

o Written as filtering operations

(am+1,n)nez = (T2)m h] * (am,n)neZ
(dm+1,n)n€Z = (T2)mg] * (am,n)nez

@ Here (12)™ h is the filter constructed from h by using m-fold
upsampling with factor 2
@ Algorithmic realization algorithme a trous

@ M. HOLSCHNEIDER et al., A real-time algorithm for signal analysis with the
help of wavelet transform. In: Wavelets, Time-Frequency Methods and
Phase Space, Springer-Verlag, 1989
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The a-trous scheme

a_2 a_q 0 ai a2 as ay
/> d') ay!) dg” o), dy)) af) Y

o0

Figure: Scheme of the Haar transform
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The a-trous scheme

a_s a_1 ao a4
N/
;Jtili/a“f-d“f agl). dg / oM d o) dgl/>
alg)Z) H‘(E)’ d‘(12>
dﬁd ,d((]S

Figure: a-trous scheme (one level) for the Haar transform
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The a-trous scheme

o
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Figure: a-trous scheme (two levels) for the Haar transform
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The a-trous scheme
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\i
\\p

O

a g, d_y G 3,0 4

// L
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Figure: a-trous scheme (three levels) for the Haar transform
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The a-trous scheme

@ 4O
*(fwy +(g1?)
, (2) , d(2)
«(t / *(g1")
a® \d<3>

Figure: 3-trous scheme (three levels)

high-pass filter: g, low-pass filter: h, signal: a = (ax)
filtered signals: a(k) = (ag,k)) ,d) = (d(k))

nez

ez’
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2-dimensional separable CWT

@ Let 1/(x) be a one-dimension wavelet function

e V(x,y)=1(x)¥(y) the twO-dimensional separable wavelet function
constructed from it

@ The 2-dim. CWT of a function f(x,y) is

1 x—a y—b

f\u(a’b75):// f(X,y)W( ,7)dXdy
5 JJx,yeRxR S S
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2-dimensional separable CWT

o Let 9(x) = L A(x) be the derivative of a “smoothing function” 6(x)

X

@ 2-dim separable smoothing function

O(x,y) = 0(x) 0(y)

@ 2-dim partial wavelet functions

W, y) = ) By) = 5 O(x.y)

W (x,y) = () (y) = 8y o(x.y)
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2-dimensional separable CWT

@ 2-dim partial CWT

x 1 — —
FY"(a,bs) = // Fo ) W (=2 L) ey
,YERXR s S

// f(x,y @( y b)dxdy
x,yERXR S

1
¥ (a,b,5) = // ey W (2022 b)dxdy
x,yERXR S S

3// x—ay—b
=—— f(x,y)© ,——)dxd
56 [ feneC 2 ey

e The integral [ ... is essentially scaled-©-smoothed version of f
o (=¥ (a,b,s),—f¥ (a,b,s)) is the gradient (a, b) of this function
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Edges in images

Recall CANNY's definition

o Let f € L2(R?).
The vertex (xo, yo) € R? is an edge vertex of f(x,y) if

OfF\>  [OF\?
df| = — -
= (5)+ ()
has a local maximum when passing through (xo, yo) in the direction

of (gradf)(xo, o)
@ This can be tested by computing

(f“’x(a, b, s))2 + (fw(a, b, s))2

over several scale values s

@ A vertex which is declared edge vertex over several scales is assumed
to be a true edge vertex
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Edges in images

Looking at this in the MRA context
@ Scaling, wavelet and smoothing (1-dim) are described by

B(x) = V2> i p(2x — k) Y(x) = V2 gk p(2x — k)
k k

0(x) = V2> n6(2x— 1)
¢

@ Scalierung and wavelet equations for ®*(x,y) = ¢(x) 0(y/2) and for
VX(x,y) = 9(x) 0(y) are

O(x,y) =2 hers @ (2x — k, 2y — {)
k¢

VX(x,y) =2 grer ®*(2x — k, 2y — )
k¢

where €) = % 04,0-
Similarly for ®¥(x,y) and VY(x, y)
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Edges in images

@ The HAAR wavelet function tpa,.(t) is the derivative of the
smoothing function 6(t) = A(t):

4 t 0<t<1/2
Yhaar(t) = EA(t) where A(t)=<¢1—-t 1/2<t<1
0 sonst

@ The function A(t) satisfies
A(x) +2A(x —1/2) + A(x — 1) = 2A(x/2)
@ which can be written as a scaling equation
A(x) = % (A(2x) +2A(2x — 1) + A(2x — 2))

@ so that 1
r=—-(1,2,1
2\/§< )
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Edges in images

@ Approximation and detail coefficients are
—k y—/4

X X 1 X — —
B = (F Vi) = / / (x9) 5 V(s L) dxdy

Y y
and analogously for a; ., , and d ., ,

@ Recursions formula for approximation

X _ 2 : X
am+1;p,q - hk re am;p—i—k2"’,q—i—f2’"
kt

o detail coefficients

X _ X _ 1 X
m+1;p,g — 8k €¢ am;p+k2’",q+€2"’ - \ﬁ 8k am;p—i—k2"’,q
k.t k

e Formulas for a¥ k.t and d ki Are analogous
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Edges in images

@ Scheme for computation (& trous algorithm)

A = [f“’*(zm; p. q)}

DX = [fwx(2’";p, q)}

m

psq

psq

where Ay = AX = A% = [f(p, q)]p,q

Dy

Tg
D3

g
D3

WTBV WS 2014/15

AY

m

DY

m

[f¢y(2”’: P, q)] o

g lT h

Dy : A
g 112 h

Dj A3 et
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