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Abstract—Long acquisition times of several seconds lead to
image artifacts in cardiac C-arm CT. While ECG gating is able
to select a certain heart phase, residual artifacts are mostly
caused by respiratory motion. In order to improve image quality,
it is important to accurately estimate the breathing motion
that occurred during image acquisition. It has been shown that
diaphragmmotion is correlated to the respiration-induced motion
of the heart.
We present a motion estimation and compensation method

based on the tracking of the diaphragm contour in projection
space. The approach utilizes a 2-D quadratic curve model to
estimate and track the diaphragm with sub-pixel accuracy. Based
on the tracking results, we use a motion corrected triangulation
algorithm to estimate the 3-D motion of the diaphragm top.
The resulting signal is used to compensate for superior-inferior
respiratory motion during the reconstruction.

Index Terms—C-arm CT; reconstruction; respiratory motion;
diaphragm tracking; motion compensation;

I. INTRODUCTION

Cardiac C-arm CT enables reconstruction of 3-D images
during medical procedures. However, the long acquisition time
of several seconds, during which the heart is beating and the
patient might breathe, may lead to artifacts, such as blurring
or streaks. A commonly used technique to reduce breathing
motion is the single breath-hold scan. The physician instructs
the patient to hold his breath after exhalation. The data is
then acquired during the breath-hold. Although this approach
is widely used, several studies have shown that breath-holding
does not eliminate breathing motion entirely. Monitoring
the position of the right hemidiaphragm during breath-hold,
Jahnke et al. observed residual breathing motion to a certain
extent in almost half of their test group [1]. Therefore, it is
necessary to develop more sophisticated methods to estimate
and compensate for respiratory motion in cardiac C-arm CT.
There are many ways to acquire respiratory signals. Most

are based on additional equipment, e.g. Time-of-Flight or
stereo vision cameras. Other techniques aim to extract the
respiratory signal directly from the projection images. Using
this approach the extracted breathing signal is perfectly syn-
chronized with the projection images. Image-based respiratory
motion extraction often relies on tracking of fiducial markers
in the projection images [2], [3]. Wang et al. have shown that
the motion of the diaphragm is highly correlated to respiration-
induced motion of the heart [4]. Sonke et al. propose to extract
a 1-D breathing signal by projecting diaphragm-like features
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on the superior-inferior axis and selecting the features with the
highest temporal change [5]. However, the downside of this
approach is that the extracted signal is not the real respiration
signal. Due to perspective projection, the projected amplitude
depends on the C-arm rotation angle.
In this work, we propose to estimate respiratory motion by

tracking the diaphragm in a set of rotational projection images.
The tracked position of the diaphragm top is used to compute
a 1-D respiration signal, which is then incorporated into the
reconstruction algorithm to compensate for respiratory motion.

II. METHODS AND MATERIALS

The proposed method is composed of three major steps that
are each discussed in the following sections. In the first step,
the contour of the diaphragm is tracked throughout the entire
projection image sequence. Based on this tracking, we are able
to obtain the 2-D projection of the diaphragm top for each
image. In the second step, a motion corrected triangulation
approach is used to compute the 3-D position of the diaphragm
top for each projection. Assuming superior-inferior breathing
motion, the 1-D respiration signal is extracted. In the final step,
the respiration signal is used to compensate for respiratory
motion during reconstruction.

A. Diaphragm Tracking

We introduced a model-based tracking method that is able to
accurately track the contour of a user-selected hemidiaphragm
in a set of rotational projection images [6]. Compared to other
tracking-based methods, e.g. fiducial markers, the shape we
want to track is not unique. The diaphragm appears as two
similar shaped hemidiaphragms. Therefore, it is necessary for
the user to select the one to be tracked. The user selects a point
roughly located at the top of the desired contour. Subsequently,
we define a rectangular Region of Interest (ROI) symmetrically
around the selection. The image is then preprocessed using a
gaussian low-pass filter and the Canny edge detector.
In the next step, the Random Sample Consensus

(RANSAC) [7] is used to fit a parabolic curve to the obtained
set of edge points. RANSAC can deal with datasets with large
percentages of gross errors, and is thus the ideal choice to
fit a model to our very noisy set of points. The aim of this
method is to model the diaphragm as a quadratic function
v = au2+ bu+ c, where u and v are the detector coordinates.
Thus, RANSAC has to estimate the three parameters a, b, and
c. In the first step, three random points are selected. The model
estimation is then formulated as the following optimization
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problem:
3∑

i=1

(a · u2

i + b · ui + c− vi)
2 → min. (1)

A total of N models are estimated and evaluated to determine
the best one. A model’s quality is defined by the number
of inliers. An inlier is a point that lies within a predefined
distance to the model. Since an accurate model is desired, we
only consider points with a one pixel distance to the model
inliers. Assuming small motion between subsequent frames,
the contour is tracked by calculating the current contour’s
vertex and using it as the start point in the subsequent frame.
One additional important optimization is made. Instead of

continuing to use the rectangular ROI, we restrict it to a
parabolic ROI based on the model from the previous frame.
This approach decreases the number of points we have to
consider in the model estimation.
To guarantee accurate tracking in projections where both

hemidiaphragms are visible in the ROI, we propose additional
constraints based on the small motion assumption and prior
knowledge: (i) the horizontal motion of the contour is limited
by the average motion, (ii) deformation of the contour is
limited to 5% compared to the previous model, and (iii) the
direction of horizontal motion can be derived from patient
positioning and C-arm rotation.

B. Triangulation and Signal Extraction
The result of the diaphragm tracking is a parabolic model

of the hemidiaphragm for each image. Our approach relies
on the assumption that the projection of the 3-D diaphragm
top coincides with the top of the 2-D diaphragm contour.
However, this assumption is quite restrictive. Based on this
assumption, we are able to reconstruct the 3-D position using
multi view triangulation. However, triangulation algorithms are
designed for static scenes and yield inaccurate results when
used for dynamic scenes. For triangulation of dynamic scenes
we propose the following four step process:
1) Select image pair
2) Rectification of the image planes [8]
3) Motion correction
4) Triangulation [9]

First, we select two images with the contour vertices g̃ =
(g̃u, g̃v, 1)

T and g̃′ = (g̃′u, g̃
′
v, 1)

T . Ideally, the selected im-
ages should be acquired from orthogonal views. The second
step is essential for the subsequent motion correction. The
rectification algorithm by Fusiello et al. transforms the image
planes such that they become coplanar and their epipolar lines
become parallel and horizontal [8]. The transformed images
have then one very important feature: the projections of a point
have the same vertical coordinate in both image planes. Thus,
after transforming the point correspondences, any residual
difference in their vertical coordinates must be caused by
respiratory motion during image acquisition. Therefore, we
can eliminate the respiratory motion of this image pair in the
third step. We choose the first point g̃ as the reference and the
corresponding point in the second image is set to

g̃′ = (g̃′u, g̃v, 1)
T . (2)

Algorithm 1: Motion compensated reconstruction. Respi-
ratory motion is compensated in line 8.
1 forall the projections i ∈ [1, Np] do
2 forall the voxels (x, y, z) do
3 Project voxel (x, y, z) onto detector plane
4 if point on detector plane then
5 Get update value
6 else
7 Next voxel
8 zcorr ← z + r̂i
9 if (x, y, zcorr) in volume then
10 Update voxel (x, y, zcorr)

Finally, we use the transformed and motion corrected point
correspondences to triangulate the corresponding 3-D point.
In this work a simple iterative Linear-Eigen approach, as
proposed by Hartley [9], has yielded excellent results.
After we triangulate a 3-D point corresponding to each

image, we can now compute the respiration signal. Since respi-
ratory motion is generally considered as a mainly translational
motion along the superior-inferior axis, we compute the 1-D
respiration signal r̂ as

r̂i = zref − zi, (3)

with zref as the z-coordinate of the reference point, and zi
as the z-coordinate of the triangulated point corresponding
to image i. Finally, the resulting signal is smoothed using a
gaussian low-pass filter.

C. Motion Compensated Reconstruction
The signal is now included in the reconstruction process.

Algorithm 1 shows the motion compensated reconstruction
algorithm. For each projection, each voxel is projected on the
detector to get the update value. Instead of regularly updating
the volume, we first compensate for respiratory motion by
shifting the voxel back to its reference position using the esti-
mated signal. Then, we update the corrected voxel. Therefore,
we are able to obtain a reconstruction at the reference time
we selected for the respiration signal. The proposed method
assumes a constant shift for the whole heart. For clinical
data more sophisticated motion models are required, as the
deformation of the heart is not rigid.

III. EXPERIMENTAL RESULTS

The evaluation of this work was carried out on a simulated
XCAT phantom [10]. The XCAT phantom was created with
breathing motion only. We simulated an acquisition time of
four seconds with one full respiration cycle. Both heart and
diaphragm moved about 2.3 cm along the superior-inferior
axis, the rest of the scene was static. A detector of size 640×
480 px was simulated with a resolution of 0.616 mm/px. 200
projections were acquired with an average angular increment
of 1.0◦. As ground truth we used the reconstruction of an
XCAT dataset that was simulated without respiratory motion.
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Fig. 1. Comparison of the extracted diaphragm motion signal and the actual
breathing signal. The amplitude of the signal can not be estimated accurately,
as the projections of the diaphragm top do not coincide with the 2-D contour.
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TABLE I
TRIANGULATION ERRORS (IN MM) BASED ON PROJECTIONS OF THE REAL
DIAPHRAGM TOP. ANGULAR OFFSET OF THE IMAGE PAIR IN BRACKETS.

Mean 3-D Std. Dev. 3-D Mean Z Std. Dev. Z
Rect. Iter. (90◦) 0.20 0.06 0.10 0.06
Rect. Iter. (30◦) 0.32 0.15 0.10 0.06
Rect. Iter. (10◦) 0.89 0.60 0.11 0.08
Iterative (90◦) 2.22 0.97 2.22 0.96

The diaphragm tracking method was evaluated on the left
and right hemidiaphragms in XCAT projection data [6]. We
were able to track the vertex of the diaphragm contour with
sub-pixel accuracy. We observed a Euclidean distance of the
right vertex to the correct vertex of 0.45 ± 0.56 pixels, and
0.75± 0.84 pixels for the left vertex respectively.
Figure 1 shows the extracted signal based on the diaphragm

tracking results. As previously noted, our approach depends
on the assumption that the projection of the diaphragm top
lies on the 2-D contour. However, this is a strong assumption
that is not always fulfilled. In fact, the correct projection of
the diaphragm top is often located below the contour, due
to perspective projection. This results in inaccuracies in the
estimated amplitude of the signal, caused by triangulation with
false point correspondences. In order to assess the accuracy
of the triangulation approaches without the effect of false
point correspondences, we tested the methods using the correct
projections of the diaphragm top as input. Therefore, we can
test the performance of our algorithm if the assumption is met.
As results in TABLE I show, our rectified iterative approach
provides sub-millimeter accuracy even for image pairs with
low angular offset, whereas the average error of the standard
approach without rectification and motion correction is about
10% of the total breathing motion.
For the evaluation of reconstruction quality we used the

structural similarity index (SSIM) by Wang et al. [11]. SSIM
measures the similarity of two images based on structural
information. Two images are compared and a value between
−1.0 and 1.0 is returned, with 1.0 for a perfect match and
−1.0 for completely different images. In order to reduce the
influence of the static background on the quality evaluation,
the reconstructed volume was cropped to the bounding box
that contains the heart. In total, we evaluated the quality of
three different reconstructions: (i) a compensated reconstruc-

Fig. 2. Structural similarity index of the heart volume for xy and xz-slices.
The uncompensated reconstruction shows better results in the beginning and
the end, as the heart is only of small size in these slices.

�

���

���

���

���

�

� 	� ��� �	� ���




��



���

������
������

�������������


���������������

(a) xy-slices
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(b) xz-slices

tion using the proposed tracking methods, (ii) a compen-
sated reconstruction with the correct 2-D projections of the
diaphragm top (simulating an optimal diaphragm tracking),
and (iii) an uncompensated reconstruction. Figure 2 shows
the evaluation results for xy and xz-slices. Both compen-
sated reconstructions show highly improved image quality. As
expected, the diaphragm tracking approach is slightly below
the quality of the optimal reconstruction. However, it shows
significant improvement when compared to the uncompensated
reconstruction. The uncompensated reconstruction seems to
be superior in the first and last slices. The heart is only of
small size in these slices. Therefore, the static background
has a larger influence on the evaluation. Compensation blurs
the static background, whereas it is perfectly reconstructed
without compensation. Figures 3 and 4 show the results for
two example slices.

IV. CONCLUSION AND OUTLOOK
Results of respiratory motion compensated reconstruction

already show promising results in image quality improvement
close to the optimal solution. Still, there is one important issue
that has to be solved. The proposed method works on the very
restrictive assumption that the projection of the 3-D diaphragm
top coincides with the top of the 2-D contour.
Future work will be focused on this problem. Due to

perspective projection, this assumption is not always fulfilled.
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Fig. 3. Comparison of xy-slice 70 of compensated and uncompensated
volumes (cf. Fig. 2a). Simulated high-contrast heart lesions further illustrate
the improved image quality.

(a) No compensation.
SSIM: 0.75

(b) Compensation with tracked
signal. SSIM: 0.86

(c) Compensation with optimal
signal. SSIM: 0.90

(d) Ground truth

Fig. 4. Comparison of xz-slice 60 of compensated and uncompensated
volumes (cf. Fig. 2b).

(a) No compensation.
SSIM: 0.76

(b) Compensation with tracked
signal. SSIM: 0.84

(c) Compensation with optimal
signal. SSIM: 0.88

(d) Ground truth

This results in inaccurate amplitudes of the extracted respi-
ration signal. One interesting approach would be to combine
the current approach with other existing methods to estimate
respiratory motion, e.g. Time-of-Flight cameras. This way, we
could possibly improve the extracted diaphragm motion signal
by correlating it to the externally measured respiration signal.
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