
Motivating Bi-Orthogonality (alias dual bases)

I A 3D-example
I The standard ON-basis of R3

E = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}

I Another basis of R3

B = {b1 = (1, 0, 1),b2 = (0,−1, 1),b3 = (1, 0, 2)}

I In matrix form

B =
[
〈bi | e j〉

]
1≤i,j≤3

=

 1 0 1
0 −1 1
1 0 2


I The inverse of B

B−1 =

 2 0 −1
−1 −1 1
−1 0 1





I The basis C = {c1, c2, c3} defined by the rows of

C =
[
〈c i | e j〉

]
1≤i ,j≤3 = (B−1)t =

 2 −1 −1
0 −1 0
−1 1 1


is C = {c1 = (2,−1,−1), c2 = (0,−1, 0), c3 = (−1, 1, 1)}

I B and C are bi-orthogonal (or dual bases) in the sense that

〈bi | c j〉 = δi ,j

I in particular

c1 ⊥ the plane spanned by b2 and b3

c2 ⊥ the plane spanned by b1 and b3

c3 ⊥ the plane spanned by b1 and b2



Figure: The standard ON-basis E , the basis B (red) and the basis C (blue)



Figure: The plane spanned by {b1,b2} (grey)



Figure: The plane spanned by {b2,b3}



Figure: The plane spanned by {b1,b3}



I Representing a vector in bases B and C

v = (−1, 1, 1) = (2, 1,−1).B

= 〈v | c1〉︸ ︷︷ ︸
=2

b1 + 〈v | c2〉︸ ︷︷ ︸
=1

b2 + 〈v | c3〉︸ ︷︷ ︸
−1

b3

= (2, 2, 3).C

= 〈v |b1〉︸ ︷︷ ︸
=2

c1 + 〈v |b2〉︸ ︷︷ ︸
=2

c2 + 〈v |b3〉︸ ︷︷ ︸
=3

c3



I Warning: Dual bases need not to be “nice”

I Example

B =

 1 −2 1
3 −1 −1
1 0 2

 B−1 =
1

13

 −2 4 3
−7 1 4

1 −2 5


I Example

B =


2 −5 5 2
5 5 2 4
1 −4 0 4
2 0 −5 −5



B−1 =
1

1513


140 160 25 204
−106 95 −127 −68

197 9 −235 −102
−141 55 245 −119





I V a finite-dimensional real or complex vector space with inner
product 〈 . | . 〉 and an ON basis E = (e1, . . . , en), i.e.,

〈 e i | e j 〉 = δi ,j (1 ≤ i , j ≤ n)

I Orthogonality: For any vector v ∈ V

v =
n∑

i=1

εi e i with εi = 〈 v | e i 〉

I Now let B = (b1, . . . ,bn) be an arbitrary basis of V , not
necessarily orthogonal. The any v ∈ V can be written as

v =
n∑

i=1

βi bi

But what are the coefficients βi in terms of 〈 . | . 〉 ?



I With E and B as before, let

bi =
n∑

j=1

bi ,j e j , where bi ,j = 〈bi | e j 〉

B =
[
bi ,j
]
1≤i ,j≤n

Then B is an invertible matrix, because B is a basis

I Now let C = (c1, . . . , cn) be another basis of V with
coefficient matrix C =

[
Ci ,j

]
1≤i ,j≤n and ci ,j = 〈 c i | e j 〉

I B and C are said to be a bi-orthogonal pair of bases
(or dual bases) if

〈bi | c j 〉 = δi ,j (1 ≤ i , j ≤ n)

I Q1 : Does such a dual basis always exist? Is it unique?

I Q2 : What is the benefit of this?



I Answer to Q2:

Assume that B and C are a bi-orthogonal pair of bases of V .
For v ∈ V write

v =
n∑

i=1

βi bi =
n∑

j=1

γj c j

Then

〈 v | c j 〉 =
n∑

i=1

βi 〈bi | c j 〉 = βj

and

〈 v |bi 〉 =
n∑

j=1

γj 〈 c j |bi 〉 = γi

Hence

v =
n∑

i=1

〈 v | c i 〉bi =
n∑

j=1

〈 v |bj 〉 c j



I Answer to Q1:

Let B and C be any bases of V , as above,
then for any 1 ≤ i , k ≤ n because of the orthonormality of E :

〈bi | ck 〉 = 〈
n∑

j=1

bi ,j e j |
n∑

`=1

ck,` e` 〉

=
n∑

j=1

n∑
`=1

bi ,j ck,` 〈 e j | e` 〉 =
n∑

j=1

bi ,j ck,j

In matrix terms
[
〈bi | ck 〉

]
1≤i ,k≤n = B · C †

Recall: C † is the conjugate-transpose of C , also called the
adjoint of C

Hence B and C are dual bases ↔ B · C † = In ↔ B−1 = C †

which guarantees existence and uniqueness


