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key aspects of the Fourier transform

(]

Fundamental idea: functions/signals have a life both in time/space
and in frequency domain — and both aspects are equivalent

Motivation: Fourier transform can be obtained from Fourier series by
a limiting process
@ Basic properties of FT

e Translation and Dilation basic wavelet operations
o Derivation smoothness properties of wavelets
e Convolution filtering properties of wavelets

Advanced properties of FT

e Time/frequency localization, duality and uncertainty
e Poisson's formula and sampling

o Fourier transform theory is

e important immense number of applications
@ not easy making ideas rigorous requires lot of work
e beautiful leads into a new universe
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@ Some highlights

e Trying to make Fourier's ideas precise spawned lots of new
mathematics (convergence concepts, set theory, distributions,...)

o The Cooley-Tukey 1965 paper on FFT is the most frequently cited
article in all of mathematics

e First US patent for a mathematical algorithm for a variant of FFT

e About 3/4 of all Nobel prices in physics were awarded for work done
with Fourier analysis

o Other notable Nobel prices:
Crick/Watson /Wilkins (1962): DNA structure by diffraction
Cormack/Hounsfield (1979): computed tomography
Hauptman/Karle (1985): structure of molecules by X-ray diffraction
Lauterbur/Mansfield (2003): MRI

o Other fields: PDE, Quantum Mechanics, Signals and Systems, Fourier
Optics, ...
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Fourier Series

e A function f : R — C is p-periodic, if f(t + p) = f(t) for all t € R.
o Equivalently:
f(t) is defined in any real interval [a, b) of length b—a = p and is
extended periodically
@ Simple 1-periodic funktions are the harmonics

sin(2rkt) (k>1), cos(2mkt) (k >0), wi(t)=e*"* (k € 7)

@ Superposition principle: linear combinations of 1-periodic functions
are again l-periodic functions

e Fourier's Idea (1807): “Any" 1-periodic function f(t) can be
represented as a superposition (Fourier series) of harmonics, i.e., there
are sequences (ax) k>0, (bk)k>1, (ck)kez € C s.th.

f(t) =" % + Z ai cos(2mkt) + by sin(2mkt)
k>0

u_n 2 Ck eQ7rlkt

kEZ
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Fourier Series

e £2([0,1)) : Hilbert space of square-integrable (in the sense of
Lebesgue) functions f : [0,1) — C with inner product

1
<f|g>=/0 F(£)g(t) dt < oo
and norm )
2 _ 2 0
Tl —<f|f>—/0 F(t)R dt <

@ The families

{wk(t) _ e27rikt}

keZ
and
{sin(27rk1f)}k21 U {cos(27rkt)}k20

are orthonormal families (even Hilbert bases) of £2(]0,1)):

1
(wic|we) = / 2T dt = 5y,
0

@ Similarly for the family of harmonics sin-cos
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Fourier Series

e Fourier coefficients (Analysis)

1
o=k = (Flw) = [ e ™ d (kez)
0
o Fourier series (Synthesis)

F(t) =D (Flo)we(t) = Flk] e

keZ keZ

e For f € £3(]0,1)) one has

N
Sn(t) =Y FIK™ —p 0 £(1)
k=—N
in the sense of £2-convergence (optimal £2-approximation)

@ Stronger assertions about convergence are possible, but more difficult
to obtain
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Fourier Series

@ Important aspects

o The Fourier coefficients of f(t) depend on the
behavior of f(t) over the whole interval [0, 1)
2mikt

o The basis functions wy(t) = e“™* are

o perfectly localized w.r.t. frequency
o not at all localized w.r.t.time/space

o The family {wi(t) = e*™} _ 'is a complete basis
(Hilbert basis) in £2([0,1))
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Fourier Series

e Hilbert space of sequences ( “discrete signals with finite energy")
e complex bi-infinite sequences

x = (..., x[=1],x[0], x[1], x[2], . . .) = (x[k])kez with x[k] € C (k € Z)
o the relevant vector space is £2
- {x = (kDeens S XM < oo}
kez

with inner product (x|y) =3, ; x[k] - y[k]
and norm [|x[2 = 3", ., [x[K][?
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Fourier Series

@ Parseval-Plancherel property: The mapping
F(t Flk
(0 — (F1K),

e is a linear mapping £2([0,1)) — ¢2
@ is an isometry, which means

1
<f|g>a2:/0 Z

e is surjective (the Riesz-Fischer theorem)

om‘
"’)
)
s

e Conclusion: £2([0,1)) and ¢? are isomorphic as Hilbert spaces
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Fourier Series

@ Everything carries over routinely from [0,1) to arbitrary finite
intervals [a, b) and p-periodic functions with p = b — a
e £?([a, b)) has a basis of functions

{wi(t/p) = cmi/e}

and similarly for sin-cos
e the inner product in £2([a, b)) is

keZ

<f|g>:;/abf(t)g(r>dt

e Fourier coefficients (Analysis)

flkl = (flw(t/p)) = p/ F(t)e~2mkt/P gy
e Fourier series (Synthesis)

F(t) =) Flk]e?mikt/p

kEZ

WTBV Fourier Essentials November 18, 2015 11 / 54



Gibbs-Wilbraham Phenomenon

@ The Gibbs-Wilbraham phenomenon

o describes the convergence of the approximations sy(t) at a
jump discontinuity of the function f(t)

o typical example: f(t) as extension of X[_1/21/2)(t) to a 2-periodic
function

o Fourier coefficients

1 1 —mikt 1/2 k=0
a e
flk] = 5/1 X[71/2’1/2)(t)7 dt = (() i, k # 0 and even
_ .
—=_—— k odd
Tk

o Fourier series
1

2 2 2
st cos(mt) — . cos(37t) + o cos(5mt) F - -
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Gibbs-Wilbraham Phenomenon

@ Approximation

N
2 cos((2n — 1)7t)
S - n—1
+ ™ -1) 2n—1
@ graphical display
/\v \//\ . 2 XN\
VA Y T e

Figure: Ss (left), Sso, S100, S200 (right)

@ Notabene: the “overshooting” of the approximation does NOT
disappear as N — oo!
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From Fourier Series to the Fourier Transform

e Consider a function f(t) which vanishes outside a finite interval
[—Lo, Lo), and for L > Lo consider

f(t) for|t| <L
()~ {10 forl < Lo
0 fOrLoS‘t’SL

as a 2L-periodic function

e Fourier coefficients (analysis)

- 1 L )
fiLlk] = / fi(t) e=2mikt/2L gy
2L ),
@ Synthesis formula

fL(t) — Z ﬁ[k] eZnikt/ZL
keZ

WTBV Fourier Essentials November 18, 2015 14 / 54



From Fourier Series to the Fourier Transform

@ Now define for all s € R and L > Ly

L
f(s):/ fi(t)e 2mistdt

L

This definition is independent of L !
@ Then for all s € R of the form s = ﬁ with k € Z it is true that

f(s) = 2L - fi[]
@ For L > Ly one has
kL Al (= ?(i)) (k € Z)
8L 51 L ALY

as a discrete function

@ Conclusion: For L — oo the graphs of the discrete functions g

~

“converge” to the graph of a function s — f(s) defined on R
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From Fourier Series to the Fourier Transform

o Furthermore

A i 1 - k i
fi(t) = Z f[K] e2mikt/2L _ Z 5L f(ﬂ) o2mi (k/2L)t
kEZ keZ

The right-hand side is the Riemann sum for the integral

/ ?(s) e27ist ds
R

@ Thus for L — oo on expects a synthesis formula
F(E) = £ (t) = / F(s) 2™t ds
R

@ together with an analysis formula

f(s) = /R f(t) e 2™t dt
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From Fourier Series to the Fourier Transform

@ Example: A 1-periodic function and it Fourier transform

~ ssin7s
f(t) = 27t t] <1/2 f = —
(6) = cos(2mt) [t <1/ (5) = 22175
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From Fourier Series to the Fourier Transform

@ Schematic display of the transition Fourier series — Fourier transform
for f(t) = cos(2nt) with |[t| <1/2 and L=1,2,4

/ :
| : |
= 1 T 2 |l
\/ \/05 v \/ e 1 L I'ﬁl I l IDI‘ { l [ 151 ! 1 S

|
J1ERRS

WTBV Fourier Essentials November 18, 2015 18 / 54




From Fourier Series to the Fourier Transform

The relevant Hilbert space for the Fourier transform is £2(R),
the vector space of (Lebesgue-)square-integrable functions on R

Inner product and norm in £2(R)

<f|g>=/Rf<r)g(t>dr ||f\\2=<ff>=4|f(r>r2dr

Serious defect: simple functions like polynomials, trigonometric
functions and complex exponentials do NOT belong to £2(R);
in particular, the family

{ws(t) — e27ri5t}seR

cannot be a basis of the Hilbert space £2(R) !
For integrable functions f(t) the inner products

f(s) = (flws(t)) = /R F(t) e 2mist g

are nevertheless well defined!
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Fourier Transform: Definition, Inversion, Comments

Definition: For ”suitable:\” functions f : R — C
their Fourier transform f : R — C is defined by

(Analysis) F(s) = / f(t)e ?™Stdt (s € R)
Often denoted as F;[f(t)] or F[f] instead of 3

Inversion formula: If the function f(t) is sufficiently well-behaved, one
expects that it can be reconstructed from its Fourier transform f by:

(Synthesis) f(t) = /oo F(s)e*™stds (t € R)

Often denoted as f = F; 1[f(s) or f = F[f]
If this holds, then f(t) is “continuous linear combination”
(superposition) of harmonics (complex exponentials)

F(s) is the amplitude or intensity of ws(t) = €25t in £(t)
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Fourier Transform: Definition, Inversion, Comments

@ Attention! In the literature there are many slightly different
conventions used of the definition of the Fourier transform.
The type of expressions used is

£ _ & * eibsif
)=\ s /_oo F(£) /b5t dt

@ with the following conventions

e (a,b) =(0,1)  (modern physics, Mathematica)

o (a,b) =(1, —1) (mathematics, systems theory, Maple)
o (a,b) =(-1,1) (classical physics)

e (a,b) = (0, 27r) (signal processing, this lecture)

@ The formula for the inverse transform has to be adapted accordingly
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Comments and Examples

o Comments:

Fourier transform is a linear transformation,
it is even unitary (=complex-orthogonal) transform
(— Parseval-Plancherel)

The definition of the Fourier transform makes sense if f € L1(R), i.e.,
if f is integrable (in the sense of Lebesgue): ||f||y = [, |f(t)]dt < oo

For the inversion formula to make sense, one should have € LY(R),
which unfortunately is not guaranteed,

it holds, however, e.g., if f € £1(R) is continuous

The complex exponentials t — e>™t belong neither to £}(R), nor to
L2(R), i.e., they cannot be taken as basis functions

In order to get a satisfactory theory of the Fourier transform one has to
extend the space of admissible functions (— distributions)
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Comments and Examples

e Examples (1)

f(t) o~ F(s)
X[—a,a](t) o Sin(i:aS)
sin?(mas)

(1- [é])'X[—a,a](t) v Ao

2a
a’ + (27s)?

a2 ™ _ 2
e—at \/>e (7s)?/a
a
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Comments and Examples

@ Fourier transform can/must be extended to cover familiar functions

e Examples (2)

f(t) e F(s)
! - (s)
o2 at — 5a—s)
l+at+bt? o 5(s) + iag;fs) _ bj;’r(;)
1+lat2 s % <e2”5/\/5 6(—27s) 4 e~27s/Va 9(2775))

where
o O(t) = xr>o(t) denotes Heaviside's jump function

o )(t) = 5 0(t)  denotes Diracs Delta- “function”
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Comments and Examples

@ A possible definition of the distribution §(t) is furnished by
d: f(t)— £(0)

for “sufficiently well-behaved” functions f(t) (“test functions”),
often written as

/ 7 5(6) £(£) dt = £(0)

@ No function in the traditional sense can have this property,
so 0(t) is not a function, but a linear functional
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Properties of the Fourier Transform

@ Translation vs. Modulation

e Dilation (Scaling)

o —

VaF(at)(s) =

@ Derivation vs. Multiplication

—

—

d .
Ef(t)(s) = 2mis - f(t)(s)

@ Convolution
o0

(Fxg)(t) :_/ f(x)g(t — x) dx

— 0
Convolution theorem

o — —_—

(fxg)(t)(s) = F(t)(s)-&(t)(s)
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Properties of the Fourier Transform

e Dilation
e The a-Dilation (D,f)(t) of a function f(t) is defined as

(D.f)(t) = Vaf(at)

o Dilation means stretching (for 0 < a < 1) resp. squeezing (for a > 1)
of the graph of f so that the norm is conserved

IDaf[| = [I£]l

e The behavior of the Fourier transform w.r.t. dilation can be succinctly
described by
D.f = Dy/,f

This antagonistic property is one of the characteristics of the Fourier
transform (— uncertainty relation)
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Properties of the Fourier Transform

@ Derivation vs. multiplication
Under suitable conditions on f(t) by partial integration or by
interchanging integration and derivation:

—

o f/(t)(s) = (2is) - £(s)

FEs) = [ F(ee 2 ar

R

— o2t £(p) ’:fz + (2mis) - / F(£) e~ 27 dy

R
= (27”5) / f(t) e—zﬂist dt
R
— -1 d-
o t-f(t)(s)= i Ef(s)
t/f(\t)(s) = / t- f(t) e 2mist f — ;1 . i/ f(t) o 2mist gy

R 2wi ds Jp
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Properties of the Fourier Transform

@ Derivation: Smoothness and vanishing at infinity
e Riemann-Lebesgue Lemma

fe ﬁl(R) {?is uniformly continuous on R

and |Im|5|*>OO ;"_\(5) =0
o “tN.f(t) € LY(R)" means: f(t) vanishes fast as t — Foc:
/ [tNF(t)| dt < oo, so typically f(t) € O(t~N=17¢)
R

e The faster a function f(t) vanishes as t — +o0,
the smoother (higher order differentiable) is f(s) — and conversely

f(t) € LY(R) } feCV(R) and
=
« ~
tN - £(t) € LY(R) LH(s) = bt F(£)(s) (0< k< N)
e Derivation and multiplication with the variable are “complementary”

WTBV Fourier Essentials November 18, 2015



Properties of the Fourier Transform

@ B-Spline functions and their Fourier transforms

N

-2 -1 1 2

Iterated convolutions of the box function b(t)
b*"(t) = (bx bx---xb)(t) (n factors)

b*" is (n — 2)-fold differentiable
n: 1=black, 2=red, 3=green, 4 = blue
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Properties of the Fourier Transform

@ B-Spline functions and their Fourier transforms

0.15

LA A
IRV

-0.10

The Fourier transforms are the functions

sin(7s)"”

5*\’7(5) = sinc(rws)" = (rs)

€ O(s™")

n: 1=black, 2=red, 3=green, 4 = blue
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Properties of the Fourier Transform

@ Definition of convolution

(F*xg)(t) = /00 f(x)g(t—x)dx
o If g(t) = ws(t) = et
(f * ws)(t) = / h f(x) 2™ (%) gy
— o2mist /_oo f(X) e~ 2misx _ ?(S) . ws(t)

e Convolution by a fixed function f(t)

Cr - g(t) = (fxg)(t)

is a linear transformation which has
o the complex exponentials wg(t) = €™t as eigenfunctions

~

e with Fourier transform value f(s) as the corresponding eigenvalues
e Convolution with 6(t) replicates f(t)

(6% F)(t) = / S()F(t — x) dx = £(2)
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Application of Convolution: Filtering

@ The convolution theorem

@ Main application of convolution

“Filtering in the frequency domain”

f.g L fz
I -

frg=FYf3) &= fz
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Application of Convolution: Filtering

@ Proof of the convolution theorem (sketch)

Fra(s) = / (F * g)(t) 25 di def. of FT

/ / g(t — x) dxe™ 2™t gt def. of %

/ / 27TISX 1.' - X) 6727ris(tfx) dx dt

27TISX/ g —2mis(t—x) dt dx // //
R

— / —27'I'ISX / g —27rlst dt dX s t4 x
R
Z/f( )e 2™ g(s) dx def. of FT
R
= 7(s)- &(s) def. of FT

The crucial point is the change of the order of integration!
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Application of Convolution: Filtering

@ Low-pass filtering with a Gauss filter

f
=

ki
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Application of Convolution: Filtering

@ High-pass filtering with a Mexhat filter

I
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Consequence of the Convolution Theorem: Parseval-Plancherel

@ A fundamental consequence of the convolution theorem:

The Parseval-Plancherel identity: Fourier transform is an isometry!
e For f,g € £? s.th. also f,g € £?, one has
o Il = 1I7]
(flg)={(f|g) and in particular R
flg & flg

Sketch of proof R
Define g(t) = g(—t) and check that g(s) = g(s), then

~

(F1g)= [ 7(s) B ds = [ F(s) &) ds =
/ (FrE)(s)ds = (F+E)(0) = [ (1) E(~1)dt

/
:/f(t)-g(t)dt=<f\g>

WTBV Fourier Essentials November 18, 2015 37 / 54



Uncertainty Relation

@ Uncertainty relation
o For f(t) € L2(R) with

1912 = [ Ir(e)P de =1
R

then t — |f(t)|? can be seen as a probability density function on R
e Expectation and variance of this probability density are given by

um:AﬂWWﬁ fm:Auﬂwwwm%t

o Because of the Parseval-Plancherel identity one also has ||f|| = 1;

u(l/‘\) and 02(?) are defined analogously
o Then the Heisenberg inequality holds:

~ 1
2(f) - o?(f) >
() = o
(For a proof see the Lecture Notes)
Fourier Essentials November 18, 2015
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Uncertainty Relation

@ Examples

f(t,a) o2(f) (s, a) o2(F)
Vaxi-1/2,1/2(at) Tla2 ﬁw .
2 2
\/g(l —lat]) - x_1/a1/a(t) | 1oz \/> (sin(rs/a))” WS/a)) 32
- 3/2 2
vae w | 27 | ie
</Zae_at2 i o225 _a_
™ 4a p= y

WTBV
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Uncertainty Relation

@ Grapbhical illustration of uncertainty: Heisenberg boxes
o For any function f(t) and a > 0,b € R let

fa,b(t) = \/5 f(a t— b)a Hab = N(fa,b)a Jg,b = gz(f;7b),

~

and similarly for f(s)
e Then

2
w4+ b 5 o - ~ 2 0
P Oab = 2 Hab=3al, Opp=ao

Ha,b =

o The Heisenberg box for the function f(t) is the rectangle in the
(s, t)-plane centered at (14 5, Ha,p) and with side lengths (04 p,54p)-
This box characterizes the simultaneous uncertainty of 7(t) in the
time/space domain and in the frequency domain
The box area 0, - T, p > ﬁ is independent of scaling a and
translation b !
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Uncertainty Relation

/2
s >
20
YT E—
a=2
o A e
L a=1 2%
B s e I L
| § a=1/2
| | s t
(n+b)/2  p+bd 2(p+0b)

Figure: Heisenberg boxes for f; »(t) with a=1/2,a=1and a=2
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Poisson’s Formula and the Sampling Theorem

@ Poisson's formula

For any sufficently well-behaved function f : R — C there is a relation
— between the values f(k) (k € Z) at integer arguments
— and the values f(s — n) (n € Z) of its Fourier transform

Zf(s—n Zf e 2k (s e R)

n=—o0 k=—00

@ Note: the sum on the l.h.s. defines a 1-periodic function,
the sum on the r.h.s. is a Fourier series

@ In particular (take s = 0)

Zf(n Zf

n=—o0 k=—00
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Poisson’s Formula and the Sampling Theorem

e Equivalent version of Poisson’s formula (for a > 0)
o o0 N .
Y f(t—n/a)y=a- Y F(k-a)emtke
n=-—o00 k=—o00
@ Sketch of proof (case a = 1 suffices):
o(t) =", f(t — n) is 1-periodic,
so if it has a Fourier series ¢(t) = >, oy, ¢[k] €™, then

(p[k] /¢ —27rlktdt Z/ f(t—n —2mktdt

nezZ

= / F(£) 2kt gy — /R F(t)e 2"kt dt = F(K)

nezZ
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Poisson’s Formula and the Sampling Theorem

@ Shannon-Nyquist sampling theorem

If a signal f: R — C is band-limited in the sense that

1 ~
- f(s) =
o> 5 = f(s)=0,

then f(t) can be perfectly reconstructed from its discrete sampling
values f(k - a) (k € Z) by

sin(5(t — k- a))
f(t):é:zf(k a) 5(e—k 2)
1
—%fk a) smc<a(t—k a)>

This is Shannon's formula  (sinc(x) = S'"(WX))
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Poisson’s Formula and the Sampling Theorem

@ From the band-limiting condition, only the (n = 0)-term from

Z f(s —n/a)

nez
in Poisson’s formula survives, so that

f(s) =a Z f(k-a). e 2miska

keZ

and thus f(t) = / f(s) e?mist s
R

1/(2a) _ :
= / f(s) €™t ds
—1/(2a)
1/(2a) .
=a Z fk- a)/ g2mis(t—k:a) gg
keZ —1/(2a)
sin2(t — k- a)
_Zf(k a) A
keZ a
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Poisson’s Formula and the Sampling Theorem

@ What sampling really means?

e Sampling a continuous signal with frequency a means:
repeating its spectrum periodically with distance a

a function and its spectrum

sampling with limit frequency

oversampling

undersampling
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@ In a purely formal way:
— (<) — —2mist
is)=1(s)= [ e dt

The integral doesn’t make sense, but ...
@ ... if § appears under an integral, it may work

/R f(t)0(t) dt = /R f(t) /R e 2t ds dt =
/R /IR f(t)e >t dt ds = /R F(s) ds = £(0)

which motivates the common definition (given earlier)
@ Another characteristic property: d x f = f

(0= F)( /5 f(t—s)ds = f(t)

i.e., 0(t) acts as a neutral element w.r.t. convolution
No “proper” function can have this property. Therefore

f(s)=(6xf)(s)=d(s)-f(s) = d=1
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Towards a Precise Treatment of Sampling

@ Translation of §

definition

04(t) =0(t —a) or /f(t) da(t) dt = f(a) or 0,: f(t)— f(a)

multiplication with a function

— convolution with §, is translation

(f % 3,)(t) = / F(t — x) 85(x) dx = F(t — a)

the Fourier transform of §, is
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Towards a Precise Treatment of Sampling

@ DIRAC's comb

— definition

t) = ok(t)

kEZ

multiplication (the sampling property)

— Z f(t)6k(t) = Z f(k) ox(t)

keZ keZ

— convolution (the periodizing property)

(FIO)(t) = > (Fxa)(t) =D F(t—k)

keZ keZ

— the Fourier transform of I11(t) is
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Towards a Precise Treatment of Sampling

@ DIRAC's comb and POISSON's formula

WTBV

Fourier Essentials

ITT-convolution

FT of I1I

convolution theorem

definition of 111

linearity of FT

FT of o

November 18, 2015
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Towards a Precise Treatment of Sampling

Frequency domain

/\/\r;>

V@V

by the convolution theorem

M
ﬂ,
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Figure: The sampling scheme
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Time domain Frequency domain
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Figure: Reconstructing a sampled bandlimited signal
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o 6,(t) : f(t) — f(a)
o I, (t) = > 4y Oka(t) = %Zkez e2mikt/a

d,(t) III,(t)
action on f(t) f(a) > kez fk-a)
product with f(t) | f(a)-da(t) | Douez F(k-a) - Ok.a(t)
scaling with p > 0 %53/,,(1”) %Hla/p(t)
convolution with f(t) | f(t— a) > okez f(t—k-a)
Fourier transform e~ 2mias %H_Il/a(s)

@ periodizing a function
F(t) — Dker F(t = k- a) = (f x 1L)(¢)
e sampling a function f(t) —— >, ., f(k-a) - dk.a(t) = (f - 1LL,)(t)
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f(t) a b-bandlimited function

= the copies of f(s) contained in f-/H_I\l/b do not overlap
= f can be recovered by

F=Tpy-f 1Ml = b-My- (F *111)
where y(t) = X[—p/2,5/2](t). Now compute:

f=FYb Ny (F(f)*11lp)) inverse Fourier transform
=b- ]—“*1(|'|b) *]-"*1(]-'(7‘) * I11p) convolution theorem
= b F YNy % (f - F1(111,)) convolution theorem
= F Y Mp)  (f - 11 /) iFT of 111,

which gives the celebrated Shannon-formula
f(t) =sinc(bt) > _ f(k/b)d(t — k/b) = f(k/b)sinc (b(t — k/b))
kez keZ

where
sin(mt)
Tt

sinc(t) = = FY(My)(t)
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