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Abstract. Long acquisition times of several seconds lead to image ar-
tifacts in cardiac C-arm CT. These artifacts are mostly caused by res-
piratory motion. In order to improve image quality, it is important to
accurately estimate the breathing motion that occurred during image
acquisition. It has been shown that diaphragm motion is correlated to
the respiration-induced motion of the heart. We describe the develop-
ment of a method that is able to accurately track the contour of the
diaphragm in projection space. Therefore, the contour is modelled as a
2-D quadratic curve. In order to provide robust and stable tracking, ad-
ditional constraints based on prior knowledge of the projection geometry
and human anatomy are introduced. Results show that the tracking is
very accurate. A mean model error per pixel of 0.93 ± 0.44 pixels was
observed. The diaphragm top is tracked with an even lower error of only
0.62± 0.60 pixels.

1 Introduction

Cardiac C-arm CT makes it possible to reconstruct 3-D images during medical
procedures. However, the long acquisition time of several seconds, during which
the heart is beating and the patient might breathe, may lead to artifacts, such as
blurring or streaks. A commonly used technique to reduce breathing motion is
the single breath-hold scan. The physician instructs the patient to hold his breath
after exhalation. The data is then acquired during the breath-hold. Although this
approach is widely used, several studies have shown that breath-holding does
not eliminate breathing motion entirely. Monitoring the position of the right
hemidiaphragm during breath-hold, Jahnke et al. observed residual breathing
motion to different extent for almost half their test group [1]. Therefore, it is
necessary to develop better methods to estimate and compensate for respiratory
motion in cardiac CT.

There are many ways to acquire respiratory signals. Most are based on addi-
tional equipment, e.g. Time of Flight- or Stereovision-cameras. Other techniques
aim to extract the respiratory signal directly from the projection images. This
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way the signal is perfectly in sync regarding the acquisition time of images and
signal. Image-based respiratory motion extraction often relies on tracking of
fiducial markers in the projection images [2,3]. Wang et al. have shown that the
motion of the diaphragm is highly correlated to respiration-induced motion of
the heart [4]. Sonke et al. propose to extract a one-dimensional breathing signal
by projecting diaphragm-like features on the cranio-caudal axis and selecting
the features with the highest temporal change [5]. However, the downside to this
approach is that the extracted signal is not the real respiration signal. Due to
perspective projection, the projected amplitude is dependent on the C-arm rota-
tion angle. In this work, we propose to track the diaphragm in a set of rotational
projection images.

2 Materials and Methods

In this section we propose a method that aims to model the 2-D projection
of a hemidiaphragm as a 2-D quadratic function. Most approaches for motion
estimation based on tracking of features, assume that the features are unique
objects, e.g. spherical fiducial markers. Unlike those methods, the object to be
tracked here is not unique. The diaphragm appears as two similar parabolic
shapes – the left and right hemidiaphragm.

2.1 Pre-Processing

The proposed method works automatically, with the exception of the manual
selection of a start point in the first image. This user interaction is not required
to be very accurate, the point has to be placed only in the rough perimeter
of the top of one hemidiaphragm. Next, we define a Region of Interest (ROI)
symmetrically around this point. A rectangular ROI is built in a way that it
includes ideally only the contour of the selected hemidiaphragm. In Section 2.2
we explain how to estimate the diaphragm contour even with other structures
present in the ROI. We propose an ROI of size 250× 55 for projection images of
size 640× 480. Figure 1 shows an inaccurately selected start point which is still
working, and the ROI created around it. In order to reduce noise, the images are
then smoothed with a gaussian kernel. After this, the Canny Edge Detector [6]
is applied to extract the diaphragm contour. The hysteresis thresholding is done
using percentiles of the edge magnitudes greater than zero. The low threshold
was set to the 20th percentile, the high threshold to the 70th percentile.

2.2 Model Estimation

The result is a set of edge points that can now be used to estimate a quadratic
model of the hemidiaphragm. However, due to the moderately chosen thresholds
in the previous step, this set of points includes many false-positives which are
not part of the diaphragm contour. To deal with this, the quadratic model is
fit using the Random Sample Consensus (RANSAC) proposed by Fischler and
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Fig. 1. User selected start point and initial rectangular ROI.

Bolles [7]. RANSAC can deal with datasets with large percentages of gross errors,
and is thus the ideal choice to fit a model to our very noisy set of points. The
diaphragm is of approximately parabolic shape, and is therefore estimated as a
quadratic function y = ax2 + bx+ c. Thus, RANSAC has to estimate the three
parameters a, b, and c. In the first step, three random points are selected. The
model estimation can then be formulated as the following optimization problem

3∑
i=1

a · x2
i + b · xi + c− yi → min. (1)

This way N (here: N = 20000) different models are fit to the data, which are
then evaluated to determine the one that fits the data best. The model’s quality
is determined by the number of inliers. An inlier is a point that lies within a
predefined distance to the model. Since an accurate model is desired we only
consider points with a one pixel distance to the model inliers.

So far, the presented method has been very basic, it will find a contour, but
it is not able to distinguish between the two different hemidiaphragms in case
they are both visible in the ROI. Still, there are many additional constraints,
based on prior knowledge, that can be enforced on the models. First of all,
the diaphragm’s opening is always facing down. Furthermore, assuming small
motion between two subsequent frames, the curve’s horizontal translation mx

can be limited by a multiple of the average translation mx. Also, the contour
should only deform slowly over time, this can be enforced by limiting the change

in the parabola’s opening to |ai−1−ai|
ai−1

< 0.05, where ai is the parameter a in the

i-th image.
While the previous constraints already work most of the time, the algorithm

still fails if the two hemidiaphragms are located close to one another and the mod-
els resembling their contours are similar. For this purpose, the prior knowledge
of the patient’s position and the C-arm rotation geometry can be utilized. Sup-
pose acquisition starts from the right lateral view. Rotating towards the frontal
view, the contour of the right hemidiaphragm will move to the left, whereas the
contour of the left hemidiaphragm moves to the right. From the frontal position
to the left lateral position this motion is reversed. We can now enforce the model
to move in one direction until the turning point, and then move in the oppo-
site direction. However, since the diaphragm is deforming during respiration, it
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Fig. 2. Parabolic ROI used during tracking.

is better to loosen this constraint, by allowing free-motion around the turning
point. So we finally have four constraints each valid model has to fulfill:

1. Diaphragm opening downwards: ai > 0

2. Small motion assumption (deformation): |ai−1−ai|
ai−1

< 0.05

3. Small motion assumption (translation): mx < 3 ·mx

4. Motion based on C-arm trajectory:
dir == dirA , if start ≤ angle ≤ 60◦

dir == dirB , if 120◦ ≤ angle ≤ end

Models that do not fulfill all of the above can be discarded immediately. The
constraints can be evaluated before the more costly determination of the number
of inliers, thus even saving computation time.

2.3 Tracking

In order to track the contour throughout the entire image sequence, the ROI has
to be moved. This is done by setting the seed point of the ROI to the vertex of
the newly estimated model.

Finally, one last optimization can be made. After a model was computed
for the first image, we know approximately how the contour has to look in the
next image, due to the small motion assumption. The ROI can now be reshaped
based on the last estimated model. The new parabolic ROI is then defined as
the intersection of the rectangular ROI and the points p = (x, y ± r)T , where
x and y must satisfy the equation y = ai−1x

2 + bi−1x + ci−1, with ai−1, bi−1,
and ci−1 being the estimated model parameters of the previous image, and the
variable r being the vertical radius of the parabolic ROI. The radius r is typically
much smaller than the height of the rectangular ROI. Therefore, we are able to
greatly reduce the number of considered false-positives, further improving the
performance of the RANSAC algorithm. Figure 2 shows a parabolic ROI with
radius r = 10.

3 Results

The accuracy of the proposed approach was evaluated on XCAT [8] projections
of a breathing thorax. Our algorithm was used to track the left hemidiaphragm.
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Width Mean Std. Dev. Max

250 0.93 0.44 5

30 0.55 0.44 2

0 0.62 0.60 2

Table 1. Model error evaluated on windows with different widths around the vertex.

Projections of only the left hemidiaphragm were used as gold standard. The
projection images were 640 pixels wide and 480 pixels high. A ROI of 250× 55
pixels was used. All results are given in pixels.

First, we evaluate how well the model fits the reference contour. Therefore,
the absolute difference of the model’s and the contour’s y-coordinates is com-
puted. This error is computed over a specified window with the model’s vertex
as its center and is then normalized by the width. Table 1 shows the normalized
error evaluated at three different evaluation widths. The width of 250 evaluates
the entire ROI that was used to estimate the model. For the range of zero only
the error at the model’s vertex was computed. Additionally, the width of 30
presents a more balanced estimate for the error at the diaphragm top.

In order to further evaluate the accuracy of the model’s vertex in x and y
direction, we computed the Euclidean distance between the vertex and the true
maximum of the contour in the image. A mean Euclidean distance of 0.62 pixels
and a standard deviation of 0.60 was observed.

Figure 3 shows the estimated model of the diaphragm in clinical projection
data at four projection angles (0◦ corresponding to the lateral view).

4 Discussion

As results show, the proposed method allows us to track the diaphragm in projec-
tion data with very high accuracy. The model error is slightly higher when con-
sidering larger parts of the model. This is expected because of the diaphragm’s

(a) 0◦ (b) 40◦

(c) 150◦ (d) 180◦

Fig. 3. Diaphragm tracking on clinical data.
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asymmetry. A parabolic model is not a perfect fit for every perspective. Never-
theless, the diaphragm top can still be tracked very accurately, even if the real
contour is asymmetric. This is sufficient for compensation of respiratory motion
as previous studies have shown that it is highly correlated to the respiratory
motion of the heart [4]. A very low Euclidean distance of 0.62± 0.60 proves that
the vertex of the parabolic model is an excellent estimate of the diaphragm top.
Visual inspection of tracking results in clinical projection data suggests equally
good accuracy as the tracking in phantom data.

The presented method works well even if parts of the diaphragm are occluded
due to bad contrast or overlap with other organs, e.g. the heart. However, high
density objects, e.g. catheters, that are located close to the diaphragm contour
have to be interpolated. Otherwise the parabola might be pulled towards them.

Future work will deal with the extraction of a 1-D respiratory signal based
on the tracked position of the diaphragm top. The respiratory signal can then
be used to compensate for respiratory motion in cardiac reconstruction.
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