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Abstract

In this paper an original method for integrating Artificial Neural Networks (ANN) with Hidden
Markov Models (HMM) is proposed. ANNs are suitable to perform phonetic classification, whereas
HMMs have been proven successful at modeling the temporal structure of the speech signal. In the
approach described here, the ANN outputs constitute the sequence of observation vectors for the HMM.
An algorithm is proposed for global optimization of all the parameters. Results on speaker-independent
recognition experiments using this integrated ANN-HMM system on the TIMIT continuous speech
database are reported.

1 Introduction

In spite of the fact that speech exhibits features that cannot be represented by a first-order Markov model,
Hidden Markov Models (HMMs) of speech units (e.g., phonemes) have been used with a good degree of
success in Automatic Speech Recognition (ASR) (Rabiner & Levinson 85; Lee & Hon 89). Artificial Neural
Networks (ANNs) have proven to be useful for classifying speech properties and phonemes based on the
analysis of a speech segment of limited duration (Bengio et al 89; see Lippman 89 for review). Various
attempts have been made to interpret the time evolution of ANN outputs. Worth mentionning is the post-
processor proposed by Robinson and Fallside (1990) which uses dynamic programming with duration and
bigram constraints. Along a similar line, researchers have attempted to combine the classification power
of ANNs with the time-domain modeling capability of HMMs (Bengio et al 90; Bourlard & Wellekens 88;
Franzini, Lee & Waibel 90; Morgan & Bourlard 90) or to formalize HMMs in the framework of ANN theory
(Bridle 90; Levin 90). In this paper, continuous densities HMMs (CDHMMSs) are considered in conjunction
with networks trained with the generalized delta rule (Rumelhart et al 86). It is shown how to perform a
joint global optimization of both the ANN and the HMM parameter estimation. In the proposed algorithm,
the gradient of the optimization criterion with respect to the transformed observations is computed for the
HMM system. The HMM can be trained with traditional methods (Rabiner 89) with which the gradient
of an optimization criterion can be computed. This gradient is sent to the ANN for the estimation of
the weight associated to each connection of the network. No assumption need to be made or constraints
imposed on the network outputs, except that the network output distribution should be modeled by a
mixture of multivariate gaussians. Multiple ANNs are combined and an incremental design method is
described in which specialized networks are integrated to the recognition system in order to improve its
performance.

2 Related Work

Interesting papers have been published recently, describing attempts at combining ANNs with HMMs. In
some of the proposed approaches (e.g., Franzini, Lee & Waibel 90; Bridle 90) the activation value of each
output node of the network corresponds to P(observation | state), the observation probability conditional
to the state of the HMM (that will be indicated later as b; ;). The ANN is trained to compute these
observation probabilities for the best sequence of states produced by the alignment. In (Franzini, Lee &
Waibel 90) the input data are aligned with the model of the spoken utterance with the Viterbi algorithm.
In this case, the observation probabilities are approximated by the network outputs. Another approach was
proposed by Bridle (1990) and consists in computing the gradient of an optimization criterion with respect
to all the observation probabilities and to use gradient descent to estimate network parameters (including
the parameters of the HMM, which is viewed as a recurrent ANN). Other hybrid systems combining ANNs
with HMMs (e.g., Bourlard & Wellekens 88; Morgan & Bourlard 90) theoretically require that the ANN



parameter estimation has converged to the global minimum in order to express the posterior probability
P(state | observation). Our previous work on hybrid models (Bengio et al 90) used ANNs merely to
compute an additional set of symbols considered as observations for a discrete HMM. A vector-quantized
codebook was generated for these parameters and added to codebooks obtained for other popular parameter
sets. This did not require any assumption on the network outputs but had the disadvantage that the ANN
and the HMM were optimized separately. The method described in the present paper allows to perform
global parameter optimization by transmitting to the ANN a gradient computed for the HMM.

3 Gradient Computation in the hybrid ANN/HMM system

For this paper, only left-to-right HMMs with a single final state are assumed. Let Y; be the vector of ANN
outputs at time t. These outputs are considered as observations of a CDHMM used in the scheme shown
in Figure 1. Let Y;I be the whole observation sequence for the HMM, T is the length of the observation
sequence, and Y; a particular observation, made when the HMM is in the state S; at time t. Let a;; be
the transition probability from state i to state j. The probability that the HMM generates Y; in state .S;
at time t is denoted as b; ; = P(Y; | Sy = {) Algorithms (Rabiner 89) allow one to efficiently compute the
following probabilities for partial sequences (up to time ¢, from time ¢+1 on) and the posterior probabilities
of state occupancy:
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with appropriate boundary conditions. If the task is to model isolated units (e.g., isolated words), there will
be multiple models w, one for each unit. For continuous speech recognition, unit models (e.g. phonemes)
are concatenated to make word and sentence models. The likelihood that a HMM has generated the
observation corresponding to the pronounciation of the unit w is L, = ag, r, where F, is the final state
for model w. HMM parameters can be estimated with different criteria. Two popular criteria are Maximum
Likelihood (ML) and Maximum Mutual Information (MMI). Modeling with these two criteria is discussed
in (Nadas, Nahamoo & Picheny 89). Maximum Likelihood Estimation (MLE) is based on the maximization
of the criterion C expressed as Cyrrp = L. where, for isolated unit modeling, ¢ represents the pronounced
unit. Let us define
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In the case of Maximum Mutual Information Estimation (MMIE) for isolated unit modeling, the following
criterion can be used:
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Assuming equal prior probabilities for each model, maximizing CysprrE as in equation 3 also maximizes the
mutual information 7. For continuous speech, we assume that there is a single HMM built by concatenating
unit models. During {raining, we consider a constrained model 7 that is made of the concatenation of the
units that form the training sentence. On the other hand, during recognition all the transitions from one
unit to another one are possible and we use an unconstrained model p, for example a loop model (see Lee
& Hon 89). Hence, for continuous speech, Cyrarrp can be expressed as
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L; = ap, r denotes the likelihood of the training model and L, = «y, » denotes the likelihood of the
recognition model. Assume b; ; can be represented by gaussian mixtures as follows:
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where n is the number of observation features of the HMM. The transition probabilities a;;, normal
distribution mean vectors py, covariance matrices Xy, and gains 7 can be estimated as in (Rabiner 89). A
derivative of the cost function with respect to b; ; can be computed and used for estimating the parameters
of the ANN as it will be shown in the next section.

4 Estimation of ANN parameters
As the optimization criterion C depends on the parameters Y,/ computed by the ANN, it is possible to

express C as a function of them and derive the following equation, using the chain rule:
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for all the ANN output units j (Yj¢ is the j1* element of the network output vector Y;). The negative of
this gradient can be used with backpropagation * to estimate the ANN weights w,,,,. In the case of MLE,
the derivative of Cprr g with respect to b; ; is simply
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where model is the training model (the correct word model, in the case of isolated units modeling). In

the case of MMIE, the gradient of the optimization criterion Cyrprrg with respect to the observation

probabilities ; ; can be expressed as (fgct = % 66th where H is defined as in equations 2 and 5 for isolated

and continuous speech modeling, respectively. In the case of isolated units modeling, for states ¢ that are
in a unit model w:
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For continuous speech, we have the following derivative:
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In general, for every optimization criterion C that can be expressed as a differentiable function of the

likelihood L, it is possible to compute %. By differentiating equation (6), gl;,’ﬂ’ can be expressed as
follows:
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where dy, i; is the element (1,j) of the inverse of the covariance matrix (X=1) for the k'* gaussian distribution
and py; is the ['" element of the k' gaussian mean vector ;. Then, following Bridle (1990), it is possible
to compute using (1)
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for any hidden Markov model, where model is w for isolated units modeling, or p (recognition model) or 7
(training model) for continous speech modeling.

5 Experimental Results

A preliminary experiment has been performed using a prototype system based on the integration of ANNs
with HMMs. The task is the recognition of plosive sounds in every context and pronounced by a large
speaker population. The TIMIT continuous speech database (Zue, Seneff & Glass 90) has been used for
this purpose. SI and SX sentences from regions 2, 3 and 6 were used, with 1080 training sentences and 224

1Tt replaces the usual OFEp/0Y;; = (Yj; — target;) for output units, for a particular pattern p, as used in (Rumelhart et
al 86), where target;; would be the desired output at time ¢ for unit j.
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Figure 1: Extension of the ANN/HMM hybrid to a hierarchy of modules, with three levels.

Table 1: Comparative Results

% rec | % ins | % del | % subs | % acc
ANNs 85 32 0.04 15 53
ANNs+HMM 86 11 0.70 13 75
ANNs+HMM+global opt. 90 3.8 1.4 9.0 86

test sentences, 135 training speakers and 28 test speakers 2. The following 8 classes have been considered:
/p/,/t/,/k/,/b/,/d/,/e/,/dx/3, /all other phonemes/ Speaker-independent recognition of plosive sounds in
continuous speech is a particularly difficult task because these sounds are made of short and non-stationary
events that are often confused with other acoustically similar consonants or may be included into other
unit segments by a recognition system.

The experimental system is based on the scheme shown in Figure 1. Rather than having a single ANN
that computes the vector Y of parameters, we have a hierarchy of networks. Such an architecture 1s built
on three levels. Level 3 contains the HMMs. Level 2 is made of a single ANN that acts as an integrator
of parameters generated by more specialized ANNs. ANN1 is a linear network that initially computes the
principal components of the concatenated output vectors of the lower level networks (ANN2 and ANNS3).
At level 1, two ANNs are initially trained to perform plosive recognition (ANN3) and broad classification
(ANN2) respectively. In the experiment described below, the combined network (ANN14+ANN24+ANN3)
has 23578 weights. The broad classification net (ANN2) has five outputs corresponding to five broad
categories*. The twelve input nodes to ANN2 are the energies of five band-pass filters in the time domain
covering the range up to 7 kHz, the signal total energy, and their six time derivatives. The plosive
recognition net (ANN3) has sixteen outputs corresponding to place, manner and degree of voicing, with
different instantiations of each place nodes depending on the right context®. The 74 inputs to ANN3 are
the outputs of 32 Bark-scaled triangular filters computed from the short-time Fast Fourier Transform of

2The training speakers were those with initial between “a” and “r” inclusively; the remaining speakers were used for test.

3The flapped alveolar plosive /dz/ is considered as a distinct phoneme in the TIMIT database.

4non-nasal sonorant, nasal, plosive, fricative, and silence.

5Each of the four different places of articulation (labial, alveolar, velar, and flapped alveolar) corresponds to two different
nodes, depending on whether the following phoneme has a front or non-front place of articulation. The remaining eight nodes
are labeled: unvoiced plosive, voiced plosive, vocalic front,vocalic non-front, liquid, fricative, nasal, silence.



the windowed signal, 30 property detectors approximating a second order derivative over short intervals
of frequency and time®, 7 slope coefficients describing the frequency derivative of the spectrum, the total
energy and the voicing energy (in the 60-500 Hz band) and their time derivatives, and a measure of distance
(dot product) between neighbouring spectral frames. Input parameters are fed to the networks every 5
msec. ANN2 has time-delay links, while ANN3 has time-delay links between the input nodes and the hidden
layer, and recurrent links between some of the hidden nodes and the output nodes. ANNI1 computes 8
features for the continuous densities HMM. Each of the 11 unit models 7 had 14 states, 28 transitions, 3
self loops, without explicitly modeling the state duration. Each HMM has tied distributions with 3 basic
different distributions characterizing the beginning, middle and final part of a segment modeled by the
unit. Each of these distributions is modeled by a gaussian mixture with 5 densities. The covariance matrix
is assumed to be diagonal since the parameters are initially principal components and this assumption
reduces significantly the number of parameters to be estimated.

In order to assess the value of the proposed approach as well as the improvement brought by the HMM as
a post-processor for time alignment, the performance of the hybrid system was evaluated and compared
with that of a simple post-processor applied to the outputs of the ANNs. The simple post-processor
assigns a symbol to each output frame of the ANNs by comparing the target output vectors with actual
output vectors. It then smooths the resulting string to remove very short segments and merges consecutive
segments that have the same symbol. The comparative results are summarized in Table I. The overall
recognition rate (100% - %deletions - %substitutions) for the 8 classes with the hybrid system after two
training iterations is 90% on a total of 7214 phonemes, and its accuracy (100% - %deletions - %substitutions
- %insertions) is 86%. Note that this is a significative improvement over the performance obtained with a
HMM trained without global optimization (86% recognition and 75% accuracy). The ANNs alone yielded
85% recognition but only 53% accuracy, because of the high number of insertions (32%), mostly due to short
plosive segments. The ANNs perform a good classification but have a noisy output with many insertions.
The HMM eliminates most of these insertions because of its better duration and temporal modeling. In
addition to providing a good temporal model the HMM provides more appropriate target values for the
outputs of the ANN. With these target outputs for the ANN, the hybrid system significantly improves its
performance. It is interesting to note that the effect of equation 11 is to generate a gradient that tends
to bring the output of the ANN closer to the means of the normal densities which are close to the ANN
output as well as consistent with the the training string.

6 Conclusion

A system has been proposed to combine the advantages of ANNs and HMMs for speech recognition. The
parameters of the ANN and HMM subsystems can influence each other. We showed how to perform a
global optimization of such a system by driving the network gradient descent with parameters computed in
the HMM. Encouraged by the results of the above-described initial experiments, we will explore further the
possibilities of such a hybrid system, and extend it to the recognition of all American-English phonemes.
We have seen how such a hybrid system could be extended to integrate multiple ANN modules, which
may be recurrent. Note that the hybrid system can use semi-continuous HMMs rather than continuous
densities HMMs, and this would probably improve the performance by allowing better models at a lower
computational cost. Another interesting extension would be to perform speaker adaptation with the hybrid
system. This could be obtained by first training the system as previously described for multiple speakers,
and in a second step, adapting only the ANN parameters with known sentences from the new speaker. In
such a system, the ANN adaptation represents a tuning of the feature space to the new speaker, whereas the
temporal model remains unchanged (see (Bridle & Cox 91) for a related speaker adaptation mechanism).
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