
Denoising using wavelets

WTBV

December 19, 2017

WTBV Denoising using wavelets December 19, 2017 1 / 18



1 Threshold functions

2 Wavelet shrinking

3 The Visushrink method

4 The SURE method

WTBV Denoising using wavelets December 19, 2017 2 / 18



Threshold functions

Threshold functions sλ(t)

are used to suppress parts of a signal with very low amplitudes and
(usually) high frequencies (“noise”)
examples are

{Hard, λ}

{
0 |x | ≤ λ
x |x | > λ

{Soft, λ}

{
0 |x | ≤ λ
sgn(x)(|x | − λ) |x | > λ

{PiecewiseGarrote, λ}

{
0 |x | ≤ λ
x − λ2

x |x | > λ

{SmoothGarrote, λ, n} x2n+1

x2n + λ2n

{Hyperbola, λ}

{
0 |x | ≤ λ
sgn(x)

√
x2 − λ2 |x | > λ
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Threshold functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-2

-1

1

2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-2

-1

1

2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-2

-1

1

2

Figure: Examples of threshold functions sλ(t)
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Wavelet shrinking

Setting and strategy

“true” signal : v = (v1, v2, . . . , vN)

noise vector: ε = (ε1, ε2, . . . , εN)

noised signal y = (y1, y2, . . . , yN) = v + ε

wavelet filtering (orthogonal transform!)

y WT7−→ z = (a,d ) = (Hy ,Gy)

applying thresholding with sλ(t) to the high-pass component

z 7−→ ẑ = (a, d̂ ) with d̂ = sλ(d )

inverse wavelet transform

ẑ WT−1

7−→ v̂ = H†a + G †d̂
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Wavelet shrinking

Heuristic considerations

Noise modelled as Gaussian white noise with noise level σ:
ε = (ε1, ε2, . . . , εN) generated by independent and identically
N (0, σ2)-distributed random variables

For a vector ε = (ε1, . . . , εN) of independent, N (0, σ2)-distributed
random variables εi and an orthogonal (N × N) matrix U the
components γi of the vector

γ = (γ1, . . . , γN) = U ε,

are again independent N (0, σ2)-distributed random variables

Due to orthogonality of the wavelet transform the transformed noise
term WT (ε) in

y = v + ε 7−→WT (y) = WT (v) + WT (ε)

is still characterized by being white noise with noise level σ
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Wavelet shrinking

Heuristic considerations (contd.)

In wavelet transformations most energy goes into the approximation
(low-pass) component a

Noise of high frequency goes into the detail (high-pass) component d

=⇒ the detail component mainly (but not exclusivlely) consists of
noise (detail coefficients . σ) — that is where to attack!

The problem: the noise level σ is not known and has to be estimated
from the data to be denoised themselves

How to choose λ (depending on the estimate for σ) ?

Measure of quality for denoising: mean squared error (MSE)

E
[
‖ v − v̂‖2

]
= E

[∑
1≤j≤N(vj − v̂j)

2
]
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The Visushrink method

v = (v1, . . . , vN) ∈ RN

ε = (ε1, . . . , εN) white noise with variance σ2, y = v + ε

v̂ = (v̂1, . . . , v̂N) estimate for v with A ⊆ {1, 2, . . . ,N} and

v̂j =

{
yj if j ∈ A

0 if j 6∈ A

In this case the MSE equals

E
[
‖v − v̂‖2

]
= E

[∑
1≤j≤N(vj − v̂j)

2
]

=
∑
j∈A

E
[
ε2j
]

+
∑
j 6∈A

E
[
v2j
]

and this is minimized by setting j ∈ A⇐⇒ v2j > σ2

so that the ideal MSE is

E
[
‖v − v̂‖2

]
=
∑

1≤j≤N
min(v2j , σ

2)
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The Visushrink method

VisuShrink :
is Wavelet shrinkage with

λ = λuniv = σ ·
√

2 lnN (“universal tolerance”)

Theorem [Donoho-Johnstone, 1995]
For v ∈ RN and ε = (ε1, . . . , εN) white noise with noise level σ,
for v̂ = sλ(v + ε) (soft threshold) one gets

E
[
‖v − v̂‖2

]
≤ (2 lnN + 1) ·

(
σ2 +

∑
1≤j≤N

min(v2
j , σ

2)

)
σ will be estimated (on the first high-pass component!)
using the mean absolute deviation (MAD):

w = (w1, . . . ,wN)
w̃ = Median of w
v = (|w1 − w̃ |, . . . , |wN − w̃ |)
MAD(w) = Median of v = ṽ

Theorem [Hampel, 1974]

MAD(w) ≈ 0.6745 · σ
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The SURE method

SURE method (Steins unbiased risk estimator, 1981)

Goal: choice of the λ parameter for soft-shrinking methods

sλ(x) =


x − λ if x > λ

0 if |x | ≤ λ
x + λ if x < −λ

C.M. Stein, Estimation of the mean of a multivariate normal
distribution, Ann. Stat. 1981.
D. Donoho, I. Johnstone, Adapting to unknown smoothness via
wavelet shrinkage, J. Amer. Stat. Assoc. 1995.
P. van Fleet, Discrete Wavelet Transformations,
Wiley, 2008 (ch. 9).
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The SURE method

Lemma:
For a N (0, σ2)-distributed random variable ε, any z ∈ R and any
piecewise differentiable function g : R→ R one has

E [ε · g(z + ε)] = σ2 · E
[
g ′(z + ε)

]
This follows from partial integration:

E [ε · g(z + ε)] =
1√

2πσ2

∫
x · g(z + x) · e−

x2

2σ2 dx

=
−1√
2πσ2

∫
σ2 · g(y) · d

dy
e−

(y−z)2

2σ2 dy

= σ2 · 1√
2πσ2

∫
d

dy
g(y) · e−

(y−z)2

2σ2 dy

= σ2 · E
[
g ′(z + ε)

]
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The SURE method

Consequence:
With z , ε, g as in the Lemma, one gets for the MSE of the estimate
ẑ = w + g(w) of the random variable w = z + ε :

E
[
(ẑ − z)2

]
= E

[
(ε+ g(z + ε))2

]
= E

[
(ε2 + 2ε · g(z + ε) + g(z + ε)2

]
= E

[
σ2 + 2σ2 · g ′(w) + g(w)2

]
Special case: soft-shrinking with threshold value λ

The function is

g(z) =

{
−z if |z | < λ

−λ sgn(z) if |z | ≥ λ

and thus
d

dz
g(z) =

{
−1 if |z | < λ

0 if |z | ≥ λ
Therefore

σ2 + 2 σ2g ′(w) + g(w)2 =

{
w2 − σ2 if |w | < λ

σ2 + λ2 if |w ] ≥ λ
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The SURE method

General situation:

z = (z1, z2, . . . , zN) ∈ RN

ε = (ε1, ε2, . . . , εN) vector of N (0, σ2
k)-distributed random variables

(noise, not necessarily independent and identically distributed)
σ = (σ1, σ2, . . . , σN)
w = z + ε noised vector
g = (g1, g2, . . . , gN) with gk : RN → R correcting functions
ẑ = w + g(w) estimate for z

Theorem (Stein)
With the notions just introduced, the MSE can be written as

E
[
‖ẑ − z‖2

]
= E

 ∑
1≤j≤N

(
σ2j + 2σ2j

∂

∂wj
gj(w) + gj(w)2

)
= ‖σ‖2 + 2

∑
1≤j≤N

σ2j E

[
∂

∂wj
gj(w)

]
+ E

[
‖g(w)‖2

]
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The SURE method

Special case: soft-shrinking with threshold value λ

E
[
‖ẑ − z‖2

]
= E

 ∑
1≤j≤N

(
w2
j − σ2j +

(
2σ2j − w2

j + λ2
)
χ|wj |≥λ

)
= E

[
‖w − σ‖2

]
+ E

 ∑
1≤j≤N

(
2σ2j − w2

j + λ2
)
χ|wj |≥λ


The left summand is independent of λ.
Minimizing the MSE can be achieved by choosing λ depending on the
sample vector w so that the integrand in the second summand is
minimal!

f (λ) =
∑

1≤j≤N

(
2σ2j − w2

j + λ2
)
χ|wj |≥λ
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The SURE method

Instead of dealing with f (λ) it is more convenient to consider

f̃ (λ) =
∑

1≤j≤N

(
2σ2j − w2

j + λ2
)
χ|wj |>λ

which changes nothing as far as the expectation is concerned

Assume that the components of the vector w = (w1, . . . ,wN) are
ordered by increasing absolute value

|w0| = 0 ≤ |w1| ≤ |w2| ≤ · · · ≤ |wN |

The function f̃ (λ) is continuous from the right for λ ∈ R+, and if
|wj | < |wj+1| holds, then f̃ (λ) is strictly increasing on the half-open
interval [|wj |, |wj+1|), so that it takes its minimum at |wj |:

f̃ (|wj |) = (N − j)w2
j +

∑
j+1≤k≤N

(2σ2k − w2
k )
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The SURE method
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Figure: Example for the computation of the minimum value of f (λ) for the
sequence {0.25, 0.36, 0.41, 0.88, 1.37, 1.48, 1.82, 1.91, 2.3}
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The SURE method

From this one gets

min
λ∈R+

f̃ (λ) = min
0≤j≤N

f̃ (|wj |) λsure := argmin|wj |f̃ (|wj |)

The definition of f̃ yields a (downward) recursion

f̃ (|wj |) = f̃ (|wj+1|) + 2σ2j+1 + (N − j)(w2
j − w2

j+1)

which starting from
f̃ (wN) = 0

gives a fast computation of the minimum!

The usual assumption σ1 = . . . = σN somewhat simplifies the
formulas and the computations
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The SURE method

SURE in the context of the wavelet transform

Consider a one-level WT

z 7−→ y = z + ε
WT7−→ (a,d ) 7−→ (a, d̂ )

WT−1

7−→ ẑ

where
d = G (z + ε) = Gz + Gε

sλ7−→ d̂

Note: the high-pass component Gε has the same noise as ε

σ must be estimated beforehand (as in the Visushrink method)

One has λsure ≤ λuniv . Recommendation: If y is sparse, it is better to
use λuniv instead of λsure , based on the criterion

1

N

∑
1≤j≤n

(y2j − σ2) ≤ 3

2
√
N

log2(N)

(Donohoe, Johnstone)
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