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Approximating the scaling and wavelet functions

@ Motivation: Recall the Haar situation
e Haar scaling and wavelet functions

B(t) = xp,0)(t)  P(t) = Xj0,1/2)(t) = X[1/2,1)(t)
scaled and translated Haar functions

Bik(t) = 223(2t — k) u(t) = 222t — k)

Haar wavelet coefficients

ajk = (F(O)[ G k(t))  diw = (F(2) [ ¥k(t))

Haar scaling and wavelet equations

bjk(t) = % (j41,.26(t) + Djr1,2641(t))

Gia(e) = % (6711.26(8) — B2 201(2))

Haar coefficient equations

ajk(t) = \% (aj+1,2k(t) + aj+1,2641(8))

1
di(t) = —= (aj+1.2c(t) = js1.261(1))
A
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Approximating the scaling and wavelet functions

e Motivation (contd.):
e Haar filters

h = (ho,h) = %(1,1) g=(g0.81) = (1,1

S

e Haar scaling and wavelet equations again

o(t) = doo(t) = —= (¢1,0(t) + ¢1,1(t))

N

1

1
Z hie dri(t) = V2> hi p(2t — k)
k=0

Y(t) = vo(t) = (#1,0(t) — ¢1.1(1))

1

Z 8k D1,k t)—\fng¢ 2t — k)

k=0

7
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Approximating the scaling and wavelet functions

e Motivation (contd.)
e Optimal approximation of functions by step functions

Pj L% V;: f(t) — ZaM ¢j7k(t) = 2/? ZaM ¢(2jt - k)
k k

o The translates
{61(8) }oor = { 2202t = 1) }

are an orthogonal basis of the approximation space V;
@ Detail information for optimal approximation of functions by step
functions

QL% =W f(t —>Zd,kwjk ) =223 "d; (2t — k)
k

kEZ

e The translates
{00 Yooy = {21/2¢(2ft — k)}
are an orthogonal basis of the detail space W;
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Approximating the scaling and wavelet functions

@ h=(hg, h1,...,hy) a finite filter satisfying the orthogonality
conditions

@ The scaling identity

L L
(S)  o(t) =D hepru(t) = V2D hep(2t — k)
k=0 k=0

@ Question: is there a “reasonable” scaling function ¢(t) : R — R
satisfying this equation?

e Comment: The scaling identity (S) has “self-referential” character,
One cannot expect that a function satisfying (S) can be described by
a more or less simple analytical expression. One rather expects a
“fractal” object. One may try to get an idea via an iterative
construction approximating it
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Approximating the scaling and wavelet functions

@ Once exact or approximate values for ¢(t) at sufficiently many
positions are kown, one may use the wavelet identity

L

L
(W) (1) = gdru(t) =v2> (1) *hep(2t + k — L)
k=0

k=0

with g = (—1)%h,_ to get an approximate idea of the
corresponding wavelet function (t)
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Approximating the scaling and wavelet functions [EENIENeEEIETeSRElF-elaid 1]

@ Identity (S) can be considered as a fixed-point equation for the
function ¢(t) to be determined
@ This leads to an iterative procedure for computing functions
ol"l(t) (n=0,1,2,...):
— start with ¢l%(t) = X[0,1)(t)
— for n=10,1,2,... compute ¢l""1(t) from ¢l"(t) by setting

L
P U(t) = V2> hegll(2t — k)
k=0

@ One expects that under appropriate conditions the sequence
(¢l(t)) ., will converge in the £?-norm towards a function

o(t) € L?(R), the scaling function, which then satisfies (S)

@ This hope can indeed be justified rigorously under rather weak
conditions
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Approximating the scaling and wavelet functions [EENIENeEEIETeSRElF-elaid 1]

o Finiteness of h guarantees that all approximating functions ¢["(t)
vanish outside the interval [0, L]

@ Hence the same holds true for the the limit function ¢(t)

@ The wavelet function can be approximated by defining
L
W(e) = v2) gol(e) (n=0)
k=0

@ One expects that the functions w[”](t) converge in the £2-norm
towards the true wavelet function 1(t)

@ For more information on how to justify this limiting procedure see the
Lecture Notes (Section 9)

@ Section 12 of the Lecture Notes contains several examples illustrating
this iterative procedure
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Approximating the scaling and wavelet functions Dyadic interpolation

@ An alternative approach starts by computing the true exact values of
¢(t) for positions t € {0,1,2,...,L}.
This is done bei solving an eigenvalue problem obtained from the
scaling identity (S)

@ Then for j =1,2,3,... one computes the true exact values of ¢(t) at
positions 27/ ¢ (0 < ¢ <2/ L ¢ odd) using (S)

@ Note that all values computed by this method are exact, so they can
be confidentially used to interpolate (if j is sufficiently big)
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Approximating the scaling and wavelet functions Dyadic interpolation

e Equation (S) taken for t € {0,1,2,..., L} gives
6(0) = V2 ho 6(0)

$(1) = V2 (2 $(0) + h1 (1) + ho $(2))
$(2) = V2 (ha $(0) + b3 $(1) + h2 $(2) + h1 $(3) + ho $(4))

$(L—1) = V2 (he (L —2) + hi1¢(L— 1) + hi_5 ¢(L))
¢(L) = V2 h. ¢(L)

@ The first and the last of these equations are easily satisfied by
$(0) = (L) =0

@ The remaining L — 1 equations can be seen as an eigenvalue problem:
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Approximating the scaling and wavelet functions Dyadic interpolation

@ The eigenvalue problem

¢(1)
¢(2)

o(L—2)

(L —1)]

e From this values ¢(1),

hy
h3
V2|
0
0

hg O 0 .. 0 gb(l)

hy hi  ho ... 0 #(2)
hy hi—1 hi—o hi_3 (L —2)
0 0 h hi |o(L-1)

#(2),...,¢(L — 1) can be computed exactly

@ Then one proceeds by dyadic interpolation from (S) for j =1,2,...:

¢(270) =

thkgzs 27— k) (0< 0 <2 L1 odd).
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