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> Initial event:
A. GROSSMANN and J. MORLET,
Decompositions of Hardy functions into square integrable
wavelets of constant shape, SIAM J. Math. Analysis, 1984
(Analysis of seismic signals)

> ... but there were precursors .. .e.g.
A. P. CALDERON,
Intermediate Spaces and Interpolation, the Complex Method,
Studia Mathematica, 1964
> see:
S. JAFFARD, Y. MEYER, R. RYAN,
Wavelets, Tools for Science and Technology, SIAM 2001,
in particular: Chap. 2: Wavelets from a Historical Perspective



» J. CANNY,
A computational approach to edge detection, /EEE Trans
Patt. Recog. and Mach. Intell. 6, 961-1005, 1986.

» S. G. MALLAT and S. ZHONG,

Characterization of signals from multiscale edges, /EEE Trans
Patt. Recog. and Mach. Intell., 14, 710-732, 1992.



When dealing with a discretized version of a function f(t)
... f(to), f(to + h), f(to + 2h), e

(step size h for sampling) one may take the difference
quotient as a numerical approximation of the derivative

f'(to) = %f(to) ~ flto+ h/)7 — f(to)

From the numerical point of view this is a highly dangerous
method (in particular if it is used iteratively) if the step size h
is small

As a rule: first apply a smoothing operator to the data before
taking differences

See the notebook ramp-en.pdf for illustration



» See handout cwt-en.pdf for the details and more information

» See notebook CWT-15-en.pdf for illustrations of the
countinuous wavelet transform

> Relevant notebooks for illustration of edge detection

vV vy VYT VYyy

ramp-en.pdf
atrous-poly-en.pdf
sobel-en.pdf
circletest.pdf
wvedges-en.pdf



Figure: mexican-hat wavelet as second derivative of a Gaussian



» Generally: wavelet transforms consist in both

» smoothing operations (approximation, low-pass filtering)
» differencing operations (detail, high-pass filtering)

» 1(t) a “suitable” wavelet function, e.g.,
(1) #(t) is continuous and has vanishing zero-th moment

(0) = / (t) dt =

(2) w(t) decays rapidly as t — %00
l(t)] < Ae Bl (t € R) for some constants A, B > 0

» normalization (for convenience) ||¢||?> =

» Localization (mean and variance)

— [tlwoPd o= [ (e~ ) (o)
R R



» continuous scaling (dilation and translation) of v (t)

ws,a(t) - \/]i?’w(t ; 2

(this notation differs from the one used in the DWT context)

) (s,aeR)

» Localization
T / tlsa(t)?dt =...=su+a
7a= [t e [ealt) Pt = . = 202

» Fourier transform

1;;(/\) _ \/gef2ﬂia/\ 1//}\(5)\)



Definition of the ‘continuous wavelet transform ‘ (CWT)

f(t) — (s, a) = (| ¥s.a)

/f ) et d

2= |IFIP + )P - 2R [F9(s, )]

Note

Intuitively: ¥ (s, a) correlates the behavior of f(t) with that
of ¢(t) in the vicinity of a € R (if 4 = 0) in resolution
(scaling) s e R

The CWT transform data {f¥(s, a)}s,aelR are highly
redundant!



> ’CALDERON’S reconstruction formula

f(t) can be reconstructed from its CWT transform data
{f¥(s,a)}, g under suitable conditions

Cw/eR/aeR sawsa()da—

» Here the number

[N
C), = d\
v /AeR A

must be finite and > 0
» This holds if conditions (1) and (2) for 1(t) are satisfied



» The HAAR wavelet function 1p,,.(t) can be regarded as a
derivative

J t 0<t<1/2
Yhaar(t) = EA(t) where A(t)=q1—-t 1/2<t<1
0 otherwise

A(t) is a smoothing function

» The mexican-hat wavelet function 1 mex(t) is a derivative

d e 1d>
Ume(t) = 5 (o) = =5 T5e

but t et is not really a smoothing function



Take 1(t) as the derivative of a smoothing function 6(t)

u(t) = < 001)

and define the scaled (dilated) and reversed version of 6(t) as

t
S

1
05 (1) = =

Then one has (simple exercise in differentiating under the
integral)

)

fw(s, a)=—s %(f* &)(a)

Note: the convolution f*?s is a ?s—smoothed version of f

Interpretation: Edges in the graph of f(t) (high absolute
values of the derivative) can be recognized by absolutely large
values of the wavelet coefficients f¥(s, a) over many scales (s
values)
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Assume that for the wavelet function v(t) one has a scaling
function ¢(t) (as in the MRA situation)

Scaling and wavelet identities are

=V2)  hep(2t — k)

keZ

=V2) g2t - k)

kEZ
Consider dyadic scaling for ¢(t) and ¥ (t), i.e

1 t—a

Pam a(t) = W¢(2T) Poam a(t) = w( )

2m/2
Scaling and wavelet identities turn into

Pom+1 4(t) = Z hi dam otk 2om(t)

keZ

Yomi1 4(t) = Z 8k P2m otk om (1)

kEeZ
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Approximation and detail coefficients of a function f(t), for
dyadic scaling and integer translation
(s,a)=(2",n) (m,neZ)

dm,n = <f | ¢2’",n> dm,n = <f ‘ ¢2’",n>

Recursion formulas for approximation and wavelet coefficients

dm+1,n = Z hk am,n+k2m (n € Z)
keZ

m+1 n Z 8k @m,n+k2m (n € Z)
keZ

Written as filtering operations

al™ = (ami1.n),ep = [(12)™ h

d™Y = (dpi10),cp = [(12)" g] x @™

Here (12)™ h is the filter constructed from h by using m-fold
upsampling with factor 2 (“spreading”)

—_

*a
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Figure: Scheme of the Haar transform
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Figure: a-trous scheme (one level) for the Haar transform
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Figure: a-trous scheme (two levels) for the Haar transform
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Figure: a-trous scheme (three levels) for the Haar transform
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Figure: a-trous scheme (three levels)
high-pass filter: g low-pass filter: h signal: @ = (an) ez,

filtered signals: a(k) (agk)) qez (approximation),
d® = (df) _, (detail)



Consider a function (an “image”) f(x,y) € £L?(R?).
Oxf, O, f : partial derivatives of f,

Vf(x0,¥0) = (Oxf(x0, ¥0), Oy (X0, ¥0)) gradient of £

> ’CANNY'S edge definition ‘

(x0, o) € R? is an edge vertex of f(x,y) if the function

(5 y) — [VI(x,y) | = \/(axf(X7Y))2 + (0 F(x,¥))?

has a local maximum in (xp, yo) when running through this
point in the direction (Vf)(xo, yo) of steepest ascent/descent,
formally:

| VF{(x0,¥0) + - VF(x0,%)]| <|Vf(x0,y0)| for e=0



» Discretization and approximation of the gradient

» Discretized function

A= [ap,q] 1<p<m where a, ¢ = f(£p.q)
1<q<n

» Approximation of the gradient

D* = [dX where  d5 =~ (0xf)(&p.q)

DY = [dY,] 1<p<n where dY .~ (0yf)({p,q)

computed using
» Ar— D*: “derivation” in x-direction, smoothing in

y-direction
» A+—— D”: “derivation” in y-direction, smoothing in

x-direction



» Example: The SOBEL operators

-10 1
Sh: A DX =Ax|-2 0 2
-1 01
-1 -2 -1
S,:A— D =A%x|0 0 0
1 2 1

» Written as Kronecker products:

-1 0 1] [1
[2 0 2| = 2]@[1 0 1]
-1 0 1] |1
-1 -2 -1] [-1
[0 0 0= 0]@[1 2 1]
1 2 1 1




> From rectangular coordinates to polar coordinates

(x,y) == (r,¢) = [/x? + y?,arctan(y/x)]

where —7 < arctan(y/x) <=
> Discretizing the directions




» The 8 neighbors (p, §) of a vertex (p, q) with integer
coordinates are

(p£1l,q+1)

(B, G) = (p£1,0) =(p,q)+90
0,9+ 1)

where § € A = {(£1,+£1),(£1,0),(0,£1)}

» They define 8 conic sectors rooted in (p, g) and of 45°
angular width,
symmetric w.r.t. to the respective straight lines joining
(p,q) <— (P, )

» For an integer vertex (p, q) any direction [1, ¢ ] defines a
unique sector containing the straight line with direction [1, ¢]
rooted in (p, g), hence a neighbor (p, §) and the vector

6P7q(¢) = <ﬁ,C7> - <P, q> = <ﬁ_p7€]_q> €A



» From the gradient matrices
D*=[dy,] D’ =|[d3q]

one obtains
» the matrix of absolute length of the gradient vectors

R=[rq = [ (djq)? + (dg.q)?
» the matrix of discretized gradient directions

S = [(5p7q(¢)] where ¢ = arctan(d ,/d; )



» Given f, A, D*, DY, R, S one defines
» (p,q) is an edge-candidate if

Ip,g = Max{ rp q; Mp,q)£6p,4(4) }

» (p,q) is a level-\ edge vertex (for A € [0,1]) if

rp,g = Max{ rp g, r<qu>:|:6p,q(¢)} and rpq > A- rg)a;’( o' .a’
(or rpg = A-avery g 1y g)
» Two-level method with 0 < Ajon < Apjgn < 1:
» (p,q) is a strong edge vertex if it is a level-Apjgn edge vertex
» (p,q) is a weak edge vertex if it is a level-\j,, edge vertex,
but not a strong one
» Weak edge vertices are iteratively turned into strong edge
vertices
if they are neighbors of strong edge vertices



» For a 1D wavelet function ¢(x) let

V(x,y) = ¥(x)¥(y)

be the 2D separable wavelet function constructed from it
» The 2D CWT of a function f(x,y) is defined as

1 x—a y—»>b
Pabs) = [[ A dedy
x,y€ERX



> As in the 1D case, let 1(x) = £ 0(x) be the derivative of a
“smoothing function” 6(x)

» The 2D separable smoothing function constructef from 6(x) is
O(x,y) = 0(x) 0(y)
» The 2D partial wavelet functions are
Vi (x,y) = ¢9(x) 0(y) = 95 O(xy)
W (x,y) = 0(x)1(y) = 9y O(x,y)



The 2D partial continuous wavelet transform (CWT) is
defined as

x —b
f¥(a, b, s) = / fxy\UX ——)dxdy

¥ (a, b,s) = // xy\lfy

Defining a smoothed version of f using an s-scaling of ©

©(a, b, s) // f(x,y) @(X_ay_b)dxdy
x,y€ERxR

one has

—f¥(a, b, s) B 0,f%(a, b, s)
[—f""y(a, b,s))] B labf@(a, b, s)

—-b
——)dxdy

=Vr®(a,b,s)

This shows how to to compute gradient values of f© using
the 2D CWT



Assume that 1D scaling, wavelet functions are described by

() =V2Y b d(2x— k) P(x) = V2, gk p(2x — k)

and that the smoothing function 6(x) also satisfies a scaling
identity

0(x/2) = V23, r0(x —£/2)

A scaling function ®*(x, y) for the wavelet function
UX(x,y) = 1(x)0(y) can be defined as

O*(x,y) = &(x) 0(y/2)
which then satisfies a 2D scaling identity
¥ (x,y) = 22,(74 hy rg @*(2x — k,2y — {)
The 2D wavelet identity for W*(x, y) is simply
VX(x,y) = V237, 8k D*(2x — k, 2y) = 237, , gk €0 P*(2x — k, 2y — )

with ey = % de0.  Similarly for ®¥(x,y) and WY (x,y)



Example: The HAAR wavelet function tpa,.(t) is the
derivative of the smoothing function 6(t) = A(t):

J t 0<t<1/2
Yhaar(t) = EA(t) where A(t)=¢1—-¢t 1/2<t<1
0 otherwise

The function A(t) satisfies
A(x)+2A(x —1/2) + A(x — 1) = 2A(x/2)

which can be written as a scaling equation

A(x) = % (A(2x) +2A02x — 1) + A(2x - 2))
so that )
r=55 121

is a B-spline filter



» Approximation and detail coefficients are defined as usual

xX—ky-t
Akt = (F | Pom e 0) = // Xy2m¢( o ,2—m)dxdy

X X X _k y—g
dm;k,Z = <f\‘“2m,k,e> = // f(&)’)ﬁ‘“ ( om 727m)dXdy

y y
and analogously for a;., , and d7 ., ,

» Recursion formulas for the approximation coefficients
X — X
Anttip,g = 2kt M 130 o4 kom giom
y _ y
Imtlpg — Dk i he m;p+k2m,g£2m
» Formulas for the detail coefficients

X _ X _ 1 X
m+1p,g = Zk,f 8k €0 . ptk2m g+02m = /3 2k Bk Im;p+k2m,q

y y _ 1 Y
d m+1;p,q Zk,é €k 8¢ am;p+k2m,q+€2’" - V2 Zk 8¢ am;p,q+€2'"



» Computational scheme (& trous algorithm)
A% = [f¢x(2’"; P, q)}

Dy, = [f"’x(2’"; 3 q)}

AL = [f¢y(2'"; P, q)}

Dy, = [f“’y(2’"; P, q)}

p.q

p.q

where Ay = A¥ = A = [f(p, q)

Th@?r/ treth/ €®Tg
A3 A 9Te Dy D3

2 2
Fhm%/ rat’h N
A% Ay VeoeT—py Ty

¥ ¥

p.q

p.q
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