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Haar scaling function and Haar wavelet function

Definitions (1)

Dyadic intervals (j , k ∈ Z)

Ij ,k = [ k/2j , (k + 1)/2j )

= Ij+1,2k ] Ij+1,2k+1

Haar functions

Haar scaling function φ(t) = 1[0,1)(t)

Haar wavelet function ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t)

= φ(2t)− φ(2t + 1)

Dilation and translation of Haar functions (j , k ∈ Z):

φj ,k(t) = 2j/2 1Ij,k (t) = 2j/2 φ(2j t − k) = (D2jTkφ)(t)

ψj ,k(t) = 2j/2 ψ(2j t − k) = (D2jTkψ)(t)
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Haar scaling function and Haar wavelet function

Examples:
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left: Haar scaling functions φ1,−3, φ0,0, φ−1,1

right: Haar wavelet functions ψ1,−3, ψ0,0, ψ−1,1
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Haar scaling function and Haar wavelet function

Definitions (2)

The following families of functions are of interest:

Φ = {φj ,k}j ,k∈Z : Haar scaling functions (all levels)

Φj = {φj ,k}k∈Z : Haar scaling functions on level j

Ψj = {ψj ,k}k∈Z : Haar wavelet functions on level j

HJ = ΦJ ∪
⋃
j≥J

Ψj : Haar functions on all levels ≥ J

Ψ = H = {ψj ,k}j ,k∈Z : Haar wavelet functions (all levels)
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Haar scaling function and Haar wavelet function

Localization (1)

The Fourier transform of φ(t) is

φ̂(s) =
sin(πs)

πs
· e−iπs

The function |φ̂(s)|
has its maximum at s = 0
its first positive root at s = ±1
decreases as 1/s

The Fourier transform of ψ(t) is

ψ̂(s) =
i(1− cos(πs))

πs
· e−iπs =

2i

πs
sin2(πs/2) · e−iπs

The function |ψ̂(s)|
has its first maximum at s0 ≈ 0.7420192 . . .
its first positive root at s = 2
decreases as 1/s
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Haar scaling function and Haar wavelet function

Localization (2)
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Figure: Real and imaginary parts of φ̂(s) and ψ̂(s)
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Haar scaling function and Haar wavelet function

Localization (3)

One may state:

φ and ψ are well localized in the time/space domain at s = 0
φ and ψ are quite well localized in the frequency domain
(but not too well, because φ̂ and ψ̂ have infinite variance)

In sharp contrast to Fourier analysis one has reasonably good
localization both in the time/space domain and in the frequency
domain
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Haar scaling function and Haar wavelet function

Normalization

Normalization of the scaling functions∫
R
φj ,k = 2−j/2 ‖φj ,k‖2

2 =

∫
R
|φj ,k |2 = 1

Normalization of the wavelet functions∫
R
ψj ,k = 0 ‖ψj ,k‖2

2 =

∫
R
|ψj ,k |2 = 1
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Haar scaling function and Haar wavelet function

Orthogonality

For all i , j , k , ` ∈ Z:

〈φj ,k |φj ,` 〉 =

∫
R
φj ,k φj ,` = δk,`

〈ψi ,k |ψj ,`〉 =

∫
R
ψi ,k ψj ,` = δi ,jδk,`

〈φi ,k |ψj ,` 〉 =

∫
R
φi ,k ψj ,` = 0 if j ≥ i

The following families are orthogonal families of functions in L2(R):

1 The Haar scaling familiy Φj on a fixed level j (j ∈ Z)

2 The Haar wavelet family Ψ = H
3 The Haar family HJ for fixed J ∈ Z.

Warning: scaling functions φj ,k and φ`,m belonging to different
resolutions, i.e., j 6= `, are not orthogonal in general.
Φ =

⋃
j Φj is not an orthogonal family!
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Haar scaling function and Haar wavelet function

Scaling and wavelets (1)

Fundamental relation between Haar scaling functions and Haar
wavelet functions:

φ(t) = φ(2t) + φ(2t − 1) =
1√
2

(φ1,0(t) + φ1,1(t)) scaling eqn

ψ(t) = φ(2t)− φ(2t − 1) =
1√
2

(φ1,0(t)− φ1,1(t)) wavelet eqn

Matrix version: [
φ0,0(t)
ψ0,0(t)

]
=

1√
2

[
1 1
1 −1

]
·
[
φ1,0(t)
φ1,1(t)

]
The transformation matrix (Hadamard-matrix)

H =
1√
2

[
1 1
1 −1

]
This matrix is orthogonal, i.e., H−1 = Ht(= H)
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Haar scaling function and Haar wavelet function

Scaling and wavelets (2)

Consequently [
φ1,0(t)
φ1,1(t)

]
= H ·

[
φ0,0(t)
ψ0,0(t)

]
By dilation and translation one obtains for all j , k ∈ Z:[

φj ,k(t)
ψj ,k(t)

]
= H ·

[
φj+1,2k(t)
φj+1,2k+1(t)

]
[
φj+1,2k(t)
φj+1,2k+1(t)

]
= H ·

[
φj ,k(t)
ψj ,k(t)

]
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Haar scaling function and Haar wavelet function

Vector spaces (1)

Approximation spaces (j ∈ Z)

Vj = span Φj = {dyadic L2-step functions with step width 2−j}

Detail spaces (j ∈ Z)

Wj = span Ψj = {balanced dyadic L2-step fns. with step width 2−(j+1)}

For j ∈ Z both

Φj+1 = {φj+1,k}k∈Z and Φj ∪Ψj = {φj ,k , ψj ,k}k∈Z

are orthonormal bases of Vj+1

H is (essentially) the matrix of a basis change between Φj+1 and
Φj ∪Ψj
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Haar scaling function and Haar wavelet function

Vector spaces (2)

For all j ∈ N one has

Vj ⊂ Vj+1, Wj ⊂ Vj+1

and even
Vj+1 = Vj ⊕Wj

Consequently

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R)

For all j ≥ k one has

Vj+1 = Vk ⊕Wk ⊕Wk+1 ⊕ · · · ⊕Wj−1 ⊕Wj

The vector space Vj+1 has as a basis the family Φj+1 and also, for
each k ≤ j , the family

Φk ∪Ψk ∪Ψk+1 ∪ · · · ∪Ψj−1 ∪Ψj
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Haar scaling function and Haar wavelet function

Vector spaces (3)

The relation Vj+1 = Vj ⊕Wj says that the vector space has two
bases:

the basis Φj+1 = {φj+1,k}k∈Z
and the basis Φj ∪Ψj = {φj,k}k∈Z ∪ {ψj,k}k∈Z.

For each f in Vj+1 there exist g ∈ Vj and h ∈ Wj such that

f = g + h

g and h are orthogonal and they are uniquely determined

The mapping

f 7→ (g , h) is called analysis mapping, as it decomposes f
in an “approximating” (“low-frequency”) part g
and a “detailing” (“high-frequency”) part h
(g , h) 7→ f is called synthesis mapping, as it reconstructs f from its
low- and high-frequency parts
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Haar scaling function and Haar wavelet function
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Figure: Two bases of V3 (restricted to [0, 1))
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Haar scaling function and Haar wavelet function

Scaling and wavelet coefficients (1)

Inner product in L2(R)

〈 f | g 〉 =

∫
R
f (t) g(t) dt

For f ∈ L2(R) and j , k ∈ Z
the Haar scaling coefficients (or approximation coeffs) of f are the

aj,k = 〈 f |φj,k 〉 = 2j/2

∫
Ij,k

f (t) dt

the Haar wavelet coefficients (or detail coeffs) of f are the

dj,k = 〈 f |ψj,k 〉 = 2j/2

(∫
Ij+1,2k

f (t) dt −
∫
Ij+1,2k+1

f (t) dt

)
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Haar scaling function and Haar wavelet function

Scaling and wavelet coefficients (2)

The coefficients aj ,k = 〈 f |φj ,k 〉 and dj ,k = 〈 f |ψj ,k 〉 only depend on
the behavior of f on the dyadic intervall Ij ,k !

aj ,k = 〈 f |φj ,k〉 means “averaging” or “smoothing” and is called
approximation coefficient of f

dj ,k = 〈 f |ψj ,k〉 records the variation of f between the left and the
right subintervals of Ij ,k and is called detail coefficient of f , as it
emphasizes changes (fluctuations)
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Haar scaling function and Haar wavelet function

Scaling- and wavelet coefficients (3)

From the basic relation Vj+1 = Vj ⊕Wj one has immediately a
recursion for the scaling and for the wavelet coefficients:

Analysis: For all j , k ∈ Z one has[
aj ,k
dj ,k

]
= H ·

[
aj+1,2k

aj+1,2k+1

]
Synthesis: For all j , k ∈ Z one has[

aj+1,2k

aj+1,2k+1

]
= H ·

[
aj ,k
dj ,k

]
Equivalently:

aj+1,2k · φj+1,2k + aj+1,2k+1 · φj+1,2k+1 = aj ,k · φj ,k + dj ,k · ψj ,k

and ∑
k

aj+1,kφj+1,k =
∑
`

aj ,`φj ,` +
∑
m

dj ,mψj ,m
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Haar scaling function and Haar wavelet function

Projection operators

The last identity says that for any f ∈ L(R)

Pj+1f = Pj f + Qj f ,

where Pj and Qj are the orthogonal projections of functions
f ∈ L2(R) onto the subspaces Vj and Wj :

Pj : L2(R)→ Vj : f 7→
∑
k∈Z
〈 f |φj ,k 〉φj ,k

Qj : L2(R)→Wj : f 7→
∑
k∈Z
〈 f |ψj ,k 〉ψj ,k

These projections provide the optimal approximations w.r.t. the
L2-norm of f within the spaces Vj and Wj

These linear projection operators satisfy

Pj+1 = Pj + Qj (j ∈ N)
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Haar families on [0, 1]

Haar families on [0, 1] (1)

For J ≥ 0 the family

HJ = {φJ,k}0≤k<2j ∪ {ψj ,k}j≥J,0≤k<2J

is the family of Haar functions of level J on the interval [0, 1]

In this case the vector spaces Vj and Wj have finite dimension:

dimVj = dimWj = 2j (j ≥ 0)

Similarly for arbitrary finite intervals of R
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Haar families on [0, 1]

Haar families on [0, 1] (2)

For each J ≥ 0 the family HJ is a complete ONS (Hilbert basis) for
L2[0, 1]

Idea of proof:

The continuos functions are dense in L2[0, 1]

Every continuous function on a finite interval can be approxiamted
arbirarily well w.r.t. the L2-norm by dyadic step-functions

Every dyadic step function with step width 2−j belongs to Vj and can
be represented in each of the bases HJ (J ≥ 0)
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Haar families on R

Haar families on R (1)

Now: HJ with J ∈ Z denotes the Haar family for R
Recall:
Vj and Wj are L2-closures of the vector spaces spanned by Haar
functions Φj and Ψj within L2(R):

Vj = span {φj ,k}k∈Z , Wj = span {ψj ,k}k∈Z

Infinite sums are legitimate, but they must converge in the L2 sense

Approximation and detail as projection operators:

Pj : L2(R)→ Vj : f 7→
∑
k∈Z
〈 f |φj ,k 〉φj ,k ,

Qj : L2(R)→Wj : f 7→
∑
k∈Z
〈 f |ψj ,k 〉ψj ,k
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Haar families on R

Haar families on R (2)

Operators Pj and Qj are linear transformations

Operators Pj and Qj are projections, i.e., the satisfy
P2
j = Pj ,Q

2
j = Qj

For k ≥ j one has Pk |Vj = id

For k 6= j one has Qk |Wj
= 0

||Pj f ||2 ≤ ||f ||2 und ||Qj f ||2 ≤ ||f ||2
Qj = Pj+1 − Pj

For f ∈ C0
c (R) (i.e., continuous with compact support) one has

convergence (w.r.t. L2) Pj f →∞ f and Pj f →−∞ 0

For f ∈ L2(R) operators Pj f and Qj f are defined by approximating
arbitrary functions by continuous functions with compact support
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Haar families on R

Haar families on R (3)

Scheme of multiresolution analysis (MRA)
Nesting

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

Completeness

lim
j→∞

Vj =
⋃
j∈Z
Vj = L2(R)

Separation ⋂
j∈Z
Vj = {0}

Scaling
f ∈ V0 ⇔ D2j f ∈ Vj (f ∈ L2(R), j ∈ Z)

Translation and orthogonality

span{Tkφ}k∈Z = span{φ(t − k)}k∈Z = V0
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Haar families on R

Haar families on R (4)

Theorem:
For each J ∈ Z the family HJ is a complete ONS (i.e., a Hilbert

basis) for full signal space L2(R)

Idea of proof
– continuous functions with compact support are dense in L2(R). It

suffices therefore to refer to the situation of finite intervals
– properties of the projections Pj ,Qj etc. carry over from finite to infinite

intervals in a similar fashion

Theorem:
The Haar family of all balanced dyadic step functions

H = Ψ = {ψj ,k}j ,k∈Z

is a complete ONS (i.e., a Hilbert basis) for the full signal space
L2(R)
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The Discrete Haar Transform (DHT)

Notation (1)

A⊗ B : Tensor product (“Kronecker product”) of matrices

If A = [ai ,j ] 1≤i≤m
1≤j≤n

and B = [bk,`] 1≤k≤p
1≤`≤q

then the (m · p)× (n · q) matrix

A⊗ B is defined by

A⊗ B =


a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
...

. . .
...

am,1B am,2B . . . am,nB


Example

[
a1,1 a1,2

a2,1 a2,2

]
⊗
[
b1,1 b1,2

b2,1 b2,2

]
=


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2

a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2

a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2


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The Discrete Haar Transform (DHT)

Notation(2)

In is the (n × n) unit matrix
0n is the (n × n) zero matrix

A† : adjoint matrix of A (transpose and complex-conjugate)

the Hadamard matrix

H =
1√
2

[
1 1
1 −1

]
Example

H ⊗ H =
1

2

[
1 1
1 −1

]
⊗
[

1 1
1 −1

]
=

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



WTBV-WS17/18 The Haar Wavelet Transform November 13, 2017 28 / 77



The Discrete Haar Transform (DHT)

Haar approximation and detail matrices

For n ≥ 1 define

An = In ⊗
1√
2

[
1
1

]
Dn = In ⊗

1√
2

[
1
−1

]
These are matrices of format (2n × n)

An =
1√
2



1
1

1
1

. . .

1
1


Dn =

1√
2



1
−1

1
−1

. . .

1
−1


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The Discrete Haar Transform (DHT)

Properties of Haar matrices

Orthogonality

A†n · An = In An · A†n =
1

2
In ⊗

[
1 1
1 1

]
D†n · Dn = In Dn · D†n =

1

2
In ⊗

[
1 −1
−1 1

]
A†n · Dn = 0n An · D†n =

1

2
In ⊗

[
1 −1
1 −1

]
D†n · An = 0n Dn · A†n =

1

2
In ⊗

[
1 1
−1 −1

]
[
An Dn

]
is an orthogonal matrix, i.e.,

[
An Dn

] [A†n
D†n

]
= I2n =

[
A†n
D†n

] [
An Dn

]
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The Discrete Haar Transform (DHT)

[
An Dn

]
·
[
An Dn

]†
=
[
An Dn

] [A†n
D†n

]
= An · A†n + Dn · D†n

=
1

2
In ⊗

([
1 1
1 1

]
+

[
1 −1
−1 1

])
=

1

2
In ⊗

[
2 0
0 2

]
= I2n

[
An Dn

]† · [An Dn

]
=

[
A†n

D†n

] [
An Dn

]
=

[
A†n · An A†n · Dn

D†n · An D†n · Dn

]

=

[
In 0n
0n In

]
= I2n
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The Discrete Haar Transform (DHT)

Haar transform (1)

The matrix
[
An Dn

]
is the matrix of a one-level discrete Haar

transform of signals (vectors) of length 2n

For a2n a (row) vector of length 2n let

a2n 7→ a2n ·
[
An Dn

]
=
[
a′n d′n

]
This is a linear transformation of the vector space C2n. One has

a′n = a2n · An, d′n = a2n · Dn

Since this is an orthogonal transformation, one can simply revert this
relation:

a2n =
[
a′n d′n

]
·
[
An Dn

]−1
=
[
a′n d′n

]
·

[
A†n

D†n

]
= a′n · A†n + d′n · D†n
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The Discrete Haar Transform (DHT)

H HH H H

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

a0
0 a0

1 a0
2 a0

3 a0
4 d04d03d02d01d00

Figure: One-level Haar transform (analysis) of a vector of length 10
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Figure: One-level Haar transform (synthesis) of a vector of length 10
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The Discrete Haar Transform (DHT)

Inductive definition of multilevel Haar transform

For k = 1 one has

DHT1 : C2n → C2n : a2n 7→ a2n

[
An Dn

]
=
[
a′n d′n

]
Assume that DHTk : C2kn → C2kn has been defined, then
DHTk+1 : C2k+1n → C2k+1n is defined by

a2k+1n 7→
[
DHTk(a′

2kn
) d′

2kn

]
where DHT1(a2k+1n) =

[
a′

2kn
d′

2kn

]
By induction it follows that the DHTk are orthogonal transformations

The inverse transformations are obtained by inverting the one-level
transformations as indicated above
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The Discrete Haar Transform (DHT)

Multilevel Haar transform

One may write in a suggestive manner

DHTk(a2kn) =
[
a

(k)
n d

(k)
n d

(k−1)
2n d

(k−2)
4n . . . d

′′

2k−2n
d
′

2k−1n

]
,

This can be read in the light of the basis decomposition

VJ+k = VJ ⊕WJ ⊕WJ+1 ⊕WJ+2 ⊕ · · · ⊕WJ+k−1

as follows: if the entries of a2kn are the coefficients of a function f
w.r.t. the basis ΦJ+k = {φJ+k,m}, then the entries of the vector
DHTk(a2kn) are the coefficients of f w.r.t. the bases

– ΦJ = {φJ,m} in VJ a
(k)
J+k,m = 〈f |φJ+k,m〉,

– ΨJ = {ψJ,m} in WJ d
(k)
J+k,m = 〈f |ψJ,J+k〉,

– ΨJ+1 = {ψJ+1,m} in WJ+1 d
(k−1)
J+k−1,m = 〈f |φJ+k−1,m〉,

– ΨJ+2 = {ψJ+2,m} in WJ+2 a
(k−2)
J+k−2,m = 〈f |φJ+k−2,m〉,

– . . . . . .
– ΨJ+k−1 = {ψJ+k−1,m} in WJ+k−1 d ′J+1,m = 〈f |φJ+1,m〉.
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The Discrete Haar Transform (DHT)

VJ+3 = span�J+3

VJ+2 = span�J+2

VJ+1 = span�J+1

VJ = span�J WJ = span J

WJ+1 = span J+1

WJ+2 = span J+2

Figure: Scheme of a three-level Haar transform (analysis)
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The Discrete Haar Transform (DHT)

a24 = (a0, a1, . . . , a23)

a0
12 = (a0

0, a
0
1, . . . , a

0
11)

a00
6 = (a00

0 , a00
1 , . . . , a00

5)

a000
3 = (a000

0 , a000
1 , a000

2 ) d000
3 = (d0000 , d0001 , d0002 )

d00
6 = (d000 , d001 , . . . , d005)

d0
12 = (d00, d

0
1, . . . , d

0
11)

[A12 D12]

[A6 D6]

[A3 D3]

a24 = (a0, a1, . . . , a23)

(a000
3 ,d000

3 ,d00
6 ,d0

12) = (a000
0 , . . . , a000

2 , d0000 , . . . , d0002 , d000 , . . . , d00
5 , d00, . . . , d

0
7)

Figure: Three-level Haar transform (analysis) of a vector of length 24
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The Discrete Haar Transform (DHT)

a24 = (a0, a1, . . . , a23)

a0
12 = (a0

0, a
0
1, . . . , a

0
11)

a00
6 = (a00

0 , a00
1 , . . . , a00

5)

a000
3 = (a000

0 , a000
1 , a000

2 ) d000
3 = (d0000 , d0001 , d0002 )

d00
6 = (d000 , d001 , . . . , d005)

d0
12 = (d00, d

0
1, . . . , d

0
11)

[A12 D12]
†

[A6 D6]
†

[A3 D3]
†

a24 = (a0, a1, . . . , a23)

(a000
3 ,d000

3 ,d00
6 ,d0

12) = (a000
0 , . . . , a000

2 , d0000 , . . . , d0002 , d000 , . . . , d00
5 , d00, . . . , d

0
7)

Figure: Three-level Haar transform (synthesis) of a vector of length 24
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The Discrete Haar Transform (DHT)

Complexity of the Haar transform

In practice: the multiplication of a vector of length 2n with the matrix
[An Dn] should NEVER be implemented as a vector×matrix
operation, because these matrices a very sparse.
One needs only const × 2n elementary operations

Computation of DHTk on a vector of length 2kn needs then only

const ·
(

2k + 2k−1 + · · ·+ 21
)
n = O(2kn)

elementary operations, which is linear (!) in the input size

The same argument holds for the complexity of the inverse transform
DHT−1

k
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The Haar filter bank

Haar transform as filtering operation

Haar wavelet analysis and Haar wavelet synthesis can be
understood as filtering operations

The A-matrices act as low-pass filters

the D-matrices act as high-pass filters

To make this precise, it is convenient to consider bi-infinite sequences
of (complex) values (“signals”) as inputs

a = (a[n])n∈Z = (. . . a[−2], a[−1], a[0], a[1], a[2], . . .)
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The Haar filter bank

Low-pass filter

approximation (low-pass) matrix
A = [ai ,j ]i ,j∈Z is a matrix of infinite size with

ai ,j =

{
1√
2

if i = j or i = j + 1

0 otherwise

visualized by

A =
1√
2



. . .

. . . 1
1 1

1 1
1 1

. . .
. . .


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The Haar filter bank

High-pass filter

Detail (high pass) matrix
D = [di ,j ]i ,j∈Z is an infinite matrix with

di ,j =


1√
2

if i = j

− 1√
2

if i = j + 1

0 otherwise

visualized by

D =
1√
2



. . .

. . . 1
−1 1

−1 1
−1 1

. . .
. . .


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The Haar filter bank

Adjoint low-pass filter

Adjoint approximation matrix A† =
[
a†i ,j

]
i ,j∈Z

with

a†i ,j =

{
1√
2

if i = j or i = j − 1

0 otherwise

visualized by

A† =
1√
2



. . .
. . .

1 1
1 1

1 1

1
. . .
. . .


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The Haar filter bank

Adjoint high-pass filter

Adjoint detail matrix D† =
[
d†i ,j

]
i ,j∈Z

d†i ,j =


1√
2

if i = j

− 1√
2

if i = j − 1

0 otherwise

visualized by

D† =
1√
2



. . .
. . .

1 −1
1 −1

1 −1

1
. . .
. . .


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The Haar filter bank

Filtering operations as convolution (1)

Acting with these matrices from the right (!) on a signal vector
a = (. . . a[−1], a[0], a[1], a[2] . . .) = (a[n])n∈Z gives:

a · A =

(
a[n] + a[n + 1]√

2

)
n∈Z

a · D =

(
a[n]− a[n + 1]√

2

)
n∈Z

a · A† =

(
a[n] + a[n − 1]√

2

)
n∈Z

a · D† =

(
a[n]− a[n − 1]√

2

)
n∈Z
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The Haar filter bank

Filtering operations as convolution (2)

Defining Haar filters as

hφ[n] =

{
1√
2

if n = 0, 1

0 otherwise

hψ[n] =


1√
2

if n = 0

− 1√
2

if n = 1

0 otherwise

the matrix multiplications turn out to be convolution operations:

a 7→ a · A = a ? (hφ[−n])n∈Z convolution with (hφ[−n])n∈Z

a 7→ a · D = a ? (hψ[−n])n∈Z convolution with (hψ[−n])n∈Z

a 7→ a · A† = a ? (hφ[n])n∈Z convolution with (hφ[n])n∈Z

a 7→ a · D† = a ? (hψ[n])n∈Z convolution with (hψ[n])n∈Z
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The Haar filter bank

Downsampling and upsampling

downsampling ↓2 and upsampling ↑2

a ↓2 = (a[2n])n∈Z = (. . . a[−2], a[0], a[2], a[4] . . .)

a ↑2 = (a[n/2] 1even(n))n∈Z = (. . . a[−1], 0, a[0], 0, a[1], 0, a[2], 0 . . .)

Written in matrix form:

↓2 =



. . .

. . . 0
1
0 0

1
0 0

1

0
. . .
. . .


, ↑2 =



. . .
. . .

0 1 0
0 1 0

0 1 0
. . .

. . .



The matrix for upsampling ↑2 is the adjoint (transpose) of the downsampling
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The Haar filter bank

Haar wavelet transform as a filtering operation

In perfect analogy to the Haar wavelet transform one has the transforms
for analysis

low-pass filtering followed by downsampling:

A◦ ↓2 : a 7→ (aA) ↓2=

(
a[2n] + a[2n + 1]√

2

)
n∈Z

= a′

high-pass filtering followed by downsampling:

D ◦ ↓2 : a 7→ (aD) ↓2=

(
a[2n]− a[2n + 1]√

2

)
n∈Z

= d′
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The Haar filter bank

Figure: Haar analysis (1 level)
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The Haar filter bank

Wavelet reconstruction as a filtering operation (1)

The synthesis transformation for reconstruction of a uses upsampling
and the adjoint matrices:

a′ ↑2 A† + d′ ↑2 D† = a

Check how the operations a 7→ a ↑2 A† and a 7→ a ↑2 D† act on an
arbitrary sequence a = (a[n])n∈Z:

a ↑2 A† =

(
a[bn/2c]√

2

)
n∈Z

a ↑2 D† =

(
(−1)na[bn/2c]√

2

)
n∈Z
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The Haar filter bank

Wavelet reconstruction as a filtering operation (2)

We have

a′ ↑2 A† + d′ ↑2 D† =

(
a′[bn/2c]√

2

)
n∈Z

+

(
(−1)nd ′[bn/2c]√

2

)
n∈Z

=

(
a′[bn/2c] + (−1)nd ′[bn/2c]√

2

)
n∈Z

so that for n even:

1√
2

(a′[bn/2c] + (−1)nd ′[bn/2c]) =
1√
2

(
a[n] + a[n + 1]√

2
+

a[n]− a[n + 1]√
2

)
= a[n]

and for n odd:

1√
2

(a′[bn/2c] + (−1)nd ′[bn/2c]) =
1√
2

(
a[n − 1] + a[n]√

2
− a[n − 1]− a[n]√

2

)
= a[n]
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The Haar filter bank

Wavelet reconstruction as a filtering operation (3)

Putting things together:

A ↓2↑2 A† +D ↓2↑2 D† = Id

Using the fact that downsampling and upsampling are adjoint
operations, one can write this in a more concise way as:
for A = A ↓2,D = D ↓2 one has

AA† + D D† = Id .

The following relations between the transformations are easily
checked:

A† A = Id , D†D = Id , A†D = 0 = D† A.
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The Haar filter bank

Figure: Haar synthesis (one level)
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Two-level Haar filter bank

Figure: Haar analysis (2 levels) and frequency separation
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Two-level Haar filter bank

Figure: Haar-synthesis (2 levels)
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Two-level Haar filter bank

Figure: Haar analysis (2 levels) – example
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Two-level Haar filter bank

Figure: Haar synthesis (2 levels) – example

WTBV-WS17/18 The Haar Wavelet Transform November 13, 2017 57 / 77



2D Haar Wavelet Transform (2D HWT)

Reminder (1)

The 1D Haar functions are

scaling function φ(t) = 1[0,1)(t)

wavelet function ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t)

The other functions are derived by using dilation and translation
w.r.t. the dyadic intervals Ij ,k (j , k ∈ Z):

φj ,k(t) = 2j/2 1Ij,k (t) = 2j/2 φ(2j t − k)

ψj ,k(t) = 2j/2
(
1Ij+1,2k

(t)− 1Ij+1,2k+1
(t)
)

= 2j/2 ψ(2j t − k)
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2D Haar Wavelet Transform (2D HWT)

Reminder (2)

Using H = 1√
2

[
1 1
1 −1

]
) one has

[
φ
ψ

]
= H ·

[
φ1,0

φ1,1

]
,

[
φ1,0

φ1,1

]
= H ·

[
φ
ψ

]
and thus for all j , k ∈ Z[

φj ,k
ψj ,k

]
= H ·

[
φj+1,2k

φj+1,2k+1

]
,

[
φj+1,2k

φj+1,2k+1

]
= H ·

[
φj ,k
ψj ,k

]
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2D Haar Wavelet Transform (2D HWT)

2D Haar functions (1)

The 2D Haar functions are the four functions

φ(x , y) = φ(x) · φ(y)

ψH(x , y) = ψ(x) · φ(y)

ψV (x , y) = φ(x) · ψ(y)

ψD(x , y) = ψ(x) · ψ(y)

φ is the 2D Haar scaling function

the ψH , ψV , ψD are the 2D Haar wavelet functions

Suggestively: “H” stands for horizontal, ‘ ‘V ” for vertical, and “D“
für diagonal, corresponding to the directions in which these functions
register changes
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2D Haar Wavelet Transform (2D HWT)

2D Haar functions (2)

Obviously 
φ
ψH

ψV

ψD

 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



φ1,0,0

φ1,1,0

φ1,0,1

φ1,1,1



= (H ⊗ H)


φ1,0,0

φ1,1,0

φ1,0,1

φ1,1,1


H ⊗ H is again an orthogonal matrix
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2D Haar Wavelet Transform (2D HWT)

2D Haar functions (3)

For any a, b, c , d one has

(H ⊗ H)


a
b
c
d

 =


a′

b′

c ′

d ′

 ⇐⇒ H ·
[
a b
c d

]
· H =

[
a′ b′

c ′ d ′

]
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2D Haar Wavelet Transform (2D HWT)

2D Haar functions (4)

By dilation and translation one generates the 2D Haar functions for
j , k , ` ∈ Z:

φj ,k,`(x , y) = φj ,k(x) · φj ,`(y) = 2jφ(2jx − k , 2jy − `)

ψH
j ,k,`(x , y) = ψj ,k(x) · φj ,`(y) = 2jψH(2jx − k , 2jy − `)

ψV
j ,k,`(x , y) = φj ,k(x) · ψj ,`(y) = 2jψV (2jx − k , 2jy − `)

ψD
j ,k,`(x , y) = ψj ,k(x) · ψj ,`(y) = 2jψD(2jx − k , 2jy − `)
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2D Haar Wavelet Transform (2D HWT)

2D Haar functions (5)

2D scaling equations and wavelet equations written in matrix form:[
φj ,k,` ψH

j ,k,`

ψV
j ,k,` ψD

j ,k,`

]
= H ·

[
φj+1,2k,2` φj+1,2k+1,2`

φj+1,2k,2`+1 φj+1,2k+1,2`+1

]
· H

Equivalently 
φj ,k,`
ψH
j ,k,`

ψV
j ,k,`

ψD
j ,k,`

 = (H ⊗ H)


φj+1,2k,2`

φj+1,2k+1,2`

φj+1,2k,2`+1

φj+1,2k+1,2`+1


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2D Haar Wavelet Transform (2D HWT)
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2D Haar Wavelet Transform (2D HWT)

Vector spaces (1)

The vector spaces relevant for 2D wavelet analysis and synthesis are:

Vj = span {φj ,k,`}

WH
j = span

{
ψH
j ,k,`

}
WV

j = span
{
ψV
j ,k,`

}
WD

j = span
{
ψD
j ,k,`

}
For L2(R2) Haar wavelets take all indices j , k , ` ∈ Z
For L2([0, 1]2) Haar wavelets take indices j ≥ 0, 0 ≤ k, ` < 2j

Spaces Vj are the approximation spaces,
spaces WH

j ,WV
j ,WD

j are the detail spaces or wavelet spaces
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2D Haar Wavelet Transform (2D HWT)

Vector spaces (2)

The results about complete bases for the L2 spaces carry over to the
2D situation without problems. Similarly one has the corresponding
identities for the wavelet coefficients

For any j ∈ Z one has

Vj+1 = Vj ⊕WH
j ⊕WV

j ⊕WD
j

which says: any function f ∈ Vj+1 has a unique orthogonal
decomposition

fj+1 = fj + gH
j + gV

j + gD
j with fj ∈ Vj , g x

j ∈ Wx
j (x ∈ {H,D,V })
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2D Haar Wavelet Transform (2D HWT)

Vector spaces (3)

For Haar wavelet analysis in [0, 1]2 one ranges the coefficients of
these functions w.r.t. the bases in the respective subspaces with side
length 2j+1:

fj+1 ↔
fj gH

j

gV
j gD

j

One phase of Haar wavelet analysis consists in computing the data
on the right from the data on the left

One level of Haar-wavelet synthesis consists in computing the data
on the left from the data on the right
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2D Haar Wavelet Transform (2D HWT)

Analysis

A (discrete) image is a (2m × 2n) matrix a2m,2n (of gray values, say)

One phase of wavelet analysis replaces this image by four (m × n)

images a′m,n, dHm,n, dVm,n, dDm,n following the scheme

a2m,2n �
a′m,n dHm,n

dVm,n dDm,n

Again: a stands for “approximation” and d stands for “detail”.

for level-k Haar analysis it is required that the side lengths are
multiples if 2k
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2D Haar Wavelet Transform (2D HWT)

Transformation matrices

The transformation can be conveniently described using the matrices
used in the 1D case. Let

An =
1√
2



1
1

1
1

. . .

1
1


Dn =

1√
2



1
−1

1
−1

. . .

1
−1


.

These are matrices of format (2n × n)
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2D Haar Wavelet Transform (2D HWT)

Analysis as a matrix operation (1)

Then

a2m,2n �
a′m,n dHm,n

dVm,n dDm,n
=

[
A†m

D†m

]
· a2m,2n ·

[
An Dn

]
Written in full detail:

a′m,n = A†m · a2m,2n · An

dHm,n = A†m · a2m,2n · Dn

dVm,n = D†m · a2m,2n · An

dDm,n = D†m · a2m,2n · Dn
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2D Haar Wavelet Transform (2D HWT)

Analysis as a matrix operation (2)

One can and one should read this as follows:

The 2D Haar transform executed on an image a2m,2n consists in

first executing the 1D Haar transform on the rows of a2m,2n (in
parallel), which gives

ã2m,2n = a2m,2n ·
[
An Dn

]
;

then executing the 1D Haar transform on the columns of ã2m,2n (in
parallel), which gives[

A†n

D†n

]
· ã2m,2n =

[
A†n

D†n

]
· a2m,2n ·

[
An Dn

]
.

One can do it also the other way round: first acting on the columns
and then on the rows. The result is the same
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2D Haar Wavelet Transform (2D HWT)

Synthesis as a matrix operation

For synthesis the above relation has to be inverted, which is no

problem at all because of the orthogonality of the matrices
[
An Dn

]
:

a2m,2n =
[
Am Dm

]
·
a′m,n dHm,n

dVm,n dDm,n
·

[
A†n

D†n

]

Written explicitly:

a2m,2n = Am · a′m,n · A†n + Dm · dVm,n · A†n + Am · dHm,n · D†n + Dm · dDm,n · D†n
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2D Haar Wavelet Transform (2D HWT)

Figure: One-level 2D Haar WT as a filter bank (analysis)
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2D Haar Wavelet Transform (2D HWT)

Figure: One level 2D Haar WT as a filter bank (synthesis)
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2D Haar Wavelet Transform (2D HWT)

2D multilevel Haar transform

The 2D Haar transform can be extended to a transformation running
over several levels by iteratively applying the very same procedure to
the arrays of approximation coefficients generated. This scheme
applies to other wavelet transforms as well
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VJ WH
J WV

J WD
J
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J+2 WV
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Figure: Decomposition scheme for a 2D-3-level-WT
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2D Haar Wavelet Transform (2D HWT)

2D multilevel Haar transform
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Figure: Coefficient scheme for a 2D-3-level-WT
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