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I Initial event:
A. Grossmann and J. Morlet,
Decompositions of Hardy functions into square integrable
wavelets of constant shape, SIAM J. Math. Analysis, 1984
(Analysis of seismic signals)

I ... but there were precursors . . . e.g.
A. P. Caldéron,
Intermediate Spaces and Interpolation, the Complex Method,
Studia Mathematica, 1964

I see:
S. Jaffard, Y. Meyer, R. Ryan,
Wavelets, Tools for Science and Technology, SIAM 2001,
in particular: Chap. 2: Wavelets from a Historical Perspective



I J. Canny,
A computational approach to edge detection, IEEE Trans
Patt. Recog. and Mach. Intell. 6, 961–1005, 1986.

I S. G. Mallat and S. Zhong,
Characterization of signals from multiscale edges, IEEE Trans
Patt. Recog. and Mach. Intell., 14, 710–732, 1992.



I When dealing with a discretized version of a function f (t)

. . . f (t0), f (t0 + h), f (t0 + 2h), . . .

(step size h for sampling) one may take the difference
quotient as a numerical approximation of the derivative

f ′(t0) =
d

dt
f (t0) ≈ f (t0 + h)− f (t0)

h

I From the numerical point of view this is a highly dangerous
method (in particular if it is used iteratively) if the step size h
is small

I As a rule: first apply a smoothing operator to the data before
taking differences

I See the notebook ramp-en.pdf for illustration



I See handout cwt-en.pdf for the details and more information

I See notebook CWT-15-en.pdf for illustrations of the
countinuous wavelet transform

I Relevant notebooks for illustration of edge detection
I ramp-en.pdf
I atrous-poly-en.pdf
I sobel-en.pdf
I circletest.pdf
I wvedges-en.pdf



Figure: mexican-hat wavelet as second derivative of a Gaussian



I Generally: wavelet transforms consist in both
I smoothing operations (approximation, low-pass filtering)
I differencing operations (detail, high-pass filtering)

I ψ(t) a “suitable” wavelet function, e.g.,

(1) ψ(t) is continuous and has vanishing zero-th moment

ψ̂(0) =

∫
R
ψ(t) dt = 0

(2) ψ(t) decays rapidly as t → ±∞

|ψ(t)| ≤ A e−B|t| (t ∈ R) for some constants A,B > 0

I normalization (for convenience) ‖ψ‖2 = 1

I Localization (mean and variance)

µ =

∫
R
t |ψ(t)|2dt σ2 =

∫
R

(t − µ)2 |ψ(t)|2dt



I continuous scaling (dilation and translation) of ψ(t)

ψs,a(t) =
1√
|s|
ψ(

t − a

s
) (s, a ∈ R)

(this notation differs from the one used in the DWT context)

I Localization

µs,a =

∫
t |ψs,a(t)|2 dt = ... = sµ+ a

σ2
s,a =

∫
(t − µs,a)2 |ψs,a(t)|2dt = ... = s2σ2

I Fourier transform

ψ̂s,a(λ) =
√
s e−2πiaλ ψ̂(sλ)



I Definition of the continuous wavelet transform (CWT)

f (t) 7−→ f ψ(s, a) = 〈f |ψs,a〉

=

∫
R
f (t)ψs,a(t) dt

I Note

‖f − ψs,a‖2 = ‖f ‖2 + ‖ψ‖2 − 2<
[
f ψ(s, a)

]
I Intuitively: f ψ(s, a) correlates the behavior of f (t) with that

of ψ(t) in the vicinity of a ∈ R (if µ = 0) in resolution
(scaling) s ∈ R

I The CWT transform data
{
f ψ(s, a)

}
s,a∈R are highly

redundant!



I Caldéron’s reconstruction formula

f (t) can be reconstructed from its CWT transform data{
f ψ(s, a)

}
s,a∈R under suitable conditions

f (t) =
1

Cψ

∫
s∈R

∫
a∈R

f ψ(s, a)ψs,a(t) da
ds

s2

I Here the number

Cψ =

∫
λ∈R

|ψ̂(λ)|2
|λ| dλ

must be finite and > 0

I This holds if conditions (1) and (2) for ψ(t) are satisfied



I The Haar wavelet function ψhaar (t) can be regarded as a
derivative

ψhaar (t) =
d

dt
∆(t) where ∆(t) =


t 0 ≤ t ≤ 1/2

1− t 1/2 ≤ t ≤ 1

0 otherwise

∆(t) is a smoothing function

I The mexican-hat wavelet function ψmex(t) is a derivative

ψmex(t) =
d

dt

(
t e−t

2
)

= −1

2

d2

dt2
e−t

2

but t e−t
2

is not really a smoothing function



I Take ψ(t) as the derivative of a smoothing function θ(t)

ψ(t) =
d

dt
θ(t)

and define the scaled (dilated) and reversed version of θ(t) as

←−
θs (t) =

1√
s
θ(− t

s
)

I Then one has (simple exercise in differentiating under the
integral)

f ψ(s, a) = −s d

da
(f ?
←−
θs )(a)

I Note: the convolution f ?
←−
θs is a

←−
θs -smoothed version of f

I Interpretation: Edges in the graph of f (t) (high absolute
values of the derivative) can be recognized by absolutely large
values of the wavelet coefficients f ψ(s, a) over many scales (s
values)



I Assume that for the wavelet function ψ(t) one has a scaling
function φ(t) (as in the MRA situation)

I Scaling and wavelet identities are

φ(t) =
√

2
∑
k∈Z

hk φ(2t − k)

ψ(t) =
√

2
∑
k∈Z

gk φ(2t − k)

I Consider dyadic scaling for φ(t) and ψ(t), i.e.,

φ2m,a(t) =
1

2m/2
φ(

t − a

2m
) ψ2m,a(t) =

1

2m/2
ψ(

t − a

2m
)

I Scaling and wavelet identities turn into

φ2m+1,a(t) =
∑
k∈Z

hk φ2m,a+k 2m(t)

ψ2m+1,a(t) =
∑
k∈Z

gk φ2m,a+k 2m(t)



I Approximation and detail coefficients of a function f (t), for
dyadic scaling and integer translation
(s, a) = (2m, n) (m, n ∈ Z)

am,n = 〈f |φ2m,n〉 dm,n = 〈f |ψ2m,n〉

I Recursion formulas for approximation and wavelet coefficients

am+1,n =
∑
k∈Z

hk am,n+k 2m (n ∈ Z)

dm+1,n =
∑
k∈Z

gk am,n+k 2m (n ∈ Z)

I Written as filtering operations

a(m+1) = (am+1,n)n∈Z =
←−−−−−
[(↑2)m h] ? a(m)

d (m+1) = (dm+1,n)n∈Z =
←−−−−−−
[(↑2)m g ] ? a(m)

I Here (↑2)m h is the filter constructed from h by using m-fold
upsampling with factor 2 (“spreading”)
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Figure: Scheme of the Haar transform
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Figure: à-trous scheme (one level) for the Haar transform
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Figure: à-trous scheme (two levels) for the Haar transform
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Figure: à-trous scheme (three levels) for the Haar transform
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Figure: à-trous scheme (three levels)

high-pass filter: g low-pass filter: h signal: a = (an)n∈Z
filtered signals: a(k) =

(
a

(k)
n

)
n∈Z (approximation),

d (k) =
(
d

(k)
n

)
n∈Z (detail)



Consider a function (an “image”) f (x , y) ∈ L2(R2).
∂x f , ∂y f : partial derivatives of f ,

∇f (x0, y0) = (∂x f (x0, y0), ∂y f (x0, y0)) gradient of f

I Canny’s edge definition

(x0, y0) ∈ R2 is an edge vertex of f (x , y) if the function

(x , y) 7−→ |∇f (x , y) | =

√
(∂x f (x , y))2 + (∂y f (x , y))2

has a local maximum in (x0, y0) when running through this
point in the direction (∇f )(x0, y0) of steepest ascent/descent,
formally:

| ∇f [(x0, y0) + ε · ∇f (x0, y0)]| ≤ |∇f (x0, y0) | for ε ≈ 0



I Discretization and approximation of the gradient
I Discretized function

A =
[
ap,q

]
1≤p≤m
1≤q≤n

where ap,q = f (ξp,q)

I Approximation of the gradient

Dx =
[
dx
p,q

]
1≤p≤m
1≤q≤n

where dx
p,q ≈ (∂x f )(ξp,q)

Dy =
[
dy
p,q

]
1≤p≤m
1≤q≤n

where dy
p,q ≈ (∂y f )(ξp,q)

computed using
I A 7−→ Dx : “derivation” in x-direction, smoothing in

y -direction
I A 7−→ Dy : “derivation” in y -direction, smoothing in

x-direction



I Example: The Sobel operators

Sh : A 7−→ Dx = A ?

−1 0 1
−2 0 2
−1 0 1


Sv : A 7−→ Dy = A ?

−1 −2 −1
0 0 0
1 2 1


I Written as Kronecker products:−1 0 1

−2 0 2
−1 0 1

 =

1
2
1

⊗ [−1 0 1
]

−1 −2 −1
0 0 0
1 2 1

 =

−1
0
1

⊗ [1 2 1
]



I From rectangular coordinates to polar coordinates

〈x , y〉 7−→ 〈r , φ〉 = [
√

x2 + y2, arctan(y/x) ]

where −π < arctan(y/x) ≤ π
I Discretizing the directions

�



I The 8 neighbors 〈p̃, q̃〉 of a vertex 〈p, q〉 with integer
coordinates are

〈p̃, q̃〉 =


〈p ± 1, q ± 1〉
〈p ± 1, 0〉
〈0, q ± 1〉

 = 〈p, q〉+ δ

where δ ∈ ∆ = {〈±1,±1〉, 〈±1, 0〉, 〈0,±1〉}

I They define 8 conic sectors rooted in 〈p, q〉 and of 45o

angular width,
symmetric w.r.t. to the respective straight lines joining
〈p, q〉 ←→ 〈p̃, q̃〉

I For an integer vertex 〈p, q〉 any direction [ 1, φ ] defines a
unique sector containing the straight line with direction [ 1, φ ]
rooted in 〈p, q〉, hence a neighbor 〈p̃, q̃〉 and the vector

δp,q(φ) = 〈p̃, q̃〉 − 〈p, q〉 = 〈p̃ − p, q̃ − q〉 ∈ ∆



I From the gradient matrices

Dx =
[
dx
p,q

]
Dy =

[
dy
p,q

]
one obtains

I the matrix of absolute length of the gradient vectors

R =
[
rp,q
]

=
[√

(dx
p,q)2 + (dy

p,q)2
]

I the matrix of discretized gradient directions

S =
[
δp,q(φ)

]
where φ = arctan(dy

p,q/d
x
p,q)



I Given f ,A,Dx ,Dy ,R, S one defines
I 〈p, q〉 is an edge-candidate if

rp,q = max{ rp,q, r〈p,q〉±δp,q(φ) }

I 〈p, q〉 is a level-λ edge vertex (for λ ∈ [0, 1]) if

rp,q = max{ rp,q, r〈p,q〉±δp,q(φ) } and rp,q ≥ λ ·max
p′,q′

rp′,q′

(or rp,q ≥ λ · averp′,q′ rp′,q′)

I Two-level method with 0 < λlow < λhigh ≤ 1:
I 〈p, q〉 is a strong edge vertex if it is a level-λhigh edge vertex
I 〈p, q〉 is a weak edge vertex if it is a level-λlow edge vertex,

but not a strong one
I Weak edge vertices are iteratively turned into strong edge

vertices
if they are neighbors of strong edge vertices



I For a 1D wavelet function ψ(x) let

Ψ(x , y) = ψ(x)ψ(y)

be the 2D separable wavelet function constructed from it

I The 2D CWT of a function f (x , y) is defined as

f Ψ(a, b, s) =
1

s

∫∫
x ,y∈R×R

f (x , y) Ψ(
x − a

s
,
y − b

s
) dx dy



I As in the 1D case, let ψ(x) = d
dx θ(x) be the derivative of a

“smoothing function” θ(x)

I The 2D separable smoothing function constructef from θ(x) is

Θ(x , y) = θ(x) θ(y)

I The 2D partial wavelet functions are

Ψx(x , y) = ψ(x) θ(y) = ∂x Θ(x , y)

Ψy (x , y) = θ(x)ψ(y) = ∂y Θ(x , y)



I The 2D partial continuous wavelet transform (CWT) is
defined as

f Ψx
(a, b, s) =

1

s

∫∫
f (x , y) Ψx(

x − a

s
,
y − b

s
) dx dy

f Ψy
(a, b, s) =

1

s

∫∫
f (x , y) Ψy (

x − a

s
,
y − b

s
) dx dy

I Defining a smoothed version of f using an s-scaling of Θ

f Θ(a, b, s) =

∫∫
x ,y∈R×R

f (x , y) Θ(
x − a

s
,
y − b

s
) dx dy

one has[
−f Ψx

(a, b, s)

−f Ψy
(a, b, s))

]
=

[
∂af

Θ(a, b, s)

∂bf
Θ(a, b, s)

]
= ∇f Θ(a, b, s)

I This shows how to to compute gradient values of f Θ using
the 2D CWT



I Assume that 1D scaling, wavelet functions are described by

φ(x) =
√

2
∑

k hk φ(2x − k) ψ(x) =
√

2
∑

k gk φ(2x − k)

I and that the smoothing function θ(x) also satisfies a scaling
identity

θ(x/2) =
√

2
∑

` r` θ(x − `/2)

I A scaling function Φx(x , y) for the wavelet function
Ψx(x , y) = ψ(x) θ(y) can be defined as

Φx(x , y) = φ(x) θ(y/2)

which then satisfies a 2D scaling identity

Φx(x , y) = 2
∑

k,` hk r` Φx(2x − k , 2y − `)

I The 2D wavelet identity for Ψx(x , y) is simply

Ψx(x , y) =
√

2
∑

k gk Φx(2x − k , 2y) = 2
∑

k,` gk ε` Φx(2x − k, 2y − `)

with ε` = 1√
2
δ`,0. Similarly for Φy (x , y) and Ψy (x , y)



I Example: The Haar wavelet function ψhaar (t) is the
derivative of the smoothing function θ(t) = ∆(t):

ψhaar (t) =
d

dt
∆(t) where ∆(t) =


t 0 ≤ t ≤ 1/2

1− t 1/2 ≤ t ≤ 1

0 otherwise

I The function ∆(t) satisfies

∆(x) + 2 ∆(x − 1/2) + ∆(x − 1) = 2∆(x/2)

I which can be written as a scaling equation

∆(x) =
1

2

(
∆(2x) + 2 ∆(2x − 1) + ∆(2x − 2)

)
I so that

r =
1

2
√

2
〈1, 2, 1〉

is a B-spline filter



I Approximation and detail coefficients are defined as usual

axm;k,` = 〈f |Φx
2m,k,`〉 =

∫∫
f (x , y)

1

2m
Φx(

x − k

2m
,
y − `

2m
) dx dy

dx
m;k,` = 〈f |Ψx

2m,k,`〉 =

∫∫
f (x , y)

1

2m
Ψx(

x − k

2m
,
y − `

2m
) dx dy

and analogously for aym;k,` and dy
m;k,`

I Recursion formulas for the approximation coefficients

axm+1;p,q =
∑

k,` hk r` a
x
m;p+k2m,q+`2m

aym+1;p,q =
∑

k,` rk h` a
y
m;p+k2m,q+`2m

I Formulas for the detail coefficients

dx
m+1;p,q =

∑
k,` gk ε` a

x
m;p+k2m,q+`2m = 1√

2

∑
k gk a

x
m;p+k2m,q

dy
m+1;p,q =

∑
k,` εk g` a

y
m;p+k2m,q+`2m = 1√

2

∑
k g` a

y
m;p,q+`2m



I Computational scheme (à trous algorithm)

Ax
m =

[
f Φx

(2m; p, q)
]
p,q

Ay
m =

[
f Φy

(2m; p, q)
]
p,q

Dx
m =

[
f Ψx

(2m; p, q)
]
p,q

Dy
m =

[
f Ψy

(2m; p, q)
]
p,q

where A0 = Ax
0 = Ay

0 = [f (p, q)]p,q

A0

Dx
1 Dy

1

Dy
2Dx

2

Dx
3 Dy

3Ay
3Ax

3

Ax
2 Ay

2

Ay
1Ax

1
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