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Orthogonal filters and reconstruction Generalities

FIR filters

h = (h0, h1, . . . , hL): real causal FIR filter of length L + 1
(where h0 6= 0 6= hL)

polynomial representation (z-transform)

h(z) = h0 + h1 z + h2 z
2 + · · ·+ hL z

L

Fourier series representation (frequency response)

H(ω) = h0 + h1 e
iω + h2 e

2iω · · ·+ hL e
Liω = h(e iω)
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Orthogonal filters and reconstruction Generalities

Signals

signal a = (a[n])n∈Z
power series representation (z-transform)

a(z) =
∑
n∈Z

a[n] zn

Fourier series representation (frequency representation)

A(ω) =
∑
n∈Z

a[n] e inω = a(e iω)
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Orthogonal filters and reconstruction Generalities

Filtering via convolution

filtering of a signal, a = (a[n])n∈Z via convolution with h

Th : a = (a[n])n∈Z 7−→ h ? a =

(
L∑

k=0

hk a[n − k]

)
n∈Z

convolution theorem

Th : a(z) 7→ h(z) · a(z)

equivalently
Th : A(ω) 7→ H(ω) · A(ω)

Volker Strehl Orthogonal Filters and Reconstruction November 25, 2015 5 / 94



Orthogonal filters and reconstruction Generalities

Filtering as matrix multiplication



...
a[−2]
a[−1]
a[0]
a[1]
a[2]

...


7−→



. . .
. . . . . .

. . .
. . .

hL hL−1 . . . h1 h0

hL hL−1 . . . h1 h0

hL hL−1 . . . h1 h0

. . .
. . . . . .

. . .
. . .





...
a[−2]
a[−1]
a[0]
a[1]
a[2]

...


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Orthogonal filters and reconstruction Generalities

Filtering by h followed by downsampling ↓2

transformation matrix

H =


. . .

. . . . . .
. . .

. . .

hL hL−1 hL−2 . . . h0

hL hL−1 . . . h1 h0

. . .
. . . . . .

. . .
. . .


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Orthogonal filters and reconstruction Generalities

Filtering and downsampling

operating on signals

H : a = (a[n])n∈Z 7−→

(
L∑

k=0

hk a[2n − k]

)
n∈Z

=

(
L∑

k=0

h2n−k a[k]

)
n∈Z

operating on power series

H : a(z) 7−→ 1

2

[
h(z) · a(z) + h(−z) · a(−z)

]
z2←z

operation on Fourier series

H : A(ω) 7−→ 1

2

[
H(
ω

2
) · A(

ω

2
) + H(

ω

2
+ π) · A(

ω

2
+ π)

]
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Orthogonal filters and reconstruction Generalities

Adjoint operation H†

the adjoint operation H† is realized by the transposed matrix

Ht =



. . .

. . . hL

. . . hL−1

hL−2 hL
... hL−1

h0
...

h1
. . .

h0
. . .
. . .


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Orthogonal filters and reconstruction Generalities

Adjoint operation

operation on signals

H† : a = (a[n])n∈Z 7−→

 ∑
n≤2k≤L+n

h2k−n a[k]


n∈Z

,

operation on power series

H† : a(z) 7−→ h(
1

z
) · a(z2)

operation on Fourier series

H† : A(ω) 7−→ H(−ω) · A(2ω) = H(ω) · A(2ω)

In signal/filter terminology
first upsampling ↑2,

then filtering by
←−
h = (h−k)k∈Z←−

h is not a causal filter: non-zero coefficients in positions −L, . . . , 0
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Orthogonal filters and reconstruction Orthogonality

Orthogonality (1)

h = (h0, . . . , hL) a finite, causal, real filter

filter length L + 1 must be even

H : matrix representing filtering by h followed by downsampling

the rows of H are orthogonal,
i.e., H · Ht = I ,
i.e., the following L+1

2 conditions are satisfied

(Om)
L∑

k=2m

hk hk−2m = δm,0 (0 ≤ m < L/2)
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Orthogonal filters and reconstruction Orthogonality

Orthogonality (2)

explanation:

any two rows of the matrix H have non-zero coefficients in common
in L + 1− 2m positions for m ∈ {0, 1, 2, . . . , (L + 1)/2}

For m = (L + 1)/2 the rows are automatically orthogonal, i.e.,
for m ≥ (L + 1)/2 condition (Om) is satisfied in a trivial way
For 1 ≤ m < (L + 1)/2 condition (Om) expresses orthogonality
for rows having L + 1− 2m non-zero filter positions in common
In case m = 0 one has condition

h2
0 + h2

1 + · · ·+ h2
L = 1,

i.e., the row vectors of HN are normalized, i.e., have `2-Length 1
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Orthogonal filters and reconstruction Orthogonality

Overlapping and orthogonality

Condition (O0)
hL hL−1 hL−2 . . . h1 h0

hL hL−1 hL−2 . . . h1 h0

Condition (O1)

hL hL−1 hL−2 hL−3 . . . . . . h1 h0

hL hL−1 hL−2 . . . h3 h2 h1 h0

Condition (O2)

hL hL−1 hL−2 hL−3 hL−4 hL−5 . . . h1 h0

hL hL−1 . . . h5 h4 h3 h2 h1 h0

Condition (O L−1
2

)

hL hL−1 . . . h1 h0

hL hL−1 . . . h1 h0
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Orthogonal filters and reconstruction Orthogonality

Alternative description of orthogonality

Filtering of the signal given by h(1/z) using H

in terms of power series

h(z) · h(
1

z
) + h(−z) · h(−1

z
) = 2

in terms of Fourier series

|H(ω)|2 + |H(ω + π)|2 = H(ω) · H(ω) + H(ω + π) · H(ω + π) = 2
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Orthogonal filters and reconstruction Orthogonality

Summary

For any filter h = (h0, . . . , hL) the following statements are equivalent:
1 Orthogonality of the rows of H

H · Ht = I

2 Orthogonality conditions

(Om)
L∑

k=2m

hk hk−2m = δm,0 (0 ≤ m < L/2)

3 in terms of power series

h(z) · h(1/z) + h(−z) · h(−1/z) = 2

4 in terms of Fourier series

|H(ω)|2 + |H(ω + π)|2 = 2
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Orthogonal filters and reconstruction Orthogonality

Dual filter (1)

g = (g0, . . . , gL) another filter of the same kind with
g(z) polynomial representation (z-transform)
G (ω) Fourier series representation

Filtering with g followed by downsampling ↓2 represented by the
matrix

G =


. . .

. . . . . .
. . .

. . .

gL gL−1 gL−2 . . . g0

gL gL−1 . . . g1 g0

. . .
. . . . . .

. . .
. . .

 .
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Orthogonal filters and reconstruction Orthogonality

Dual filter (2)

Operation on signals is given by

matrix multiplication

G : (a[n])n∈Z 7−→

(
L∑

k=0

gk a[2n − k]

)
n∈Z

=

(
L∑

k=0

g2n−k a[k]

)
n∈Z

in terms of power series

G : a(z) 7−→ 1

2

[
g(z) · a(z) + g(−z) · a(−z)

]
z2←z

in terms of Fourier series

G : A(ω) 7−→ 1

2

[
G (
ω

2
) · A(

ω

2
) + G (

ω

2
+ π) · A(

ω

2
+ π)

]
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Orthogonal filters and reconstruction Orthogonality

Dual filter (3)

Equivalent statements:

Orthogonality of the rows of G

G · G t = I

Orthogonality conditions

(O′m)
L∑

k=2m

gk gk−2m = δm,0 (0 ≤ m < L/2)

in terms of power series

g(z) · g(1/z) + g(−z) · g(−1/z) = 2

in terms of Fourier series

|G (ω)|2 + |G (ω + π)|2 = 2
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Orthogonal filters and reconstruction Orthogonality

Orthogonality of G and H

Orthogonality of the rows of the matrices

H · G t = 0 equivalently G · Ht = 0

Orthogonality conditions

(O′′m)
L∑

k=2m

hk gk−2m = 0 (0 ≤ m < L/2)

in terms of power series

h(z) · g(1/z) + h(−z) · g(−1/z) = 0

in terms of Fourier series

H(ω) · G (ω) + H(ω + π) · G (ω + π) = 0
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (1)

h and g filters as described

H and G , and H† and G † corresponding transformation matrices

Reconstruction condition for the filter pair (g ,h), is

Ht · H + G t · G = I ,

in terms of power series

h(z) · h(
1

z
) + g(z) · g(

1

z
) = 2

h(z) · h(−1

z
) + g(z) · g(−1

z
) = 0

in terms of Fourier series

|H(ω)|2 + |G (ω)|2 = 2

H(ω) · H(ω + π) + G (ω) · G (ω + π) = 0

Volker Strehl Orthogonal Filters and Reconstruction November 25, 2015 20 / 94



Orthogonal filters and reconstruction Orthogonality

Reconstruction (2)

Justification

Composition H† ◦ H gives

H† ◦ H : a(z) 7−→ 1

2
( a(z) · h(z) + a(−z) · h(−z) ) · h(

1

z
)

Composition G † ◦ G gives

G † ◦ G : a(z) 7−→ 1

2
( a(z) · g(z) + a(−z) · g(−z) ) · g(

1

z
)

Putting these together gives

H† ◦ H + G † ◦ G : a(z) 7−→ 1

2

(
h(z) · h(

1

z
) + g(z) · g(

1

z
)

)
· a(z)

+
1

2

(
h(−z) · h(

1

z
) + g(−z) · g(

1

z
)

)
· a(−z)

The coefficient of a(z) must be 1, the coefficient of a(−z) must vanish
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (3)

Looking at filter coefficients,reconstruction is expressed by∑
k∈Z

hm−2k · hn−2k +
∑
k∈Z

gm−2k · gn−2k = δm,n
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (4)

Theorem:
– h = (h0, . . . , hL) orthogonal filter of even length L + 1, i.e., H · Ht = I
– g = (g0, . . . , gL) dual filter defined by

gk = (−1)khL−k (0 ≤ k ≤ L).

Then the following holds:

1 g is an orthogonal filter, i.e.,

G · G t = I

2 filters g and h are orthogonal, i.e.,

H · G t = 0 = G · Ht

3 the condition for reconstruction is satisfied, i.e.,

Ht · H + G t · G = I
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (5)

About the proof:

The definition of the filter g can be written as

g(z) =
L∑

k=0

gk z
k =

L∑
k=0

hk−L (−z)k

=
L∑

k=0

hk (−z)L−k = (−z)L
L∑

k=0

hk (−1

z
)k

= (−z)L h(−1

z
)
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Orthogonal filters and reconstruction Orthogonality

Orthogonality of g :

g(z) · g(
1

z
) + g(−z) · g(−1

z
)

= (−z)L h(−1

z
) · (−1

z
)L h(−z) + zL h(

1

z
) · ( 1

z
)L h(z)

= h(−1

z
) · h(−z) + h(

1

z
) · h(z) = 2

Orthogonality of g und h:

h(z) · g(
1

z
) + h(−z) · g(−1

z
)

= h(z) · (−1

z
)L h(−z) + h(−z) · ( 1

z
)L h(z)

= (
1

z
)L
[

(−1)L h(z) · h(−z) + h(−z) · h(z)
]

= 0,

(since L is odd)
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (6)

Reconstruction condition:

h(z) · h(
1

z
) + g(z) · g(

1

z
)

= h(z) · h(
1

z
) + (−z)L h(−1

z
) · (−1

z
)Lh(−z)

= h(z) · h(
1

z
) + h(−1

z
) · h(−z) = 2

h(z) · h(−1

z
) + g(z) · g(−1

z
)

= h(z) · h(−1

z
) + (−z)L h(−1

z
) · ( 1

z
)Lh(z)

= h(z) · h(−1

z
) + (−1)L h(−1

z
) · h(z) = 0,

(since L is odd)
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Orthogonal filters and reconstruction Orthogonality

Reconstruction (5)

From the reconstruction condition on gets the filter bank setup:

Analysis

a signal a is decomposed via filtering with h and g into two signals
b = H · a and c = G · a

Synthesis

from these signals b and c the signal a can be reconstructed

a 7−→ (b, c) = (H · a,G · a) 7−→

{
Ht · b + G t · c =

(Ht · H + G t · G ) · a = a
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Orthogonal filters and reconstruction Finite-length signals

Finite-length signals (1)

Filtering with h = (h0, . . . , lL) followed by downsampling ↓2 of signals of
finite (even) length N is given by matrix multiplication with an
(N/2)× N matrix HN of cyclic structure
(“overshooting” rows will be cyclically wrapped)

HN =

hL hL−1 hL−2 . . . . . . h1 h0

hL hL−1 . . . . . . . . . h1 h0

. . .
. . .

. . .
. . .

hL hL−1 . . . . . . . . . . . . h1 h0

h1 h0 hL hL−1 . . . . . . h3 h2

h3 h2 h1 h0 hL . . . h5 h4

...
...

. . .
. . .

. . .
. . .

...
...

hL−2 hL−3 . . . . . . h1 h0 hL hL−1


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Orthogonal filters and reconstruction Finite-length signals

Finite-length signals (2)

cyclic wrapping allows to relate properties of the infinite matrix H to
properties of HN :

If H is an orthogonal matrix, then so is HN

(the converse holds provided N ≥ 2L)
All previously introduced ways of expressing orthogonality and
reconstruction in terms of polynomials, power series amd Fourier series
are thus available
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Orthogonal filters and reconstruction Finite-length signals

Finite-length signals (3)

Multiplication with matrices HN , Ht
N (similarly GN and G t

N)
written out explicitly:

Multiplication of a column vector v = (vk)0≤k<N with matrix HN

(from the left):

HN · v = w = (wj)0≤j<N/2 where wj =
L∑

k=0

hk v2j+L−k mod N .

adjoint transformation: multiplication of a column vector
w = (wj)0≤j<N/2 with the transposed matrix Ht

N (from the left):

Ht
N ·w = v = (vj)0≤j<N where


v2j =

(L−1)/2∑
k=0

h2k+1 wk+j− L−1
2 mod N

v2j+1 =

(L−1)/2∑
k=0

h2k wk+j− L−1
2 mod N
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Orthogonal filters and reconstruction Finite-length signals

Finite-length signals (4)

Analysis
If h, g are orthogonal filter of the same (even) length L + 1 which are
orthogonal to each other, then for vectors of even length N ≥ L + 1
one has the orthogonal transform

a 7−→
[
b
c

]
=

[
HN · a
GN · a

]
=

[
HN

GN

]
· a.

Synthesis
If the reconstruction condition is satisfied, one can recover a from b
und c[

b
c

]
7−→

[
HN

GN

]t [b
c

]
=
[
Ht
N G t

N

] [b
c

]

= Ht
N · b + G t

N · c =
(
Ht
N · HN + G t

N · GN

)
· a = a.
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Daubechies filters

Daubechies filters

In 1988 Ingrid Daubechies1 invented a procedure for constructing
orthogonal filter pairs (h, g) of the same (even) length having high-
and low-pass properties

These filters enjoy interesting (and desirable!):

the scaling and wavelet functions φ und ψ associated to them have
compact support, i.e., they vanish outside a finite interval
by increasing the filter length one obtains increasingly smooth (higher
differentiability) wavelet functions

1I. Daubechies, Orthonormal bases for compactly supported wavelets, Comm. Pure.
Appl. Math. 41:909–996, 1988. Orthonormal bases for compactly supported wavlets II,
SIAM J. Math. Anal. 24(23):499–519. Ten Lectures on Wavelets, SIAM, 1992.
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (1)

Goal: constructing a filter pair (h, g) of filters of length 4 s.th.

h = (h0, h1, h2, h3) acts as a low-pass filter
g = (g0, g1, g2, g3) acts as a high-pass filter

The corresponding Fourier series are

H(ω) = h0 + h1 e
iω + h2 e

2iω + h3 e
3iω

G (ω) = g0 + g1 e
iω + g2 e

2iω + g3 e
3iω
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (2)

The transformation matrices for signals of length N are

HN =


h3 h2 h1 h0

h3 h2 h1 h0

. . .
. . .

. . .

h3 h2 h1 h0

h1 h0 h3 h2



GN =


g3 g2 g1 g0

g3 g2 g1 g0

. . .
. . .

. . .

g3 g2 g1 g0

g1 g0 g3 g2


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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (3)

WN : the transformation matrix for signals of length N of the
corresponding wavelet transform contains the low-pass filter h and
the high-pass filter g :

WN =

[
HN

GN

]
The adjoint (= transposed) matrix of WN is

W t
N =

[
Ht
N G t

N

]
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (4)

The first important condition is

The transformation matrix WN shall be orthogonal, i.e.,

WN ·W t
N = IN

Written out:

WN ·W t
N =

[
HN

GN

]
·
[
Ht

N G t
N

]
=

[
HN · Ht

N HN · G t
N

GN · Ht
N GN · G t

N

]
=

[
IN/2 0N/2

0N/2 IN/2

]
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (5)

There are three types of orthogonality conditions to be satisfied:

1. HN · Ht
N = IN/2 (orthogonality of the rows of HN)

h2
0 + h2

1 + h2
2 + h2

3 = 1

h0h2 + h1h3 = 0

2. GN · G t
N = IN/2 (orthogonality of the rows of GN)

g2
0 + g2

1 + g2
2 + g2

3 = 1

g0g2 + g1g3 = 0

3. HN · G t
N = 0N/2 (orthogonality of the rows of GN and HN)

h0g0 + h1g1 + h2g2 + h3g3 = 0

h0g2 + h1g3 = 0

h2g0 + h3g1 = 0
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (6)

Type 3 is easily satisfied if one puts

gj = (−1)jh3−j (0 ≤ j ≤ 3)

With this choice conditions 1. and 2. become equivalent,
so that it remains to satisfy condition 1
Specifying the low-pass condition for h and the high-pass condition
for g is done by:

h is a low-pass filter: H(π) = 0

g is a high-pass filter : G (0) = 0

Both conditions are equivalent in view of the imposed relation
between gj and hj :

H(π) = h0 − h1 + h2 − h3 = 0 ⇔
G (0) = g0 + g1 + g2 + g3 = h3 − h2 + h1 − h0 = 0
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (7)

It remains to determine h = (h0, h1, h2, h3) such that

(O0) h2
0 + h2

1 + h2
2 + h2

3 = 1

(O1) h0h2 + h1h3 = 0

(T0) h0 − h1 + h2 − h3 = 0

A consequence of these three conditions is

H(0) = G (π) = h0 + h1 + h2 + h3 = ±
√

2

So one is left with three conditions for the four coefficients
h0, h1, h2, h3 to be determined.

One expects a one-parameter solution set
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (8)

It follows from (O1) that

(h2, h3) = c · (−h1, h0)

for some c ∈ R, c 6= 0

From (O0)

h2
0 + h2

1 =
1

1 + c2
, and thus h1 =

1− c

1 + c
· h0

Furthermore

h2
0 =

(1 + c)2

2(1 + c2)2

From the two possibilities given by

h0 = ± 1 + c√
2(1 + c2)

one choses the one with the positive sign
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (9)

Thus one arrives at the solution

h0 =
1 + c√

2(1 + c2)

h1 =
1− c√

2(1 + c2)

h2 =
−c(1− c)√

2(1 + c2)

h3 =
c(1 + c)√
2(1 + c2)

.
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (10)

In order to fix the value of the parameter c
a second low-pass condition is introduced:

H ′(π) = 0

For the filter coefficients this means

(T1) h1 − 2h2 + 3h3 = 0

which can be written as

(1 + 2c)h1 + 3c0 = 0

and from

h1 =
1− c

1 + c
· h0

this finally leads to
1− c

1 + c
= − 3c

1 + 2c
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Daubechies filters The Daubechies filter D4

Construction of the D4 filter pair (11)

One gets
c2 + 4c + 1 = 0

from which one takes the solution c = −2 +
√

3, so that

h0 = ± 1 +
√

3

4
√

2

Taking the positive sign one finally obtains

h0 =
1

4
√

2
(1 +

√
3) g0 =

1

4
√

2
(1−

√
3)

h1 =
1

4
√

2
(3 +

√
3) g1 =

−1

4
√

2
(3−

√
3)

h2 =
1

4
√

2
(3−

√
3) g2 =

1

4
√

2
(3 +

√
3)

h3 =
1

4
√

2
(1−

√
3) g3 =

−1

4
√

2
(1 +

√
3)

This is the D4 filter pair
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Daubechies filters The Daubechies filter D6

Construction of the D6 filter pair (1)

The construction of a filter pair (h, g) with h = (h0, h1, . . . , h5) and
g = (g0, g1, . . . , g5) proceeds along the same lines
The filters to be determined are required to be related by

gj = (−1)jh5−j (0 ≤ j ≤ 5)

⇒ many orthogonality conditions are automatically satisfied
Three orthogonality conditions remain to be satisfied:

(O0) h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = 1

(O1) h0h2 + h1h3 + h2h4 + h3h5 = 0

(O2) h0h4 + h1h5 = 0

The low-pass properties of h are specified as follows:

(T0) H(π) = 0 ⇔ h0 − h1 + h2 − h3 + h4 − h5 = 0

(T1) H ′(π) = 0 ⇔ h1 + 2h2 − 3h3 + 4h4 − 5h5 = 0

(T2) H ′′(π) = 0 ⇔ h1 + 4h2 − 9h3 + 16h4 − 25h5 = 0
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Daubechies filters The Daubechies filter D6

Construction of the D6 filter pair (2)

A real solution of these 6 conditions (O0), (O1), (O2), (T0), (T1), (T2)
for h0, . . . , h5 is given by

h0 =

√
2

32

(
1 +
√

10 +

√
5 + 2

√
10

)
≈ 0.332671

h1 =

√
2

32

(
5 +
√

10 + 3

√
5 + 2

√
10

)
≈ 0.806892

h2 =

√
2

32

(
10− 2

√
10 + 2

√
5 + 2

√
10

)
≈ 0.459878

h3 =

√
2

32

(
10− 2

√
10− 2

√
5 + 2

√
10

)
≈ −0.135011

h4 =

√
2

32

(
5 +
√

10− 3

√
5 + 2

√
10

)
≈ −0.085441

h5 =

√
2

32

(
1 +
√

10−
√

5 + 2
√

10

)
≈ 0.035226

These are the coefficients of the low-pass filter of the D6 filter pair
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Daubechies filters The Daubechies filters D2M

Construction of the D2M filter pair (1)

Now let L = 2M − 1. The construction should yield filter pairs (h, g)
with h = (h0, h1, . . . , hL), g = (g0, g1, . . . , gL), where

gj = (−1)j hL−j (0 ≤ j ≤ L)

The relevant M orthogonality conditions are:

(Om)
∑L

k=2m hk hk−2m = δm,0 (0 ≤ m < M)

For the Fourier series H(ω) =
∑L

k=0 hk e
ikω this amounts to

|H(ω)|2 + |H(ω + π)|2 = 2
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Daubechies filters The Daubechies filters D2M

Construction of the D2M filter pair (2)

Furthermore, there are M low-pass conditions, which are specified
using the derivatives of the Fourier series H(ω) at ω = π:

(Tm) H(m)(π) = 0 (0 ≤ m < M).

For the filter coefficients these are the moment conditions

(Tm)
∑L

k=0(−1)k km hk = 0 (0 ≤ m < M)

In total one has 2M = L + 1 conditions for the L + 1 coefficients
h0, h1, . . . , hL, of which

M are linear (low-pass) and
M are non-linear (quadratic, orthogonality)

One always has

H(0) =
L∑

k=0

hk = ±
√

2
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Daubechies filters The Daubechies filters D2M

Construction of the D2M filter pair (3)

The low-pass conditions can be viewed algebraically by considering
the polynomial (“z-transform”)

h(z) =
L∑

k=0

hk z
k , so that H(ω) = h(e iω)

The low-pass conditions are then equivalent to

For z = −1 the polynomial h(z) has a root of multiplicity > M

Another equivalent statement is

h(z) = (z + 1)M · q(z) for some polynomial q(z) of degree M − 1
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Daubechies filters The Daubechies filters D2M

Construction of the D2M filter pair (4)

Theorem (Daubechies)

The system consisting of

the M orthogonality conditions (Om)0≤m<M and the
the M low-pass conditions (TM)0≤m<M

for filters of length 2M has 2b(2M+1)/4c real solutions

There is exactly one (!) solution for which |zk | > 1 holds for all roots
of the corresponding polynomial q(z)

This solution specifies the Daubechies low-pass filter h von D2M
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Daubechies filters The Daubechies filters D2M

Construction of the D2M filter pair (5)

The Daubechies low-pass filter D2 with h = (h0, h1)
is determined via the conditions

h2
0 + h2

1 = 1, h0 − h1 = 0

Consequently

h = (1/
√

2, 1/
√

2), g = (1/
√

2,−1/
√

2).

This is nothing but the Haar-filter pair!
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (6)

Actually, constructing Daubechies filters is not a simple task!

Let L = 2M − 1. One wants a filter h = (h0, h1, . . . , hL)
for which the orthogonality condition

h(z) · h(
1

z
) + h(−z) · h(−1

z
) = 2

is satisfied

On the complex unit circle one has z = 1/z . Since the filter
coefficients should be real, one may write

|h(z)|2 + |h(−z)|2 = 2 for |z | = 1

The low-pass conditions require that

h(z) = (1 + z)M · q(z)

for some real polynomial q(z) of degree M − 1
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (7)

Some cosmetic modifications:

Instead of h(z) consider the polynomial h(z)/
√

2,
so that the “2” on the right-hand side of the orthogonality condition
can be replaced by a “1”

The modified polynomial shall be written as

h̃(z) =
1√
2
h(z) =

(
1 + z

2

)M

· qM−1(z)

which does not change the roots of the involved polynomials

The subscript M − 1 of the polynomial on the right indicates its
degree, which will be practiced in what follows
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (8)

For z on the complex unit circle, i.e., z = e iφ one has∣∣∣∣1 + z

2

∣∣∣∣2 =
1 + cosφ

2
= 1− sin2 φ

2
,∣∣∣∣1− z

2

∣∣∣∣2 =
1− cosφ

2
= sin2 φ

2
.

The equation ∣∣∣h̃(z)
∣∣∣2 +

∣∣∣h̃(−z)
∣∣∣2 = 1

for |z | = 1 can be written as(
1− sin2 φ

2

)M

·
∣∣∣qM−1(e iφ)

∣∣∣2 +

(
sin2 φ

2

)M

·
∣∣∣qM−1(−e iφ)

∣∣∣2 = 1.
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (9)

Since qM−1(z) should be a polynomial with real coefficients,∣∣qM−1(e iφ)
∣∣2 can be written as a polynomial in cosφ,

and also as a polynomial (of degree M − 1) in 1− sin2 φ
2 ,

and as a polynomial pM−1(y) in y = sin2 φ
2

Between the new variable y = sin2 φ
2 and the original variable z = e iφ

one has the relation

y =
1

2
− 1

4

(
z +

1

z

)
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (10)

From ∣∣∣qM−1(e iφ)
∣∣∣2 = pM−1(y)

one has ∣∣∣qM−1(−e iφ)
∣∣∣2 = pM−1(1− y).

To summarize: one is looking for a polynomial pM−1(y) with the two
properties:

– (1− y)M · pM−1(y) + yM · pM−1(1− y) = 1,

– pM−1(y) ≥ 0 for 0 ≤ y ≤ 1
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (11)

The Daubechies polynomials PM(y) are defined as

PM(y) =
M∑

m=0

(
M + m

m

)
ym.

The first few of these polynomials are

P0(y) = 1

P1(y) = 1 + 2 y

P2(y) = 1 + 3 y + 6 y2

P3(y) = 1 + 4y + 10y2 + 20y3
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (12)

These polynomials can be written as

PM(y) =
M∑
k=0

(
2M + 1

k

)
yk (1− y)M−k

(see Lecture Notes)

Claim: The Daubechies polynomials satisfy

(1− y)M+1 · PM(y) + yM+1 · PM(1− y) = 1

Obviously PM(y) ≥ 0 for 0 ≤ y ≤ 1
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (13)

Proof of the claim:

Use the binomial formula to obtain

(1− y)M+1 · PM(y) + yM+1 · PM(1− y)

=
M∑
k=0

(
2M + 1

k

)
yk (1−y)2M+1−k+

M∑
k=0

(
2M + 1

k

)
(1−y)k y2M+1−k

=
2M−1∑
k=0

(
2M + 1

k

)
yk (1− y)2M+1−k =

(
y + (1− y)

)2M+1
= 1
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (14)

Now let

P̂2M−1(z) = (1− y)M · PM−1(y) =
2M−1∑

m=−2M+1

am zm,

The relation between y and z is

y =
1

2
− 1

4

(
z +

1

z

)
For P̂2M−1(z) one has

1 For z ∈ C 6=0:

P̂2M−1(z) + P̂2M−1(−z) = 1

2 For z ∈ C 6=0:

P̂2M−1(z) = P̂2M−1(1/z)

3 For z ∈ C with |z | = 1: P̂2M−1(z) ≥ 0
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (15)

P̂2M−1(z) is a “Laurent polynomial”, in which monomials with
negative exponents may appear

This can be turned into a polynomial by putting

P4M−2(z) = z2M−1 · P̂2M−1(z)

P4M−2(z) has z = −1 as root of multiplicity 2M and one has
P4M−2(1) = 1

If z0 ∈ C 6=0 is a root of P4M−2(z), then so are z0, 1/z0 and 1/z0, and
they are of the same order
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (16)

If z0 6= 0 real, then for |z | = 1:∣∣(z − z0)(z − z−1
0 )
∣∣ =

1

|z0|
|z − z0|2 .

If z0 6= 0 is not real, then for |z | = 1:∣∣(z − z0)(z − z0
−1)(z − z0)(z − z−1

0 )
∣∣ =

1

|z0|2
|z − z0|2 |z − z0|2
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Daubechies filters Daubechies polynomials

Construction of the D2M filter pair (17)

This leads to the desired result:

There exists a real polynomial QM−1(z) s.th.

P2M−1(z) =

∣∣∣∣1 + z

2

∣∣∣∣2M · |QM−1(z)|2

This needs to be shown only for |z | = 1, it then follows for all
complex z

For |z | = 1 the assertion follows from the previous theorem by
grouping together corresponding roots
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Daubechies filters Once again D4 and D6

Once again D4

We have
P2(y) = 1 + 3y + 6y2

Substitution gives

P6(z) = − 1

32

(
− z6 + 9 z4 + 16 z3 + 9 z2 − 1

)
.

This can be factored into

− 1

32

(
z2 − 4 z + 1

)
(z + 1)4

and this exhibits z = −1 as a root of multiplicity 4
The quadratic factor has (real) roots z = 2±

√
3

Setting α = 2−
√

3 one obtains

h(z) =
1

4

(z + 1)2 (z − 2 +
√

3
)

1/2
√

6− 1/2
√

2

≈ 0.48296291 z3 + 0.83651630 z2 + 0.2241438 z − 0.12940952
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Daubechies filters Once again D4 and D6

Once again D6 (1)

We have
P3(y) = 1 + 4y + 10y2 + 20y3

Substitution gives

P10(z) =
1

512

(
3 z10 − 25 z8 + 150 z6 + 256 z5 + 150 z4 − 25 z2 + 3

)
This can be factored into

1

512

(
3 z4 − 18 z3 + 38 z2 − 18 z + 3

)
(z + 1)6

and this exhibits z = −1 as a root of multiplicity 6
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Daubechies filters Once again D4 and D6

Once again D6 (2)

The factor of degree 4 has roots

α = 0.2872513780 + 0.1528923339 i ,

α−1 = 2.712748622− 1.443886783 i ,

α = 0.2872513780− 0.1528923339 i ,

α−1 = 2.712748622 + 1.443886783 i

This gives

h(z) =

√
3

16 |α|
· (z + 1)3 · (z − α) · (z − α)

≈ 0.3326705530 z5 + 0.8068915095 z4 + 0.4598775023 z3

− 0.1350110200 z2 − 0.08544127389 z + 0.03522629187
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Coiflet filters Non-causal filters

Non-causal filters (1)

Consider more generally finite filters h = (h`, h`+1, . . . , hL) with ` < L
and ` ≤ 0 ≤ L, so that the filter has length L− `+ 1

Because of 2-downsampling the filter length must be even,
L− `+ 1 = 2M say, so that ` 6≡ L mod 2

One says that ` is the start index and L als den stop index of the filter

Orthogonality and low-pass properties of filters are expressed using

h(z) =
L∑

k=`

hk z
k resp. H(ω) =

L∑
k=`

hk e
iω = h(e iω).
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Coiflet filters Non-causal filters

Non-causal filters (2)

The orthogonality conditions are again written as

|H(ω)|2 + |H(ω + π)|2 = 2,

which is equivalent to

L∑
k=`+2m

hkhk−2m = δm,0 (0 ≤ m < M)
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Coiflet filters Non-causal filters

Non-causal filters (3)

If g = (g`, . . . , gL) is another such filter with Fourier series G (ω),
then the orthogonality of g and h is written as

H(ω) · G (ω) + H(ω + π) · G (ω + π) = 0

or equivalently

L∑
k=`+2m

hk gk−2m = 0 (0 ≤ m < M).
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Coiflet filters Non-causal filters

Non-causal filters (4)

If h is an orthogonal filter, then g can be defined by

G (ω) = e i(nω+b) H(ω + π)

and this filter is automatically orthogonal

|G (ω)|2 + |G (ω + π)|2 = 2

If n is any odd integer (and b any real number), then the
reconstruction condition

H(ω) · G (ω) + H(ω + π) · G (ω + π) = 0

is also satisfied
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Coiflet filters Non-causal filters

Non-causal filters (5)

Looking at filter coefficients, this means

gk = −e i b(−1)k hn−k

Usually one takes b = π, so that this simplifies to

gk = (−1)k hn−k

In order to guarantee that g has start index ` and stop index L one
has to take n = L + `
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Coiflet filters Coiflet filters

Coiflet filters (1)

An obvious idea for constructing a low-pass filter h = (h`, . . . , hL) is,
apart from requiring orthogonality conditions

|H(ω)|2 + |H(ω + π)|2 = 2

and low-pass conditions at ω = π, viz.,

H(m)(π) = 0 (m = 0, 1, 2, . . .),

is to require low-pass conditions which specify the Fourier series H(ω)
at ω = 0
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Coiflet filters Coiflet filters

Coiflet filters (2)

The condition
H(0) =

√
2

is already satisfied

In addition one may request for

H(m)(0) = 0 (m = 1, 2, . . .)

which determine the behavior of H(ω) in the vicinity of ω = 0, so
that the values of the function are close to

√
2 = H(0)

This is the idea behind Coiflet filters, suggested by R. Coifman and
realized by I. Daubechies (see the second one of the articles cited
above)
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Coiflet filters Coiflet filters

Coiflet filters (3)

The construction for these filters starts with the Daubechies
polynomials

PK (y) =
K∑

k=0

(
K + k

k

)
yk

with their characteristic property

(∗) (1− y)K · PK−1(y) + yK · PK−1(1− y) = 1
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Coiflet filters Coiflet filters

Coiflet filters (4)

One makes an Ansatz for the Fourier series as

(∗∗) H(ω) =
√

2 (1− y)K ·
[
PK−1(y) + yK · A(e iω)

] ∣∣
y←sin2(ω/2)

,

where A(z) =
∑2K−1

k=0 ak z
k is to be a polynomial of degree < 2K

From property (∗) one can write

(∗ ∗ ∗) H(ω) =
√

2 +
√

2 yK ·
[
−PK−1(1− y) + (1− y)K · A(e iω)

] ∣∣
y←sin2(ω/2)
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Coiflet filters Coiflet filters

Coiflet filters (5)

Looking at

(1− y)K
∣∣
y←sin2(ω/2)

= cos2K (ω/2) =

[
1

2
e−iω/2(1 + e iω)

]2K

,

one realizes from (∗∗) that H(ω) has a root of multiplicity 2K for
ω = π:

H(m)(π) = 0 (0 ≤ m < 2K )
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Coiflet filters Coiflet filters

Coiflet filters (6)

Looking at

yM
∣∣
y←sin2(ω/2)

= sin2M(ω/2) =

[
i

2
e−iω/2(1− e iω)

]2M

,

one realizes from (∗ ∗ ∗), that H(ω)−
√

2 has a root of multiplicity
2K for ω = 0:

H(0) =
√

2 and H(m)(0) = 0 (1 ≤ m < 2K )
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Coiflet filters Coiflet filters

Coiflet filters (7)

The previous assertions holds for any polynomial A(z).
The essential step is contained in the following claim
(difficult, thus cited without proof) :

The 2K coefficients a0, a1, . . . , a2K−1 of A(z) can be chosen
so that the orthogonality condition

|H(ω)|2 + |H(ω + π)|2 = 2

is satisfied
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Coiflet filters Coiflet filters

Coiflet filters (8)

Now it must be clarified

how long the associated filter h = (h`, . . . , hL) is
and what its start index ` and its stop index L are

Write the right hand side of (∗∗) as a polynomial in z = e iω.
Reminder:

y = sin2(ω/2) =
1

4

(
2− z − 1

z

)
1− y = cos2(ω/2) =

1

4

(
2 + z +

1

z

)
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Coiflet filters Coiflet filters

Coiflet filters (9)

Substituting in (∗∗) gives

– (1− y)K has terms zk for −K ≤ k ≤ K ;
– PK−1(1− y) has terms zk for −K + 1 ≤ k ≤ K − 1;
– yK has terms zk for −K ≤ k ≤ K ;
– A(e iω) has terms zk for 0 ≤ k ≤ 2K − 1

The filter H(ω) specified by (∗∗) with parameter K

has start index ` = −2K
and stop index L = 4K − 1,
so that its length is 2M = 6K

This h = (h−2K , . . . , h4K−1) defines the Coiflet filter C6K
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Coiflet filters Coiflet filters

Coiflet filters (10)

For computing C6K the following are relevant:
Orthogonality conditions

4K−1∑
k=−2K+2m

hk hk−2m = δm,0 (0 ≤ m < 3K )

Low-pass conditions

H(m)(0) = 0 (1 ≤ m < 2K ) H(0) =
√

2

H(m)(π) = 0 (0 ≤ m < 2K )

The orthogonal high-pass filter G (ω) which complements the low-pass
filter H(ω) can be defined by

G (ω) = e in+b · H(ω + π)
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Coiflet filters Coiflet filters C6 and C12

Coiflet-Filter C6 (1)

In case K = 1 the polynomial A(z) has degree 2K − 1 = 1.
The ansatz for H(ω) resp. h(z) then is

h(z) =

(
1

2
+

1

4
z +

1

4
z−1

)(
1 +

(
1

2
− 1

4
z − 1

4
z−1

)
(a0 + a1z)

)
= (− 1

16
a0z
−2 +

(
− 1

16
a1 +

1

4

)
z−1 +

1

8
a0 +

1

2

+

(
1

8
a1 +

1

4

)
z − 1

16
a0z

2 − 1

16
a1z

3)

Thus h = (h−2, . . . , h3) with the coefficients a0, a1 to be determined
is given by

√
2 · [− 1

16
a0,

(
− 1

16
a1 +

1

4

)
,

(
1

8
a0 +

1

2

)
,

(
1

8
a1 +

1

4

)
,− 1

16
a0,−

1

16
a1]
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C6 (2)

The orthogonality condition
∑

k h
2
k = 1 gives

3 a0
2 + 3 a1

2 + 4 a1 + 48 + 16 a0 = 64

The orthogonality condition
∑

k hkhk+2 = 0 gives

−a0
2 − 4 a0 − a1

2 + 4 = 0

The orthogonality condition
∑

k hkhk+4 = 0 gives

a0
2 + a1

2 − 4 a1 = 0

The solution of these three equations is

a0 = 1− α, a1 = α =
√

1− 6 z + 2 z2
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Coiflet filters Coiflet filters C6 and C12

Coiflet-Filter C6 (3)

This leads to

h =
√

2 ·
[
−1− α

16
,− α

16
+

1

4
,

5

8
− α

8
,
α

8
+

1

4
,−1− α

16
,− α

16

]
and floating-point approximations of the filter coefficients are

h−2 −0.0727326195
h−1 0.3378976624
h0 0.8525720199
h1 0.3848648468
h2 −0.0727326195
h3 −0.0156557281
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C6 (4)

Since start and stop indices of the filter are known (` = −2 and
L = 3), one many make an ansatz for h = (h−2, . . . , h3) with
undetermined coefficients and try to solve

the three orthogonality conditions∑
k

h2
k = 1

∑
k

hkhk+2 = 0
∑
k

hkhk+4 = 0

and the four low-pass conditions

H(0) =
√

2 H(π) = 0 H ′(0) = 0 H ′(π) = 0

directly
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C6 (5)

The following are the relevant equations:

h2
−2 + h2

−1 + h2
0 + h2

1 + h2
2 + h2

3 = 1

h−2h0 + h−1h1 + h0h2 + h1h3 = 0

h−2h2 + h−1h3 = 0

h−2 + h−1 + h0 + h1 + h2 + h3 =
√

2

h−2 − h−1 + h0 − h1 + h2 − h3 = 0

−2 h−2 − h−1 + h1 + 2 h2 + 3 h3 = 0

2 h−2 − h−1 + h1 − 2 h2 + 3 h3 = 0
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C6 (6)

This gives two solutions:

h−2
1

32

√
2 + 1

32

√
14 1

32

√
2− 1

32

√
14

h−1
5

32

√
2− 1

32

√
14 5

32

√
2 + 1

32

√
14

h0
7

16

√
2− 1

16

√
14 7

16

√
2 + 1

16

√
14

h1
7

16

√
2 + 1

16

√
14 7

16

√
2− 1

16

√
14

h2
1

32

√
2 + 1

32

√
14 1

32

√
2− 1

32

√
14

h3 − 3
32

√
2− 1

32

√
14 − 3

32

√
2 + 1

32

√
14


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Coiflet filters Coiflet filters C6 and C12

Coiflet-Filter C6 (7)

and the floating-point approximation is

h−2 0.1611209671 −0.07273261949

h−1 0.1040440758 0.3378976624

h0 0.3848648467 0.8525720201

h1 0.8525720201 0.3848648467

h2 0.1611209671 −0.07273261949

h3 −0.2495093147 −0.0156557281
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C12 (1)

In the case K = 2 one looks for a filter with start index ` = −4 and
stop index L = 7

Proceeding as in the previous section leads to the following system of
equations for the filter coefficients h−4, . . . , h7:
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C12 (2)

The orthogonality conditions

h2
−4 + h2

−3 + h2
−2 + h2

−1 + h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 + h2
6 + h2

7 = 1

h−4h−2 + h−3h−1 + h−2h0 + h−1h1 + h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 = 0

h−4h0 + h−3h1 + h−2h2 + h−1h3 + h0h4 + h1h5 + h2h6 + h3h7 = 0

h−4h2 + h−3h3 + h−2h4 + h−1h5 + h0h6 + h1h7 = 0

h−4h4 + h−3h5 + h−2h6 + h−1h7 = 0

h−4h6 + h−3h7 = 0
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C12 (3)

The low-pass conditions

h−4 + h−3 + h−2 + h−1 + h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7 =
√

2

h−4 − h−3 + h−2 − h−1 + h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

4h−4 + 3h−3 + 2h−2 + h−1 − h1 − 2h2 − 3h3 − 4h4 − 5h5 − 6h6 − 7h7 = 0

4h−4 − 3h−3 + 2h−2 − h−1 + h1 − 2h2 + 3h3 − 4h4 + 5h5 − 6h6 + 7h7 = 0

−16h−4 − 9h−3 − 4h−2 − h−1 − h1 − 4h2 − 9h3 − 16h4 − 25h5 − 36h6 − 49h7 = 0

−16h−4 + 9h−3 − 4h−2 + h−1 + h1 − 4h2 + 9h3 − 16h4 + 25h5 − 36h6 + 49h7 = 0

−64h−4 − 27h−3 − 8h−2 − h−1 + h1 + 8h2 + 27h3 + 64h4 + 125h5 + 216h6 + 343h7 = 0

−64h−4 + 27h−3 − 8h−2 + h−1 − h1 + 8h2 − 27h3 + 64h4 − 125h5 + 216h6 − 343h7 = 0
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Coiflet filters Coiflet filters C6 and C12

Coiflet filter C12 (4)

The 8 low-pass conditions are linear, so one first uses these in order to
eliminate 8 out of 12 variables:

h−4 = 4 h6 + h4

h−3 = h5 + 4 h7 − 1/32
√

2

h−2 = −15 h6 − 4 h4

h−1 = −4 h5 − 15 h7 +
9

32

√
2

h0 = 20 h6 + 6 h4 + 1/2
√

2

h1 = 6 h5 + 20 h7 +
9

32

√
2

h2 = −10 h6 − 4 h4

h3 = −4 h5 − 10 h7 − 1/32
√

2

Volker Strehl Orthogonal Filters and Reconstruction November 25, 2015 91 / 94



Coiflet filters Coiflet filters C6 and C12

Coiflet filter C12 (5)

It remains to solve the following non-linear system of equations:

21
√

2

16
h5 +

51
√

2

16
h7 + 20

√
2 h6 + 6

√
2 h4 + 448 h5h7 + 448 h4h6 + 742 h2

7 + 70 h2
4 + 70 h2

5 + 742 h2
6 =

23

128

−
3
√

2

8
h5 −

7
√

2

16
h7 −

25
√

2

2
h6 − 4

√
2 h4 − 350 h5h7 − 350 h4h6 − 560 h2

7 − 56 h2
4 − 56 h2

5 − 560 h2
6 =

63

512

−
5
√

2

8
h5 −

15
√

2

8
h7 + 2

√
2 h6 +

√
2 h4 + 160 h5h7 + 160 h4h6 + 220 h2

7 + 28 h2
4 + 28 h2

5 + 220 h2
6 =

9

256

−20 h2
6 − 35 h4h6 − 8 h2

4 − 8 h2
5 − 35 h5h7 +

3
√

2

8
h5 − 20 h2

7 +
15
√

2

32
h7 +

√
2

2
h6 =

1

512

h2
4 + h2

5 −
√

2

32
h5 − 15 h2

6 − 15 h2
7 +

9
√

2

32
h7 = 0

4 h2
6 + h4h6 + h5h7 + 4 h2

7 −
√

2

32
h7 = 0
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Coiflet filters Coiflet filters C6 and C12

Coiflet-Filter C12 (6)

The solution turns out to be

h4 = − 1

1024

1430α3 + 5064
√

2α2 + 10441α + 2590
√

2

338α2 + 962
√

2α + 1369

h5 =
1

2048

1615
√

2α + 4081 + 65α2

26α + 37
√

2

h6 =
1

1024
α

h7 = − 1

2048

179
√

2α + 405 + 21α2

26α + 37
√

2

where α is a solution of the degree 4 polynomial equation

25Z 4 − 1082
√

2Z 3 − 32180Z 2 − 77370
√

2Z − 102375 = 0,

so that one expects 4 distinct solutions

Volker Strehl Orthogonal Filters and Reconstruction November 25, 2015 93 / 94



Coiflet filters Coiflet filters C6 and C12

Coiflet-Filter C12 (7)

Here are the solutions in floating-point approximation:

−0.00135879906 −0.02881077935 0.01638733604 −0.0216835830

−0.01461155251 0.00954232518 −0.04146493789 −0.04759942451

−0.0074103835 0.1131648994 −0.06737255304 0.163253958

0.2806116518 0.1765268828 0.3861100713 0.3765105895

0.7503363057 0.5425549768 0.8127236327 0.2709267760

0.5704650013 0.7452653006 0.4170051772 0.5167479708

−0.0716382822 0.1027738095 −0.07648859743 0.5458520919

−0.1553572228 −0.2967882834 −0.05943441354 −0.2397210372

0.05002351996 −0.02049790739 0.02368017155 −0.3277620898

0.02480433052 0.07883524141 0.005611433291 0.1360266602

−0.01284557976 −0.002078217989 −0.001823208878 0.07651962671

0.001194572696 −0.006274685605 −0.0007205493428 −0.03485797772


The third column of this matrix is what is usually taken as the Coiflet filter
of length 12
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