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Abstract

This work investigates the use of automatic speech processing techniques for the
automatic assessment of children’s speech disorders. The target group were children
with cleft lip and palate (CLP). The speech processing techniques are applied to
evaluate the children’s speech intelligibility and their articulation. Another goal of
this work is to visualize the kind and degree of the pathology in the children’s speech.
Tracking of the children’s therapy progress is also within the reach of the system.

Cleft lip and palate is the most common orofacial alteration. Even after adequate
surgery, speech and hearing is still affected. The articulation or speech disorders of
the children consist of typical misarticulations such as backing of consonants and
enhanced nasal air emission.

State-of-the-art evaluation of speech disorders is performed perceptively by hu-
man listeners. This method, however, is hampered by inter- and intra-individual
differences. Therefore, an automatic evaluation is desirable.

We developed PEAKS — the Program for the Evaluation of All Kinds of Speech
disorders. With PEAKS one can record and evaluate speech data via the Internet. It
runs in any web browser and features security concepts such as secure transmission
and user level access control.

The agreement of PEAKS with different human experts is measured with different
correlation coefficients, Kappa, and Alpha. The evaluation procedures for intelligi-
bility employ Support Vector Machines and Regression. Furthermore, dimensionality
reduction techniques such as LDA, PCA, and Sammon mapping are used for the
visualization and the feature reduction. As input for these algorithms typical speech
processing features such as MFCCs as well as specialized feature sets for prosody,
pronunciation, and hypernasalization are employed. Another approach of this work
is to use a children’s speech recognizer to model a naïve listener. If the recording
conditions are kept constant, the speaker should be the only varying factor. Hence,
the recognition rate should resemble the intelligibility of the speaker.

Collection of patient speech data was performed in Erlangen from 2002 until 2008.
312 children with CLP were recorded. Control groups were gathered in four major
cities of Germany to cover several regions of dialect. 726 control data sets were
acquired.

The experimental results showed that the automatic system yields a high and
significant agreement to the human raters for global parameters such as intelligibility
as well as single articulation disorders. The system is in the same range as the
human raters. The intelligibility assessment was shown to be independent of the
region of dialect. The visualization of the speech data also showed high agreement
to perceptively rated criteria. Artifacts which were caused by the use of multiple
microphones were removed.



Übersicht

Diese Arbeit untersucht die Verwendung von automatischen Sprachverarbeitungs-
techniken für die automatische Bewertung von Kindern mit Sprechstörungen. Die
Zielgruppe waren Kinder mit Lippen-Kiefer-Gaumenspalte (LKG). Die Sprachverar-
beitungstechniken werden verwendet, um die Verständlichkeit und die Artikulation
der Kinder zu bewerten. Ein weiteres Ziel von dieser Arbeit ist die Visualisierung
der Art und des Grades der Pathologie in der Kindersprache. Verlaufskontrolle der
Therapie der Kinder ist ebenfalls innerhalb der Reichweite des Systems.

Lippen-Kiefer-Gaumenspalte ist die häufigste orofaziale Deformation. Auch nach
ausreichender chirurgischer Behandlung sind Sprech- und Hörvermögen immer noch
betroffen. Die Artikulations- oder Sprechstörungen der Kinder enthalten typische
Fehlartikulationen wie Rückverlagerung von Konsonanten und nasale Luft-Emission
bei Vokalen.

Bewertung von Sprechstörungen erfolgt durch menschliche Bewerter nach dem
aktuellen Stand der Technik. Diese Methode unterliegt jedoch inter- und intra-
individuellen Unterschieden. Daher wird eine automatische Auswertung ist wün-
schenswert.

Wir entwickelten PEAKS - Das Programm zur Evaluation und Analyse kindlicher
Sprechstörungen. Mit PEAKS kann man Sprachdaten aufzeichnen und über das
Internet auswerten. Es funktioniert in jedem Web-Browser und erfüllt Sicherheits-
Konzepte wie die sichere Übertragung und Zugriffskontrolle auf Benutzer-Ebene.

Die Übereinstimmung von PEAKS mit verschiedenen menschlichen Experten wird
mit verschiedenen Korrelations-Koeffizienten, Kappa, und Alpha bestimmt. Das Be-
wertungsverfahren für die Verständlichkeit benutzt Support Vector Maschinen und
Regression. Darüber hinaus werden Techniken wie LDA, PCA, und Sammon Map-
ping verwendet und die Dimension für eine Visualisierung zu reduzieren. Als Eingabe
für diese Algorithmen werden typische Sprachverarbeitungsmerkmale wie MFCCs
sowie spezielle Merkmale für Prosodie, Aussprache, und Hypernasalität genutzt. Ein
weiterer Ansatz dieser Arbeit ist die Verwendung eines Kindersprache Erkenners zur
Modellierung eines naiven Zuhörers. Wenn die Aufnahme Bedingungen konstant
gehalten werden sollte der einzige variierende Faktor der Mensch sein. Daher kann
die Erkennungsrate die Verständlichkeit des Sprechers repräsentieren.

Die Sammlung von Patientendaten erfolgte in Erlangen von 2002 bis 2008. 312
Kinder mit LKG wurden aufgezeichnet. Kontrollgruppen wurden in vier großen
Städten in Deutschland gesammelt um mehrere regionale Dialekte abzudecken. 726
Kontrolldatensätze wurden aufgezeichnet.

Die experimentellen Ergebnisse zeigten, dass das automatische System hohe und
signifikante Übereinstimmungen zu den menschlichen Bewertern für globale Parame-
ter wie Verständlichkeit sowie einzelne Artikulationsstörungen hat. Das System ist in
der gleichen Größenordnung wie die menschlichen Bewerter. Die Verständlichkeitsbe-
wertung erwies sich als unabhängig von dem regionalen Dialekt. Die Visualisierung
der Sprachdaten zeigte auch eine hohe Zustimmung zu subjektiv bewerteten Krite-
rien. Artefakte, die durch die Verwendung mehrerer Mikrofone entstehen, wurden
entfernt.
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Chapter 1

Introduction

Automatic speech recognition has become a popular and wide-spread technology.
Current state-of-the-art systems work fast and reliably. These techniques proved to
be applicable in many working scenarios:

• Dialogue Systems: When someone calls e.g. his insurance company, one often
gets connected to an automatic dialogue system. The system asks the user for
the reason of his call and connects him to the desired department. So the call
center agents only face questions of their expertise which saves the company a
lot of time and work. Since some systems are also able to connect a phone call
directly to a certain person, some of the agents even prefer to use the system
as directory assistance instead of their telephone book [Haas 07].

• Mobile Phones: Cellular phones often use speech recognition to improve the
comfort in dialing. State-of-the-art phones don’t even have to be trained or
adapted to its user because they are already shipped with a speaker-independent
speech recognizer.

• Dictation Systems: Especially in professions where it is necessary to create
a lot of correspondence dictation systems alleviate the work a lot. Lawyers and
medical doctors often use personalized speech recognizers to write their reports.

• Voice Command Systems: In the automotive sector, so-called hands-free
voice command systems are used to control different appliances, e.g., navigation
systems. So the driver is not required to remove his hands from the steering
wheel.

In medical applications the use of automatic evaluation and expert systems in-
creased rapidly over the last decades. One of the first expert systems was MYCIN
[Bucha 84] which was developed at Stanford University. With a rule set of about 500
rules it could diagnose infectious blood diseases. By asking the user a long set of
textual yes/no questions, it could analyze the type of the bacteria and recommend
antibiotics.

Nowadays medical systems are much more advanced. A currently running project —
Health-e-Child 1 — aims at developing an integrated health care platform for Euro-
pean pediatrics. Its goal is to provide the physician access to biomedical knowledge

1founded by the European Union under grant IST-2004-027749

1
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(A) Planning (B) Respiration (C) Phonation (D) Articulation

Figure 1.1: Simplified scheme of human speech production (engravings from
[Gray 18])

repositories in order to enable him to compare the case he is currently investigating
with similar ones.

Surprisingly, speech recognition techniques are rarely used in medical contexts. In
most of the cases, only dictation systems are used. In this work we show that speech
recognition yields much more than this: If speech recognition techniques are applied
in controlled conditions, they can be used to qualify and quantify different properties
of a person’s speech.

1.1 Motivation

Communication is important for our daily life. About 87.5 % of the inhabitants of
urban areas require communication for their daily work. Communication disorders
cause a major effect on the economy. The cost of care as well as the degradation
of the employment opportunities for people with communication disorders cause a
loss of $154 billion to $186 billion per year to the economy of the United States
of America alone. This equals to 2.5% to 3.0% of the Gross National Product of
the US. These facts indicate that communication disorders are a major challenge
in the 21st century [Ruben 00]. The use of automatic speech processing techniques
will contribute to reduce the cost of the care of communication disorders as well as
provide better rehabilitation of such disorders and hence increase the employment
opportunities for people with such disorders.

Communication between two persons — the sender and the receiver — is a com-
plex process. It is only possible if both communicating sides share the same lan-
guage, i.e., know syntax and morphology of the language. Human languages are
assembled from phonemes which are the smallest structural units that distinguishes
the meaning. An example for a phoneme is /i:/ as it appears in the word “beat”
and “meet”2. A sequence of phonemes forms a word. The word “beat” is constructed
of the phoneme sequence /b i: t/. In turn, sequences of words are used to build
sentences.

Figure 1.1 shows a basic scheme of speech production: First the speech is planned
in the brain (A). Here, the information which is to be transmitted to the receiver

2Note that the phoneme-grapheme relation is not one-to-one and ambiguous.
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is translated into sentences and words. Then a plan has to be created to articulate
these words, i.e., to code the words as a sequence of phonemes.

In order to pronounce the words, air is emitted from the lung (B) through the
larynx. The vocal cords (C) can either be opened widely to produce unvoiced speech,
or closed in order to create voiced speech. In closed condition the vocal folds oscillate
when air streams through them. This produces the primary voice signal — funda-
mental frequency and the harmonic structures.

In the vocal tract (D), finally the phonemes are formed by the human articula-
tors, i.e., lips, teeth, jaw, tongue, and palate. In source-filter theory [Fant 60a] the
vocal tract is modeled as a tube which consists of segments with different diameters.
Depending on the position of the articulators, the diameters of the tube segments vary
and hence also the filter, i.e., the impulse response of the linear system of tube seg-
ments. The actual articulation is then modeled as a convolution of the source signal,
i.e., the fundamental frequency and the filter response of the vocal tract. Filtering of
the source signal forms the final speech signal as it is emitted from the mouth. Differ-
ent positions and motions of the articulators result in distinct speech samples which
can be interpreted as phonemes by other listeners. Hence, each phoneme corresponds
to characteristic movements of the articulators.

Speech production is age- and gender-dependent in general. On the one hand this
is related to anatomical differences. In adults, the vocal cords are between 12.5 mm
and 17.5 mm in length for females and 17 mm to 25mm for males. The resulting
average fundamental frequencies are, therefore, about 125 Hz in males and 210 Hz in
females. In children fundamental frequencies above 300 Hz occur. Also, the length
of the vocal tract changes from about 10 cm in children to 17 cm in adults. On the
other hand, children still acquire speech, i.e., it is a known fact that children’s speech
intelligibility is connected to the age of the children. The older the children, the
higher is their speech intelligibility [Wilpo 96].

In communication disorder theory, three different types of disorders are distin-
guished: language, voice, and articulation disorders. Each of these disorders originate
from a different place in speech production.

Language disorders are caused by the first element of the speech production chain
(cf. Figure 1.1 (A)) — the brain. Such a disorder (e.g. aphasia) can be caused
by a brain injury, a stroke, tumors, or other cerebral diseases. It affects auditory
comprehension, oral-expressive language and reading. These patients may have a
markedly reduced auditory comprehension, are unable to repeat words, and are not
able to name items. The oral-expressive language might be sparse or unintelligible
[Wertz 04].

Language disorders in children are very heterogeneous. They range from expres-
sive difficulties to severe receptive disorders. Reading and writing disorders may ac-
company language disorders. In general, language disorders, learning disorders, atten-
tion deficit disorders, and disruptive behavior are well-known to coincide [Winds 04].
Reading disorders, for example, can be predicted from early difficulties in the expres-
sive language or the comprehension [Catts 97].

Voice disorders occur if either the breathing or the phonation is affected (cf.
Figure 1.1 (B/C)). Severe voice disorders can result from the removal of the larynx.
After the larynx was removed, the trachea is detoured to an opening in the throat
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(tracheostoma). So the patient is able to breath after surgery. In order to enable the
patient to speak again, a one-way shunt valve is placed between the trachea and the
esophagus. So the patient can speak by breathing in, closing the tracheostoma, and
breathing out through the esophagus. This results in an extremely rough voice which
sounds like the voices of early speech synthesis [Schut 02, Hader 06a].

The cause of articulation disorders is the last element in the chain of speech
production (cf. Figure 1.1 (D)). Such problems can arise from structural changes of
the vocal tract. For the case of children with cleft lip and palate (CLP) — who are
investigated in this work — the main causes are enhanced nasal air emission which
leads to altered nasality, a shift in localization of articulation (e.g. using a /d/ built
with the tip of the tongue instead of a /g/ built with the back of the tongue or vice
versa), and a modified articulatory tension [Hardi 98].

1.2 State-of-the-art Diagnostics in Voice and Artic-
ulation Disorders

Each of these disorders is evaluated with a different assessment scheme. For the
evaluation of language disorders, the subject usually has to produce speech, e.g. in
standardized interviews. Voice disorder evaluation relies mainly on sustained vowels.
In order to identify the properties of an articulation disorder, the subjects have to
pronounce certain words which cover all phones of the respective language. Except
for voice disorders, most of the evaluations are done subjectively. Thus, the results
can hold large differences between different experts [Paal 05].

In order to attenuate the differences between multiple experts, the mean of their
opinion is usually formed for scientific purposes. This inter-subjectively verified mean
is then often called objective in the literature. However, it is still obtained subjectively
and contains interpretations and influences. Nevertheless, this is the only method that
can create a “gold standard” which is not just dependent on a single opinion if no
objective methods are available.

In clinical practice, however, it is not possible to do all evaluations with a panel
of experts. Therefore, just a single expert assesses the disorder. This method works
quite well as long as the therapist sees the patient regularly and the therapist does
not change. However, it is difficult to compare the subjective evaluations. Thus,
if panels of experts are too time-consuming and single experts are not reliable, an
objective evaluation method is required.

In speech therapy only few objective evaluation methods are known. Most of them
are based on the examination of sustained vowels, i.e., jitter and shimmer computed
on these vowels. For the dysphonia severity index (DSI) [Wuyts 00], for example, the
subject has to pronounce an /a:/ as long as possible. Furthermore, he has to produce
a frequency as high as possible and a vowel as quiet as possible. The severity is then
computed from the maximum phonation time, the lowest phonation energy, the mean
jitter, and the highest fundamental frequency which was reached.

Recently, a novel objective method for the assessment of the intelligibility was
presented by our group [Hader 04] for the substitute voices of laryngectomees. It
is the first objective method which analyses continuous speech. Previous automatic
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methods only evaluated sustained vowels. The idea is to use a word recognizer instead
of a speech therapist as “listener”. The recognizer was trained with normal speech of
adults from all dialect regions of Germany. As shown in [Stemm05], the recognizer
produces a stable recognition with a small — but not negligible — error rate. When
the recognizer is confronted with a severe voice disorder, the recognition rate drops
dramatically. If the test is done in controlled conditions and all other causes for bad
recognition like noise or a bad microphone are eliminated, this effect can be used to
obtain an estimate for the intelligibility of the test subject.

1.3 Contribution of this Work

In this work we extend the approach from [Hader 04] to assess the speech of children
with CLP. This task is more difficult than the analysis of adults’ voice disorders.
In comparison to adults’ speech, the speech of children shows a much wider spectral
variability which makes speech recognition more difficult in general [Wilpo 96, Lee 97,
Li 01].

During this work a client-server platform to analyze the children’s speech data
was created. Due to the high demand from the medical cooperation partners, soon
more studies were performed using our system. Therefore, it is now called “Platform
for Evaluation and Analysis of all Kinds of Speech” (PEAKS) [Maier 07b].

The client runs in any web browser with Java support without any installation
routines. It is platform-independent and was tested on Linux, Windows, and Mac
operating systems. So the therapists can record patients’ data with a standard PC
which is connected to the Internet without any modifications or upgrades. In order
to get a similar audio quality with the different PCs, we use USB headsets which
have their own sound card attached. The data are digitized by the headset which
ensures a comparable quality on any PC.

In order to enable recording without Internet, a portable version of PEAKS was
created as well. Therefore, a local server which stores the recordings until the com-
puter is connected to the Internet again is installed on a portable computer.

The Server does all the evaluations and analyses. It is installed on a Linux system
and runs the analysis tools of the Chair of Pattern recognition which have been
developed there for the last 20 years. As soon as a client transmits data to the
server, the data is stored and different analyses can be requested by the client. The
server supports three main types of analyses:

• intelligibility measurement,

• articulation assessment, and

• visualization.

Using these analyses the speech data can be evaluated repeatedly which enables a
tracking of the patient’s development during the speech therapy.
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1.3.1 Intelligibility Measurement

The first main topic in this work is the automatic measurement of the intelligibility
of children’s speech. Usually, the children are shown pictograms whose names have
to be uttered in order to test their speech. The evaluation of children’s speech is
much more difficult than the measurement of the intelligibility of adults’ speech due
to the fact that the automatic recognition is more complex and that the reference
of the test are pictograms. These pictograms can be misunderstood easily: e.g. the
pictogram of the “hunter” is often named “a man with a dog”. Thus, the therapist
has to correct the child. Another reason for the therapist to interfere is that children
with articulation disorders often do not want to talk. Then the therapist has to
encourage the child to say the target words. To compensate these effects we apply
several techniques:

• Speaker recognition: In order to enable the therapist to interfere during the
speech test, the child’s audio data and the therapist’s data have to be separated
automatically. This is done with speaker recognition techniques: Directly after
the registration of a new therapist, the system asks the therapist to perform
a recording of his own speech. With these data a speaker model is generated.
Using the model and a background model for various children, the data of each
speech test can be separated.

• Speaker adaptation: Children’s speech shows a high variablity per se. This
effect has to be compensated. Adaptation techniques have shown to increase
recognition performance and robustness in various difficult acoustic conditions
[Maier 05a, Gales 96]. In this work we show that it improves the quality of the
intelligibility measurement as well.

• Word spotting: The setup of the speech test is designed to analyze only the
words which appear in the test. Therefore, word spotting has to be applied to
recognize just the words which are relevant for the speech test. Analyses would
be distorted if additional words would be analyzed by the system.

• Speech recognition: In order to model a “naive” listener, we apply a speech
recognizer which is trained with speech data of children without CLP. Since the
words which should be uttered by the patient are known a priori and all the
test conditions are kept equal, a recognition rate can be calculated. This rate
represents the intelligibility of the speaker because it is the only factor that is
changed during the recordings. So we can use standard evaluation methods for
speech recognizers to assess the intelligibility of a patient.

• Prosodic feature extraction: The human rating of intelligibility is depen-
dent on the speaking style. Children who speak faster and more vivid are
perceived as better intelligible although the recognition performance is equal to
other children with slightly lower intelligibility. To compensate this effect the
prosodic information is included to the experts’ rating estimation procedure.

By combination of these techniques we estimate a global mean of experts’ intelligibil-
ity score. Furthermore, we predict the intelligibility scores of the individual experts
with the analysis methods shown above.
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1.3.2 Articulation Assessment

A more refined analysis of certain properties of the speech data is the articulation
assessment. Its goal is to find defected phones or typical misarticulations which are
not properly articulated by the patient. This can be performed on different levels of
detail. Note that the features of the more detailed levels can always be used on a
less detailed level by feature transformations like averaging over the respective time
domain.

• Test level: The whole test is used for the analysis. This yields scores for
different properties of the patient’s speech. This procedure is similar to the
evaluation of the intelligibility.

• Word level: Single words are analyzed in order to find particular speech prob-
lems. Therefore, a list of pathologic and non-pathologic alternatives of the test’s
words has to be generated. These words are then added to the recognizer’s vo-
cabulary. The generation of this list can be done by a rule set [Hessl 05] or
a data-driven method which analyses the transliteration of the data. Further-
more, this can be combined with pronunciation features [Hacke 05a, Hacke 05b].
These features are designed to model the pronunciation independent of the lan-
guage. Basically these features represent the difference between correctly and
incorrectly pronounced words. Although they were designed for the assessment
of non-native speech they can be used to assess the speech of children with cleft
lip and palate as well because the features were designed to model the deviation
from “normal” speech.

• Phone level: By application of a phone recognizer, the evaluation is done
for each phone individually. Similar pronunciation features like on word level
are computed for each phone. Although the classification rates are low these
features improve the classification process on word level.

• Frame level: A frame is a short time segment of speech data. For the case
of this thesis, its length is 16 ms. This is about one fifth of the duration of
an average phone. A decision for the class of each frame is done every 10 ms.
Although the time is short the combination of many decisions achieves good
results on lower levels of detail.

The articulation assessment is used to identify probable articulation problems of a
patient. For this automatic testing procedure, there is no need for a speech therapist
to be present. The test could also be performed by an assistant who was instructed
how to use the system. In this manner screening of children at a certain age, e.g.
before they enroll in primary school, could be performed in order to detect children
with articulation problems. If such a problem is detected by the automatic system,
it is advisable to consult a speech therapist whether further therapy is necessary.
The intention of PEAKS is to create a diagnostic tool rather than to replace the
therapist3.

3Of course one can estimate the body temperature of a patient just with his own hand. However,
in modern medicine the use of a thermometer has prevailed.
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1.3.3 Visualization

Furthermore, we show a method to visualize speech disorders. The idea is to create
a 2-D or 3-D map which shows well-documented patients and is used to compare
new patients to the well-documented ones. This gives the medical personnel a better
understanding of the articulation disorder and how it is related to others. The goal
of our research is to find a method which maps the patient into a space with known
regions. These regions should represent the properties of the patients’ speech. So
an “articulation disorder space” is generated. One of the most important features
of this space is that patients with similar articulation disorders are mapped close
together. Therefore, we introduced a mapping method [Hader 06b] to visualize differ-
ences between different speakers for voice disorders. This mapping method projects
the parameters of a speaker-adapted ASR to a 2-D or 3-D space which can be visual-
ized easily. Due to the large number of parameters, we chose a nonlinear dimension
reduction method which preserves the topology of the high-dimensional space. The
method was applied to the children’s speech data of this work. In the resulting map,
meaningful regions were found which are used to describe the voice disorder in detail.

1.3.4 Tracking of the Therapy’s Progress

All of the different methods to analyze articulation disorders are used to track the
progress of the therapy. We show that the intelligibility of children increases with
their age. Age-dependency is a very important attribute which has to be taken into
account in the system. If age-dependent values are supplied in normal children, the
system can be used by speech therapists to evaluate different methods of treatment.
Thus, the best method to handle each articulation disorder can be found. This,
however, is not topic of this thesis.

1.4 Outline of this Work

This work is organized as follows: The second chapter deals with cleft lip and palate.
The origin of the structural changes is described as far as it is known today. The
consequences of these changes are mentioned as well. The primary closure of the cleft
lip or palate is often performed in the age from 6 to 15 months. However, further
treatment is often necessary in order to improve the quality of speech in the children.
At the end of the chapter, the effects of the clefting on speech production and their
acoustic properties are outlined.

In the third chapter, the state-of-the-art of the evaluation of disordered speech is
discussed. Most of the evaluations are done subjectively. Thereby, different strate-
gies can be observed: Some raters give very detailed evaluations where they focus on
aspects while others rather use holistic impressions as their parameters. Often aver-
aging over multiple labelers helps to reduce the subjectivity of each rater in scientific
contexts. However, this is not feasible for clinical practice due to the high costs.
Another way to omit the problem of subjectivity is to use many naive raters instead
of a few experts. Thus, the problem arises that some properties are too specific to
be rated by naive listeners.
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A solution is the application of objective methods. However, only few objective
measurements exist in speech and voice therapy. We present the objective methods
for hoarseness, nasality, and intelligibility. Most of these methods require special
expensive hardware, are too specific, or cause other problems which makes them
infeasible. Chapter 3 is concluded by the description of a method to determine a
proper ground truth which is used throughout this thesis.

The beginning of Chapter 4 introduces the PEAKS system. First the require-
ments of such a system are specified. The system setup describes data and process
management, data acquisition, preprocessing, feature extraction, assessment, report
generation, and where these processes take place. Furthermore, the system’s collab-
oration and security concepts are pointed out.

The following sections contain the mathematical and algorithmic concepts. In
order to compare the speech evaluation by different raters, their agreement has to be
measured. This is done with regression, correlation analysis, and Kappa and Alpha
coefficients of agreement. For assessment by the automatic system, support vector
machines, support vector regression, and Gaussian mixture models (GMMs) are used
in this work. The dimensionality of a vector space is reduced by principal component
analysis, linear discriminant analysis, and the Sammon mapping. Speech processing
techniques from feature extraction over speaker recognition, acoustic modeling, lan-
guage modeling, decoding, prosodic analysis, pronunciation analysis are explained as
well. The section is concluded by different techniques for the normalization of age
effects.

All modules of PEAKS are presented in Chapter 4.3. Preprocessing in PEAKS
is mostly speaker segmentation. The features which are extracted by the PEAKS
system are word accuracy, word correctness, prosodic features, and pronunciation
features. Classification is done for the intelligibility assessment and the articulation
assessment. In the end a report with a visualization of the result is generated.

The fifth chapter presents the databases which were used in this work. First the
PLAKSS test which was used for all recordings in this work is described in detail.
Then the recordings of normal children which form the control group of this work
are presented. A description of the speech data of the patient groups which were
collected during this work follows. Chapter 5 ends with the specification of the
training speakers of the recognizer.

Chapter 6 contains the results of the experiments which were done to substantiate
the theories of this work. We present that the speaker segmentation works properly.
This is followed by an elaborate documentation of the experiments on intelligibility
assessment. Next, the results on articulation assessment are presented. The chapter
is concluded by visualizations of articulation disorders.

At the end of this thesis, Chapter 7 gives an outlook on future work, and Chapter 8
summarizes the most important aspects of this work.
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Chapter 2

Cleft Lip and Palate

In this chapter the malformations of the palate and the lip, their genesis, and the
effects on the patient are described. Furthermore, the surgical treatment and the
subsequent therapy according to the interdisciplinary Concept of Erlangen [Wohll 04,
Bautz 08] is introduced. The last section of this chapter states the effects on speech
production and their acoustic properties.

2.1 Epidemiology, Etiology, and Functional Conse-
quences

Orofacial clefting shows a broad spectrum of different clefts [Epple 05]. An anatomical
classification was done by Tessier [Tessi 76]. He assigned the numbers from 0 to 30 to
the positions of the different cleavages. Figure 2.1 displays only the most important
types (numbers 0 to 14 and 30). These types are:

• orofacial clefts (numbers 0 to 7, 30)

– median cleft (number 0)

– unilateral and bilateral clefts (i.e., cleft numbers 1, 2, and 3)

– oblique facial clefts (numbers 4 and 5)

– lateral facial cleft (numbers 6 and 7)

– median mandibular cleft (number 30)

• craniofacial clefts (numbers 8 to 14)

• rare clefts (numbers 15 to 29; not included in Figure 2.1)

In this work we focus on unilateral cleft lip (UCL), the bilateral cleft lip (BCL),
the cleft palate (CP), or their combinations — unilateral cleft lip and palate (UCLP)
and bilateral cleft lip and palate (BCLP) — denoted with numbers 0 to 3 in the
scheme of Tessier. The terms cleft lip (CL) or cleft lip and palate (CLP) are used to
characterize the union of the respective unilateral and bilateral groups.

11
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Figure 2.1: Classification of different cleft types according to Tessier [Tessi 76] (Figure
taken from [Epple 05]).

2.1.1 Epidemiology

CLP is the most common malformation of the head. It constitutes almost two thirds
of the major facial defects and almost 80% of all orofacial clefts [Epple 05]. Its
prevalence differs in different races from 1 in 400 to 500 newborns in Asians to 1
in 1500 to 2000 in African Americans. The prevalence in Caucasians is 1 in 750 to
900 births [Tolar 98, Kawam90]. Clefts on the left side are—for reasons that are yet
unclear—more often than on the right side [Epple 05].
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Figure 2.2: Stages of the embryonic development of lip and palate: A) illustrates
the paired horizontal and coronal sections of the head at week 7. B) shows the
development until week 8. The palatal shelves elevate to a horizontal position above
the tongue. C) shows the development until week 9–10: the palatal shelves fuse
together with the nasal septum to form the primary and soft palate (adapted from
[Stani 04]).

2.1.2 Embryology and Etiology

The lip and the palate develop in the human embryo from week 7 to week 10. Fig-
ure 2.2 displays the process in three stages. In week 7 (Figure 2.2 A) the medial nasal
prominences join to form the inter-maxillary segment. Until week 8 (Figure 2.2 B)
the palatal shelves lift and begin to move to the center. The arrows mark the initial
position of contact of both shelves. In week 9–10 the fusion of the palatal shelves
is complete. The anterior part forms the primary palate while the posterior part
develops to the soft palate and the uvula [Stani 04].

Basically all types of CLP are caused by an insufficient contact or fusion of either
the palatal shelves (cleft palate) or the maxillary segment (cleft lip). It is suspected
that besides the merging of the palatal shelves and the maxillary segment the size
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of the facial processes affects clefting as well. Races with a rather small median
nasal process like Asians have therefore a higher tendency to clefting than African
Americans [Epple 05].

The causes of CLP are manifold and include genetic and environmental factors.
In 15 % of the CLP cases, the clefting is part of a syndrome. In fact, there are
171 syndromes which involve CLP. However, transmission of the cleft phenotype in
a Mendelian manner occurs seldom. By now the molecular basis of human clefting
was not found. Nevertheless, some genes which might contribute to clefting were
identified [Epple 05, Stani 04]. The list of environmental factors which increase the
chance of clefting is growing. By now the following factors were identified [Carin 03]
to increase the risk of facial clefting:

• Alcohol

• Cigarette smoke

• Inappropriate nutrition

• Steroids

• Anticonvulsants1

• High altitude

2.1.3 Functional Consequences

CLP can result in morphological and functional disorders [Wanti 02] whereat one
has to differentiate primary from secondary disorders [Milla 01, Rosan 02]. Primary
disorders include problems of nutrition, swallowing, breathing and mimic disorders
due to the clefting. After surgical closure of the cleft, most of the primary disorders
are corrected. Speech and voice disorders [Schon 94, Lierd 03] as well as conductive
hearing loss caused by insufficient aeration of the middle ear2 [Palio 05, Schon 99] are
secondary disorders. Speech disorders can still be present after reconstructive surgical
treatment.

The characteristics of articulation disorders are mainly a combination of different
articulatory features, e.g. enhanced nasal air emissions that lead to altered nasality,
a shift in localization of articulation (e.g. using a /d/ built with the tip of the tongue
instead of a /g/ built with back of the tongue or vice versa), and a modified articula-
tory tension (e.g. weakening of the plosives /t/, /k/, /p/) [Hardi 98]. They affect not
only intelligibility but therewith the social competence and emotional development
of a child.

In the literature many examples are found. However, the number and kind of the
reported features is vast and inconsistent in some cases. Therefore, we will first give
an overview on the literature and summarize the structure of the speech of children
with CLP in the end.

1anti-epileptic drugs to suppress the excessive firing of neurons
2The clefting and its closure might influence the function of the Eustachian tube. Hence, pres-

surization might not be possible and the hearing ability is reduced.
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Study # CL # CP # UCLP # BCLP # CONTR
∑

/
[Karli 93b] - - 84 19 40 143
[Peter 95] - 11 53 46 - 110
[Ysunz 97] - 15 - - - 15
[Laiti 98] 82 82 85 31 - 280
[Bress 99b] - 1 92 35 - 128
[Schon 99] 16 96 81 77 - 270
[Laiti 00] 49 34 33 17 - 133
[Pampl 00] - 58 - - - 58
[Lierd 01] - - 2 - - 2
[Nakaj 01] - 33 74 28 168 303
[Pulkk 01] - 35 30 - - 65
[Sell 01] - - 647 - - 647
[Timmo 01] - 27 17 - - 44
[Young 01] - - 38 - - 38
[Bress 02] - - - 124 - 124
[Gibbo 02] - 27 - - - 27
[Lierd 02] - - 19 18 54 91
[Lohma 02] - 22 - - - 22
[Pulkk 02] 38 33 44 19 - 134
[Lierd 03] - - 8 6 n/a 14
[Morri 03] - 20 - - - 20
[Schus 03] - 21 30 - 51
[Lierd 04] 103 - 103
[Ysunz 04] - - 70 - - 70
[Brunn 05] - 11 - - - 11
[Palio 05] - 9 19 14 - 42
[Pampl 05] - 90 - - - 90
[Laiti 06] - - 17 - 17 34
[Willa 06] - - 38 - 36 74

Table 2.1: Studies on differences in the characteristics of speech of children and ado-
lescents with cleft lip (CL), cleft palate (CP), unilateral cleft lip and palate (UCLP),
and bilateral cleft lip and palate (BCLP); The table reports the number of investi-
gated subjects. Some studies compare the speech to a control group (CONTR).
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In [Karli 93b] it is shown that the speech of children with unilateral cleft lip and
palate (UCLP) and bilateral cleft lip and palate (BCLP) is poorer than the speech of
the children in the control group (CONTR) with respect to hypernasality, intelligibil-
ity, nasal escape, hyponasality, and other deviant articulation caused by CLP. Speech
of children with BCLP is significantly poorer than speech of children with UCLP in
intelligibility and other deviant articulation caused by CLP. [Lierd 02] reports that
UCLP and BCLP speech is worse than CONTR in intelligibility, hypernasality, nasal
emission, nasalance measured with a nasometer [Kay 94], and the mirror fogging test.
In contradiction to [Karli 93b], no significant differences between UCLP and BCLP
are reported in this study which might be related to the number of tested subjects
(cf. Table 2.1). In [Lierd 03] the results of [Lierd 02] are confirmed with even fewer
subjects. Furthermore, the voice quality is measured with the Dysphonia Severity
Index (DSI) [Wuyts 00]. No significant differences between UCLP and BCLP are
found. The voice quality measured with DSI is normal or just slightly reduced in the
CLP children.

Another feature of speech of children with cleft lip and palate is compensatory
articulation and misarticulation. They are caused by anatomic deficits [Pulkk 02].
In order to compensate these deficits, the children learn to form similar but yet
different phones which can result in a chronic speech disorder. It was shown that
this malformed articulation results in a lower rate of speech [Bress 99b]. Double
articulations, i.e., consonants which are articulated with two places of articulation
simultaneously, appear rarely in CLP children [Gibbo 02].

The occurrence of misarticulations of Finnish dental consonants (/r/, /s/, and
/l/) was reported to be maximal in children with bilateral cleft lip and palate while
children with just cleft lip had the lowest number of misarticulations [Laiti 98]. Fur-
thermore, it was shown that the elimination of misarticulations of /s/ and /l/ occurs
more often in the age between 6 and 8 years than the elimination of /r/ misarticula-
tions in Finnish Children [Laiti 00].

[Sell 01] presents a perceptive evaluation of the nasality, the intelligibility and ar-
ticulation errors. Minor and serious consonant errors were annotated (cf. Table 2.2).
Other consonant errors are rather uncommon according to [Sell 01]. Furthermore, the
intelligibility, the nasality, and the number of consonant errors of 5-year-old children
are worse than those of 12-year-olds.

[Pampl 00] compares CP children with and without compensatory articulation
disorders. The children with compensatory articulation disorders have a significant
delay in language development. [Morri 03] states a comparison between two groups of
CP children at two and three years: The first group had significantly delayed language
development while the second had no delay. The delayed language development
persisted at the age of three years in the first group.

2.2 Treatment
All children of this study were treated according to the Concept of Erlangen [Wohll 04].
The concept states a full interdisciplinary treatment of the children including max-
illofacial surgery, orthodontics, phoniatrics and pedaudiology, oto-rhino-laryngology,
pediatrics, gynecology, geneticists, speech therapy, and parental counseling. As Ta-
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articulation errors
minor errors explanation

lateralization tongue is in a lateral position between
the teeth during articulation

palatalization tongue is touching the palate during ar-
ticulation

interdentalization tongue is between the front teeth dur-
ing articulation

serious errors example
pharyngealization tongue is shifted backwards towards

the pharynx during articulation
glottal articulation the closure of the plosives is done in a

glottal manner instead of a labial. This
is also called laryngeal replacement in
the following.

backing to uvular the tongue is shifted backwards to-
wards the uvula

backing to velar the tongue is shifted backwards to-
wards the soft palate

active nasal fricatives air is emitted though the nose during
the articulation of fricatives

absent pressure consonants plosives are not formed or weakened
during the articulation

nasal realizations the nasal air flow is persistent through-
out the whole word

weak nasalized consonants the consonants are nasalized, i.e., air is
emitted during the articulation of the
consonants

Table 2.2: Minor and serious articulation errors after [Sell 01]
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Concept of Erlangen

first few hours A palatal obturator is used to occlude the clefting.
This helps in the nutrition and the breathing of
the child.

first few days The parents are counseled and informed about oro-
facial cleftings.

6th month The clefts of the lip and the mucosa of the hard
palate are closed. A tympanostomy tube is in-
serted into the eardrum in order to aerate the mid-
dle ear if required. The hearing ability of the child
is tested.

10–15th month The soft palate is closed and, if necessary, a tym-
panostomy tube is inserted into the eardrum.

End of the primary surgical treatment
Follow-up examinations every year

7th year Begin of the orthognathic surgery: Closure of re-
maining clefts between the oral and the nasal cav-
ity

10th year Correction of the jaw (osteotomy)
12th year Alignment of the upper and the lower jaw if nec-

essary
18th year Secondary osteotomy and further speech-

improving interventions if necessary

Table 2.3: Chronological overview of the Concept of Erlangen [Wohll 04]
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Figure 2.3: Closure of the palatal cleft: The hard and soft palate are sewed together
[Hausa 00].

ble 2.3 shows, this concept of treatment starts right from the birth. Just a few hours
after the mother gives birth to a child with CLP, a palatal obturator is inserted into
the mouth of the infant. This prothesis occludes the clefting and supports nutrition
and breathing. In the following days, the parents are further counseled about the dis-
ease of their child [Young 01]. After adequate information of the parents, most feel less
stressed compared to parents whose children have other handicaps [Schus 03]. With
consistent team care including follow-up examinations, treatments, and assistance to
the family, the therapy is alleviated a lot [Peter 95].

Usually the cleft palate children have their primary surgeries within the first two
years of their life. Since multiple attempts on the reconstruction of the palate result
in negative effects on the speech outcome [Bress 02], the number of interventions
is as small as possible in the Concept of Erlangen. Because early closure might
have a positive effect on the pre-linguistic development [Willa 06], the palatoplasty is
performed early. The palatal cleft is closed as displayed in Figure 2.3. The closure of
the soft palate follows at the age of 10 to 15 months. Often a tympanostomy tube is
inserted into the eardrum in order to keep the aeration of the middle ear to prevent
from hearing loss. This concludes the primary surgical treatment.

Speech therapy according to the Concept of Erlangen starts as early as needed,
sometimes right with the birth of the child, e.g. with breastfeeding support. The
therapy is adjusted to the individual needs of the child and the disorder.

In recent research the application of biofeedback training [Ysunz 97, Brunn 05]
was also beneficial. Intensive speech therapy in a summer camp also yields positive
effects in the treatment of articulation disorders [Pampl 05]. The use of the Internet
to support an inexperienced speech pathologist by an experienced pathologist in his
diagnosis is also tried in current research [Karne 05].
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Figure 2.4: After adequate closure, the cleft (left side; age: 6 months) cannot be
recognized anymore (right side; age: 9 years) [Hausa 00].

Sometimes, a second surgery is necessary to remove persistent hypernasality. This
second surgery is independent of the method and timing of the primary palatoplasty
[Pulkk 01]. A few years after the surgery, the cleft is barely recognizable (cf. Fig-
ure 2.4). Additional oral and maxillofacial surgery in the following years provides
further corrections if necessary. Follow-up examinations at least once in a year are
continued until the age of 18.

The interventions have many effects on the speech of these children. While all
surgical methods show good results in the recovery of the clefting, the effect on the
speech outcome can vary, maybe also depending on the type of the surgery [Lierd 04].

2.3 Summary

This chapter described the epidomology, the etiology, the treatment, the functional
consequences, and the characteristics of speech of children with CLP. First, the devel-
opment of the clefting during the different embryonic phases was portrayed. Then, the
treatment—starting from the birth until the adolescence of the child—was explained
in detail. The consequences of the cleft on nutrition, breathing, and especially on the
speaking of the child were also reported. The effects on the speech of the children
with CLP are various. As the most important aspects the following were recorded:

• With the perceptive assessment of the intelligibility and the measurement of
the nasal airflow, significant differences between normal children and CLP chil-
dren were measured [Karli 93b, Lierd 02, Lierd 03]. Significant differences in the
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intelligibility between unilateral CLP and bilateral CLP were found [Karli 93b]
but could not be verified by all articles [Lierd 02, Lierd 03].

• The speech of the CLP children contains mild hyper- and hyponasality, dys-
phonia, and typical cleft type characteristics (interdentalization, lateralization,
backing, glottal articulation, and absent pressure consonants) [Sell 01].

• No significant differences between isolated cleft palate and cleft lip and palate
exist in the frequency of occurrence of certain articulation disorders. Further-
more, the speech outcome is similar in CP and CLP children [Timmo 01]. A re-
lation between the size of the cleft and the speech deficits was found [Lohma 02].

• Delays in speech development [Pampl 00, Morri 03]—especially in children with
bilateral cleft lip and palate [Nakaj 01] or syndromic forms of the disorder
[Lierd 01]—and lower assertiveness in conversation [Laiti 06] were reported.
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Chapter 3

Evaluation of Disordered Speech

This chapter is about the judging of speech, the quality and the characteristics of
the “receiver”. The task of evaluation and assessment of speech data from a certain
speaker—called test subject in the following—is to assign a label which corresponds
to a certain property of the speaker’s speech. Basically, this process is the same
for any criterion but different scales and evaluation schemes can be chosen. In the
literature many methods to evaluate disordered speech are found. In general, these
can be divided into two groups:

• perceptive evaluations which are performed by a human subject—also called
rater or labeler in this context—and

• objective evaluations obtained by a device or algorithm which is independent
of a human rater.

“Objective measurement” of speech in a sense that it is also independent of the test
subject is not possible for the case of speech evaluation because the test subject has
to utter a sequence of words or vowels in all cases. Therefore, objective measurement
of speech disorders in this context could also be called “instrument-based”.

For the perceptive evaluation, many different methods and scales can be applied.
The two main methods are quantification and qualification. For the quantification
of different properties of speech, direct magnitude estimation and equal-appearing
interval scales are widely used. The qualification of certain characteristics of speech
is often done by classification of small parts of speech like phones or words. Therefore,
often classes like “present” and “not-present” are chosen. However, experienced raters
can even distinguish further grades in such small parts of speech as discussed in
Chapter 3.1.

Objective means exist only for quantitative measurements of nasal emissions
[Kuttn 03, Lierd 02, Hogen 04] and for the detection of secondary voice or speech
disorders [Bress 98, Zevce 02]. But other specific or non-specific articulation disor-
ders in CLP as well as a global assessment of speech quality cannot be sufficiently
objectively quantified. For the global assessment of speech intelligibility, just a sin-
gle automatic approach is found in the literature [Schus 06a]. In Chapter 3.2 these
objective approaches are presented.

Since an automatic system always needs to be trained with a “gold standard”, the
problem of the acquisition of such a reference is addressed at the end of this chapter.

23
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good intermediate badvery good very bad

very badvery good

b) direct magnitude estimation scale

a) equal−appearing interval scale

Figure 3.1: a) shows a five-point equal-appearing interval scale with labels according
to Likert [Liker 32] while b) shows a direct magnitude estimation scale as favored by
[Schia 92].

There, the constraints which have to be met in order to create proper labels for an
automatic system are discussed.

3.1 Perceptive Evaluation
The simplest method to evaluate speech disorders is auditive perception, often per-
formed by speech therapists. For the qualitative assessment, the rater usually assigns
certain nominal labels, i.e., classes to turns, words, or phonemes. Quantitative assess-
ment, however, is more difficult: Usually, the listeners rate the test subject on an easy
to understand scale. For this purpose two different kinds of scales are widely used
[Schia 92]: equal-appearing interval scales and direct magnitude estimation scales (cf.
Figure 3.1).

• Equal-appearing interval scales: They have the advantage, that they are
very easy to understand and that raters get used to them very quickly. If such
a scale is combined with nominal labels e.g. ranging from “very good” to “very
bad”, the scale is called Likert-scale [Liker 32]. Table 3.1 a) shows an example
for a five-point Likert-scale. Likert-scales are wide-spread and used in many
assessment scenarios. In Germany, for example, all school marks follow such a
scale. An absolute value is obtained for each test subject during the assessment
procedure. Commonly used Likert-scales are the internationally used GRBAS
[Hiran 81] and the German RBH [Wendl 05] scales for voice evaluation.

• Direct magnitude estimation scales: These scales focus rather on the dif-
ference between the individual test subjects than on an absolute value. Visual
analog scales, for example, offer the rater a continuum to denote the respective
property (cf. Figure 3.1 b). Starting from the first test subject the rater is
asked to mark the other subjects in the continuum according to the relation



3.1. Perceptive Evaluation 25

metathetic continuum prothetic continuum
eq

ua
l−

ap
pe

ar
in

g 
sc

al
e

eq
ua

l−
ap

pe
ar

in
g 

sc
al

e

direct magnitude estimation scale direct magnitude estimation scale

aL

bL

aL

bL

bD aD bD aD

Figure 3.2: Difference between metathetic and prothetic continua: If the means of
the ratings on an equal-appearing and a direct magnitude estimation scale are plotted
against each other, the metathetic continuum shows a linear relation while the relation
is typically skewed towards the end of the scale in a prothetic continuum [Steve 75].

between the current subject and the other subjects. So, a scale is obtained
which represents the differences between the different test subjects.

According to [Steve 74] two different kinds of continua appear in subjective eval-
uations: Prothetic and metathetic ones. While a human being has no problems to
partition a metathetic space into segments of equal size, a prothetic space cannot be
partitioned by equidistant boundaries that easily. A typical example for a prothetic
continuum is loudness while the pitch of a voice for example is a metathetic contin-
uum. Pitch can be easily partitioned into equal-sized segments (from “very low” to
“very high”) while it is difficult to assign such equidistant boundaries to the loudness.
The question, however, which of two sounds is louder can be answered easily by a hu-
man being. Therefore, Stevens proposes to use direct magnitude scales if a prothetic
continuum is to be rated.

A method to determine whether the continuum to be rated is prothetic or meta-
thetic is to have two disjoint groups of raters label the same group of test subjects
[Steve 75]. One group is given a direct magnitude estimation scale, while the other
group performs the evaluation on an equal-appearing scale. Then the mean value
is calculated for each test subject and the means are plotted against each other. In
order to take the central tendency of the direct magnitude scale into account, the geo-
metric mean is used while the arithmetic mean is taken for the equal-appearing scale.
Figure 3.2 shows the effect: In the metathetic continuum, the relation between both
scales is linear. In the prothetic continuum, the relation is skewed towards the end of
the scale. So, in a prothetic continuum the raters fail to judge the data equidistantly
using an equal-appearing scale. As can be seen in Figure 3.2, the equal-appearing
intervals aL and bL are not of equal size. bD is much larger than aD in the prothetic
case. However, this effect does not affect the rank of the test subjects as long as the
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curve is still monotonically increasing. The scores obtained on such a scale have to
be interpreted rather as ranks than as absolute scores.

Due to this effect, the validity of equal-appearing scales for prothetic continua has
been questioned in the literature [White 02a]. However, the demand that all research
that has been done so far is wrong and has to be repeated with the proper scales is
disproportionate. In fact, the use of direct magnitude estimation scales has also some
disadvantages:

• It is difficult to find a certain point, e.g. the center on such a scale.

• Most raters are used to equal-appearing interval scales. In most rating scenarios,
equal-appearing scales are used.

• Magnitudes obtained by this type of scale have to be interpreted rather as
ranks than as absolute scores since the magnitude of two different raters is still
different.

In order to avoid the problems of in-equal interval sizes, the perceptive scores can
be mapped onto their ranks. Spearman’s rank correlation [Spear 04], for example,
also allows for a comparison in continua which are not equidistant.

In general, both scales still suffer from the same problem: The scale is highly
dependent on the rater who performs the assessment.

3.1.1 Single vs. Multiple Labelers

In order to attenuate the high subjectivity of a single rater, often multiple labelers are
asked to perform the same evaluation. So, the subjectivity of the individual rater is
reduced by computation of the average of multiple raters. Sometimes, this procedure
is already called “objective” in the literature. In the opinion of the author, the term
inter-rater-confirmed-subjective-mean-score is more appropriate for this kind of score.

In clinical practice, the multi-rater evaluation is performed only seldom, because
it is time- and manpower-consuming. Such an effort is often only done for scientific
purposes. This leads to the following problems:

• The ratings have to be performed always by the same rater in order to be
comparable.

• Ratings of a single rater still can show considerable variance.

• The ratings of two different labelers cannot be compared directly, because one
rater might observe more strictly or is more lenient towards his patients.

So, an evaluation with multiple raters is always to be preferred to single labeler
evaluations.
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3.1.2 Expert vs. Naïve Labelers

Previous studies have shown that experience is an important factor that influences the
perceptive estimation of speech disorders leading to inaccurate evaluation by persons
with only few years of experience [Paal 05].

Naïve labelers can only rate data if they are given very clear instructions and if
the task is simple. In intelligibility tests like [Zenne 86], these naïve listeners are asked
to transliterate unknown words and phrases. Later on, the number of the correctly
recognized words represents an intelligibility score. This procedure yields a score
between 0 and 100 % and is often postulated to be much more reliable and appro-
priate for the measurement of intelligibility than equal-appearing interval and direct
magnitude estimation scales [Schia 92, White 02a]. However, this type of evaluation
has still several disadvantages:

• Each speaker gets to read different words and phrases. Therefore, the compara-
bility between test subjects is limited because the distribution of the phones in
the uttered data is not guaranteed to be the same. In fact, some phones might
not appear at all.

• The naïve listeners get used to the limited number of words and phrases, or to
the speech disorders of the patients. Thus, the rate of correctly identified words
increases over time. After the assessment of a certain number of test subjects
the constraint that the words and phrases are unknown to the listener is no
longer met. Thus, either the vocabulary of the test has to be changed or the
naïve listener has to be replaced.

• This often wrongly “objective” called procedure varies a lot between different
raters: The mean values between different raters varied up to 21 percent points
in our studies [Hader 07b] while the correlation, i.e., the agreement between the
raters, was highly significant. For scientific purposes, also the mean of several
raters is therefore required.

Parental questionnaires [Bosel 04] can also be found in the literature. These ques-
tionnaires are based on the idea that observations made by the parents allow for
conclusions on the health status of their child. However, they are rather not suffi-
cient [Fisch 05] because parents’ evaluations are usually more influenced by emotional
aspects and their experience.

The previously mentioned points lead us to the conclusion that naïve labelers
only be used for very simple tasks. Again, the use of multiple naïve raters is to be
preferred.

3.1.3 Aspects vs. Holistic Criteria

Experts in speech evaluation, like speech therapists, can judge many different details
of the speech of a test subject. While holistic features, e.g. the speech intelligibility,
have the advantage that they often can be quantified easily even by naïve listeners,
aspects such as nasality have the advantage that they give a much better insight on
the type and extent of the speech disorder.
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An experienced speech therapist can distinguish all the different characteristics
presented in Chapter 2. However, not all speech therapists can quantify these as-
pects. So, the evaluation of details often results only in qualitative labels instead of
a quantification. Furthermore, as presented in [Sell 01], some of these aspects occur
rather seldom. The expert might have to label very much data in order to find a
representative number of the respective aspects of the speech disorder. Hence, the
procedure might be extremely laborious.

The holistic labels can be created much faster, since the expert just has to state
his impression on an equal-appearing interval or a direct magnitude estimation scale.
The labeling of aspects is much more time-consuming and complex. Therefore, only
selected characteristics of the speech disorders of children with CLP will be investi-
gated in this work.

3.2 Objective Evaluation

For the objective evaluation of disordered speech, several methods can be found in the
literature. Especially hoarseness has been investigated well in the literature. Algo-
rithmic evaluation of the fundamental frequency started as early as 1902 [Buder 00].
Most of the algorithms, however, require special phonation protocols which might
lead to misdetection of the hoarseness [Wurzb 06]. Nasality can be measured with
devices like the Nasometer [Kay 94], or it can be detected in sustained vowels by
analysis of the formant structure [Zevce 02]. Recently, the intelligibility of speech
was quantized objectively. However, this was only done for adult speakers so far
[Hader 04, Schus 05, Maier 07d]. In the following these approaches are discussed in
detail.

3.2.1 Hoarseness

Hoarseness is a typical symptom for all kinds of voice disorders. Hence, it is suitable to
describe the severity of a voice disorder. It is caused by an asynchronous oscillation
of the vocal folds or insufficient closure of the glottis. Therefore, it can only be
measured in voiced parts of the speech. Thus, most detection algorithms are based
on the phonation of sustained vowels. According to [Buder 00], these algorithms can
be divided into the following classes:

• Fundamental frequency (F0) statistics

• Amplitude statistics

• Waveform perturbations

• Spectral measures

• Inverse filter measures

• Dynamics
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Today, most of the algorithms used in scientific studies [Pahn 01] are implemented
in commercial software [Kay 93]. While the evaluation of read or spontaneous speech
still caused problems in the 1980’s [Wendl 86], recent approaches can also handle this
type of speech [Halbe 04]. According to [Wuyts 96], the examination of sustained
vowels by many patients did not yield any correlations higher than 0.53 with percep-
tive evaluations of human experts. The reason of this effect might be dependency of
the perception of the hoarseness on the frequency of the phonation [Wurzb 06]. The
higher the frequency is the harder the hoarseness can be perceived.

The state-of-the-art evaluation method to measure the quality of a voice is the
dysphonia severity index (DSI) [Wuyts 00]. In order to solve the problem of the
frequency-dependency of hoarseness, the DSI states a multi-parameter approach. It
is computed from several parameters which are measured during the phonation of
vowels. Then, maxima and minima of these parameters are combined to represent
the static as well as the dynamic features of a voice.

Using the linear discriminant analysis (LDA, cf. Chapter 4.2.3), Wuyts selected
the best subset of 20 features computed with commercial software [Kay 93] to create
the DSI. In order to get classes for the LDA, the data was partitioned perceptively
into 4 groups according to the G (hoarseness) of the GRBAS scale [Hiran 81] by
speech pathologists. The DSI was obtained from the most discriminating component
of the LDA. In total, four parameters were selected to compute the DSI:

• The maximum phonation time (tMPT) taken in seconds is an aerodynamic
parameter and is measured while the patient is asked to sustain a vowel as
long as possible. It can be interpreted as the ability of the subject to maintain
continuous speech. While control subjects have a tMPT of 18.9 ± 6.7 s in average
pathologic speakers sustain vowels only for 12.4 ± 6.4 s in average.

• The highest fundamental frequency the patient is able to produce (F0 max

in Hertz) gives an upper boundary of the patient’s voice. A patient with dys-
phonia can produce only vowels in a limited range of the F0 compared to control
subjects.

• The lowest sound intensity (Il) which is emitted during the phonation by
the patient in dB(A) can be interpreted as the “gentleness” of the voice. If
the vocal folds are obstructed in any way, much more energy is needed to make
them oscillate. Therefore, the patients have difficulties to pronounce soft speech
while normal speakers have no problems in speaking with a low intensity.

• The jitter (J ) of a voice denotes the mean deviation of the period length and is
measured in % of the mean period length. Although there are many definitions
of jitter Wuyts et al. do not state which of them they are using. In this work
the jitter is extracted as described in [Levit 00, p.14]. Jitter is perceived as
roughness in the sound of the voice. In a normal voice, the jitter is 0.7 ± 0.5 %
in average. In pathologic voices, however, the jitter is 2.6 ± 2.3 % in average
[Wuyts 00].

With these four parameters, the DSI is now computed as:

DSI = 0.13 · tMPT + 0.0053 · F0 max − 0.26 · Il − 1.18 · J + 12.4 (3.1)
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A DSI of 5 is regarded as an excellent voice while -5 is the result of a very dysphonic
voice. Values outside these boundaries might occur as well in extraordinary voices. A
DSI ≥ 1 is regarded as normal. If the fundamental frequency cannot be measured—
like in patients without larynx—the DSI is considered to be -5.

The correlation of the DSI to the G of the GRBAS scale is very high (0.996).
Unfortunately, the article does not clarify whether the training data was different
than the test data which seems not to be the case. In order to compensate this
flaw, the authors compare their DSI to another perceptive evaluation method: the
voice handicap index (VHI, [Jacob 97]) which states the severity of the disorder in
the view of the patient. So, the authors obtain another significant correlation of
-0.79 (p<0.001) between the DSI and the VHI which only proves that there is a high
correlation between the G of the GRBAS scale and the VHI in the data they used.
However, this does not confirm the validity of their index.

Nevertheless, the DSI is the most common and widely used “objective” index
in the literature for the evaluation of hoarseness. New and better methods for the
objective measurement of the hoarseness of patients are being developed [Dolli 02,
Dolli 08] which will allow the investigation of non-stationary phonation [Rasp 06] and
visualization using for example the phonovibrogram [Lohsc 09, Eysho 08].

3.2.2 Nasality

The term nasality is often used in the literature for two different kinds of nasality:
hyper- and hyponasality. While hypernasality is caused by enhanced nasal emissions,
like found in CLP children (cf. Chapter 2), hyponasality is caused by a blockade
of the nasal airway, e.g. when a patient has a cold. In the literature studies on
both effects are found [Hardi 92]. However, most of them concern only the effects
on voiced speech (vowels) [Pruth 03, Pruth 04, Pruth 07a, Pruth 07b, Pruth 07c] and
consonant-vowel combinations [Cairn 96a, Katao 96].

Figure 3.3 shows the effect of the vowel nasalization in the model spectrum
[Atal 67, Atal 79] of the vowel /a:/. In both spectra a slight nasal formant FN

1 (ω)
exists between 300 and 500 Hz. The first formant F1(ω) is at about 1100 to 1300
Hz. In the nasal /a:/, the intensity of the FN

1 (ω) is stronger than the F1(ω) which
causes the nasality to be audible. Actually, this effect is caused by a combination of
the following effects [Fant 60b]:

• The first formant bandwidth increases while the intensity decreases.

• The nasal formant FN
1 (ω) appears or is increased.

• Antiresonances appear which increase the strength of the antiformants FA
k (ω).

According to [Cairn 96b] these effects on the energy of the normal speech (S ) and
hypernasal speech (Snasal) can be modeled by a combination of formants at various
frequencies:
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Figure 3.3: Model spectrum of a nasal and a non-nasal realization of the phoneme
/a:/ in the phonetic context /ha:s@/ using 20 coefficients: The nasal formant FN

1

(∼300 – 500Hz) is stronger than the first formant F1 (∼1100 – 1300Hz) in the
nasal realization. Note that the displayed speech is children’s speech which causes
exceptionally high formant frequencies.

S (ω) =
I∑

i=1

Fi(ω) (3.2)

Snasal(ω) =
I∑

i=1

Fi(ω)−
K∑

k=1

FA
k (ω) +

M∑
m=1

FN
m (ω) (3.3)

Here, Fi(ω) denotes the intensity of the i th formant in the frequency domain. Ac-
cording to the literature, the main cause for nasality is the intensity reduction of the
first format [Fant 60b, Zevce 02]. Using low-pass and bandpass filters to compute a
hypernasality feature as described in Chapter 4.2.4, Cairns et al. achieved classifi-
cation rates of 94.7% for normal and hypernasal speech in vowel /i/ and 93.0% for
normal and 93.3 % for /A/ [Cairn 96a].

In [Haapa 96] features computed from a model spectrum with 14 components
are used to classify realizations of the vowels /i/, /u/, and /a/ to either hyponasal
or normal. The classification system showed good agreement with the perceptual
evaluation.

Zečević introduced a framework for the automatic evaluation of the nasality in
children [Zevce 02]. Unfortunately, the evaluation environment consists of three com-
ponents which were never integrated into one system. The formant tracking algo-
rithms were all implemented in MatLab while recording was performed using MacOS.
The use of speech recognition techniques was intended but never applied since the
author had only access to commercial dictation software which yielded a bad recogni-
tion on the children’s speech data. All that was done was classification of nasality to
the classes “normal” and “hypernasal” speech according to the position, intensity, and
bandwidth of the formants, antiformants, and nasal formants on sustained vowels.
Classification rates of 70 to 80% were achieved.
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Analyses on continuous speech started as early as 1964. However, all these meth-
ods are invasive to some extent. Warren et al. inserted two catheters connected to
a differential pressure transducer into the nose of the patient [Warre 64]. Thus, they
could measure the nasal air flow below and above the velopharyngeal orifice. From
the difference in the pressure flow, an estimate value of the area of the velopharyngeal
orifice can be calculated. It is shown that this estimate varies less than 10 % from
the actual size of the area.

In order to calculate the Horii Oral Nasal Coupling (HONC) index [Horii 81],
an accelerometer which measures the vibration of the tissue has to be attached to
the external surface of the nose. A second accelerometer is attached to the throat
of the patient. So, the fraction of the nasal air emission can be calculated. Since
this fraction is highly dependent of the setup and the patient, the system has to be
calibrated before the measure. Therefore, the patient has to phonate /m/ in order to
get a sound with a maximal nasal emission. All following measurements are computed
with respect to this maximal value. Good consistency with the perceptual evaluation
of expert raters could be shown in [Horii 83]. Further modifications of this technique
lead to the Nasal Accelerometric Vibrational Index (NAVI) [Reden 85] and the Nasal
Oral RAtio Meter (NORAM) [Karli 93a].

In clinical practice the most wide-spread objective method is the measurement of
the nasal air flow using the nasometer [Kay 94]. Based on the oral-nasal measures
of Fletcher et al. [Fletc 89], the nasometer consists of two microphones which are
separated by a metal plate. One of the microphones is placed in front of the nose and
the other one in front of the mouth. The metal plate is used to mutually insulate the
microphones. The so called nasalance denotes the fraction of the nasal air flow divided
by the oral air flow. High correlations are reported in the literature between the
nasalance and the perceptive evaluations by human experts [Hardi 92]. Furthermore,
it is possible to partition normal speech from pathologic speech with the nasometer
[Stell 94, Karne 95]. The nasalance measurement was shown to be applicable to other
languages than English as well [Tachi 00, Bress 99a, Kuttn 03].

Recently, other measurements were inspected as well. Using videopharyngoscopy
[Ysunz 03] the area of the velopharyngeal orifice can be inspected directly without
having to measure different air flows. However, the method is invasive again, and it
is not tolerated by every child, especially not by young children.

A very interesting approach is described in [Lu 04]. The author uses Gaussian
Mixture Models (cf. Chapter 4.2.4) and support vector machines (cf. Chapter 4.2.2)
for the classification of continuous speech into the classes “normal” and “hypernasal”.
However, the classification rate of 94.85 % seems very high for this difficult problem.
A closer look on the experiments reveals that in total three databases were collected
for the work: two containing non-nasal and one containing nasal speech. For the
experiments one of the non-nasal databases and the nasal database was split into
a training and a test set. Therefore, neither the spoken sentences nor the language
were matched (one non-nasal database contained welsh language). Whether the same
microphone was used for the three databases is unclear. Presumably the high classifi-
cation rates can be ascribed to the large differences in nasal and non-nasal databases.
But it is also possible that the classifier at least to some extent learned the channel
than the “nasality” of the speech data.
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3.2.3 Intelligibility

In the literature transcription tasks such as the Post-Laryngectomy-Telephone-Test
(PLTT) are often called “objective” [Zenne 86]. In the test the test subjects are
given a random set of words and phrases which they have to read. Then a human
“naïve” listener who does not know the words notes the words down he understood.
The difference of the target words and the understood words forms a score which
represents the intelligibility. In the author’s opinion this is not the case. Experiments
of Haderlein et al. [Hader 07b] showed that transcription tasks as the PLTT can vary
a lot between different transliterating persons. Hence, the inter-rater reliability is
also restricted as in experts’ evaluations.

Therefore the only objective method in terms of the definition above found in the
literature is the one of Haderlein et al. [Hader 04, Hader 07a]. In order to simulate a
naïve listener the authors apply a speech recognition system (cf. Chapter 4.2.4). To
evaluate the method, the recognition rate of the word recognizer was compared to
perceptive evaluations of expert listeners [Schus 05]. The method was tested on speech
of patients after removal of the larynx (laryngectomees) whose spectral characteristics
differ a lot from normal speech [Robbi 86]. The authors could show a high correlation
between the experts’ opinion and the word accuracy of -0.84 for a group of 18 speakers
[Schus 06a] and -0.88 for a group of 41 laryngectomees [Riedh 06].

An automatic version of the PLTT is presented in [Riedh 07a]. The perceptive
evaluation showed a high inter-rater variability in the absolute scores of the test. A
speech recognition system was employed to model an additional naïve listener. This
time a telephone speech recognizer was employed [Riedh 06]. The outcome of the
speech recognizer was compared to human evaluations of the PLTT. The automatic
recognition system as well as the naïve individuals showed a high correlation with
the average of the naïve listeners’ scores.

The technique described above also showed very good consistency with experts’
scores in other patient groups. The measurement of the intelligibility could also
be applied to patients with articulation disorders due to cancer in the oral cavity
[Maier 07d].

The same group showed that prosodic features (cf. Chapter 4.2.4) extracted
from the speech data of the laryngectomees also hold a lot of information about the
speaker [Hader 06a]. They could show that, for example, the effort in speaking and
the correctness of the breath-sense units correlates with the length of the pauses
after a word and the onset position of the fundamental frequency. In [Maier 07a] it
was shown that prosodic features and the recognition rate of a speech recognizer can
be successfully combined to improve the prediction of intelligibility scores given by
speech therapists.

The Sammon mapping is a technique for non-linear dimension reduction (cf.
Chapter 4.2.3). It computes a low-dimensional point cloud which preserves the topol-
ogy of the high-dimensional space. However, since speech varies a lot in time a rep-
resentation of the speech data with a fixed number of parameters has to be found.
Therefore, speaker adaptation techniques are applied. The idea is that a speaker-
adapted speech recognizer not only improves the recognition for a single person but
also represents the speaker himself. Since speech recognizers have a lot of parame-
ters, their mutual dependency is difficult to understand. The Sammon mapping can
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be applied to find a visualization of the dependencies between the recognizers in a
low-dimensional space [Shoza 04]. In [Hader 06b] it was shown that this representa-
tion displays properties of the pathology of a person’s speech as well. The resulting
map separates normal from pathologic speakers. Furthermore, it is shown that the
position of a person on the map allows conclusions on the grade of the intelligibility
to some extent.

3.3 Towards a Ground Truth
In the previous section, we discussed the pros and cons of objective and perceptive
evaluation methods. The major pro of the perceptive methods was that they can
be applied easily and they are non-invasive. However, all perceptive measures lack
objectivity. Even when the average of multiple raters is taken into account the mea-
sure is still subjective and rather not reproducible. Furthermore, detailed evaluations
have to be done by experienced raters. Attempts to omit this problem, such as tran-
scription tasks, cause other problems, e.g. naïve raters have to be replaced after they
got used to the text and the disorder to keep the constraint of naïvity, and thus none
of the naïve ratings is reproducible. Additionally, the transcription tasks have the
same inter-rater differences as all other perceptive evaluations.

Objective evaluations have the advantage that they are reproducible, reliable,
and fast in most cases. However, one has to keep in mind that some tests are rather
unspecific, like the evaluations of sustained vowels, and others are invasive which
might be uncomfortable for the patient. A solution to this problem is the use of
automatic speech-based classification systems. However, these systems have to be
trained with a so-called “gold standard” or “ground truth” which are virtually always
derived from perceptive evaluations.

In order to get a valid gold standard for an automatic system, one should always
pick as many raters as possible and the correct procedure according to the type of the
continuum to be rated. However, one has to keep practical considerations in mind as
well. The creation of detailed labels is often a very laborious process for an expert
rater. If the ratings cause a lot of effort to the rater, it is difficult to find many
raters for this aspect. Therefore, very detailed qualitative labels can be done only
for a small database since the effort to the labeler is very high. Since all perceptive
evaluation methods are subjective and tampered by inter-individual differences, the
best trade-off between accuracy and effort has to be chosen. Quantitative evaluations
have to be interpreted as rank anyway since the absolute value obtained by compu-
tation of the average of multiple raters is irreproducible and therefore questionable.
Thus, correlations of the ranks should rather be investigated than correlations of the
absolute values (cf. Chapter 4.2.1). Many different aspects might spoil the validity
of a gold standard. Nasality, for example, is a prothetic continuum if it is rated by
human raters [White 02b] and should be evaluated rather qualitatively than quanti-
tatively. Furthermore, hoarseness might tamper the perceptual evaluation of nasality
[Imato 99]. Therefore, nasality can only be evaluated in a non-hoarse voice. If these
effects are regarded properly and the scale and rating procedure are chosen carefully,
a good gold standard can be obtained and used for the training of an automatic
evaluation system.



Chapter 4

A Program for the Evaluation of All
Kinds of Speech Disorders

At the beginning of this chapter, an overview on the Program for the Evaluation
of All Kinds of Speech Disorders (PEAKS) is given. It describes the architecture,
the components, and of course the security and collaboration concepts needed in a
clinical environment.

Next, the algorithmic background and the mathematical concepts which are being
used throughout this work have to be clarified. The section will describe different mea-
surements of agreement, support vector machines, dimension reduction techniques,
speech processing, and the normalization of age effects.

After having discussed the architecture of the system and the algorithmic back-
ground, the architecture of PEAKS and its implementation details will be presented
at the end of this chapter.

4.1 System Overview

In order to develop a system for the automatic assessment of children’s speech, several
points have to be considered. These can be formulated as requirements which should
be implemented in the final system.

Starting from these requirements, the abstract use cases of the system are formu-
lated (cf. Chapter 4.1.2): patient and user management.

The system’s setup portrays the client-server architecture of the PEAKS system.
Furthermore, the configuration of the components and the integration of the require-
ments are described.

Security and collaboration concepts are vital for a system which is to be used in
a clinical context. They are presented in Chapter 4.1.4.

4.1.1 Requirements for a Speech and Voice Evaluation Plat-
form

A system which is going to be used in a clinical environment to analyze speech
disorders of children has to fulfill certain requirements. First of all, the system must
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be able to perform different analyses with the speech data. In our case the system
should enable the following analyses:

• Intelligibility Measurement: The system should be able to compute an
estimate intelligibility score. This score should correlate highly to the scores of
a human expert.

• Pronunciation Assessment: The assessment of the pronunciation, i.e., artic-
ulation disorders is another crucial point in the list of requirements of a speech
evaluation platform. Again, the system should deliver an analysis which is in
accordance to a speech therapist’s opinion.

• Visualization: The visualization of the dependencies between different speak-
ers gives a better understanding of the speech disorder and helps the medical
personal to compare different graduations of speech disorders with each other.

Besides these main points, a medical evaluation system should implement further
passive requirements in order to be applicable in a medical context:

• Multi-user Support: A system to be used in a clinic should provide access
to different users simultaneously. Multiple examinations can be performed at
the same time.

• Platform Independency: Platform-independency will allow the system to
be used on multiple operating systems. This is necessary because the computer
networks of a clinic are often heterogeneous and use more than one operating
system.

• Security Concepts: The patients’ data are confidential and must only be
accessible to the treating clinician. Security leaks have to be avoided. Therefore,
encryption features should be integrated into the platform.

• Collaboration Concepts: A platform for the evaluation of speech disorders
should provide methods to allow for the collaboration of multiple users. Multi-
ple clinicians can provide treatment to the same group of patients. Furthermore,
the system should implement interfaces to perform an export of the data in or-
der to be used by other programs. For example, statistic analyses for a scientific
study can be performed with the software the user is used to.

• User Comfort: The system should be available to the clinicians’ PCs easily.
Complicated installation procedures and software incompatibilities cause un-
necessary trouble. Therefore, the software should be as easy to use as possible.

4.1.2 Use Cases

Use cases are a wide-spread technique to develop software and document the func-
tional requirements needed by the different actors, i.e., users of the system [Rupp 06].
Usually, a use case reports the actors who are concerned by the action, the precon-
ditions, a short description of the action, and the resulting postconditions. These
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Administrator

User

Patient

<<PEAKS>>

Patient Management

User Management

Figure 4.1: Use case diagram of the PEAKS system: The diagram shows the two
main functions which are available to the different actors: user management and
patient management.

are especially useful if the development and the implementation are done by differ-
ent engineers. Since this is not the case for this work the actual use cases were not
formulated in detail. However, a very practical technique to summarize the use cases
are use case diagrams. A use case diagram displays the system, the actors, and the
possible actions i.e. use cases of the system. Figure 4.1 shows the different abstract
actions which can be done by the users according to their roles within the PEAKS
system. The diagram shows two abstract use cases: patient management and user
management.

• Patient Management: Most of the actions which can be performed within the
PEAKS system are designed to handle patients. A user can evaluate recordings
of a patient, run the automatic assessment routines, and create reports and
visualizations. The patient has just a passive role within the PEAKS system.
New patients can be created and recorded by a user of the system. This is the
actual use case of the system and is described in Chapter 4.1.3.

• User Management: The users themselves are responsible for the registra-
tion to the system and their authentication. However, an administrator is still
needed to keep the PEAKS service running. All security-relevant tasks have to
be conducted by him. He is responsible for the setting of permissions and the
creation of new passwords, in case a user forgot or lost it. This is all part of
the security functions which are described in Chapter 4.1.4.

4.1.3 System Setup

PEAKS can be interpreted as a pattern recognition system after [Niema 03] which is
divided into a client and a server side as can be seen in Figure 4.2. The client software
runs on any standard PC with Internet connection. It is used to manage the different
patients, create new recordings, to review the results of the different analyses, and to
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Figure 4.2: The Architecture of the PEAKS system: While access to the data is
provided by a thin client all the performance intensive speech analyses are computed
on the server.

visualize the dependencies between the different patients. Because it is designed as
an applet, it runs in any web browser with JavaTM support.

All computationally expensive tasks are performed on the server: The preprocess-
ing, the feature extraction, the assessment, and the computations necessary for the
report generation. Only the result of the analyses are transmitted to the client.

This setup has several advantages compared to a stand-alone application:

• Software Updates: New versions of the software are downloaded at the start
of the applet automatically. Therefore, all client PCs always have access to the
newest software without the user even noticing.

• Low Hardware Requirements: JavaTM applets have only minimal require-
ments to the hardware of the client PC: The maximal memory space occupied
by an applet is 64 MB by default.

• Platform Independency: JavaTM applets provide multi-platform support.
Therefore, the system can also be applied in a heterogeneous computer network
with multiple different operating systems.

• Software Reuseability: Most of the speech processing software of the Chair of
Pattern Recognition is written in C for Linux operating systems. Since different
operating systems can be used on client and server, all the Linux software can
be installed on the server system which is not visible to the client side.

However, the client-server setup has also some disadvantages which have to be
compensated:
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• Parallel Data Processing: Data can be received from multiple clients si-
multaneously. Therefore, one has to pay special attention to process and data
management in order to avoid deadlocks and data inconsistencies.

• Dependency on the Internet: An Internet connection is required to use the
system at all times because the data have to be transferred to the server in
order to be processed.

Process and Data Management

All tasks which are performed on the client system must be able to be performed at
the same time. For each connecting client, a new thread is spawned which handles
the client’s requests. Parallel requests are no problem so far since the back-end
database can handle simultaneous requests and the audio data are stored in the
server’s filesystem using different names for each patient and recording.

However, most of the speech processing software of the Chair of Pattern Recog-
nition was never designed to work concurrently. In order to compensate this effect,
the server keeps track of the analyses which were requested by the different clients
in a job list. Then the analyses are processed in a first-in first-out manner. Another
side effect of this procedure is that there is always just a single process with high
processor load on the server’s CPU. There is still performance left to run the PEAKS
server’s tasks and the web server even on a machine with just two processors.

In order to differentiate between the users, they have to register to the system by
choosing a username and a password. This information identifies every user of the
system uniquely.

Data Acquisition

Data acquisition is performed on the client side. In our scenario certain pictures or
words are presented to the subject and their speech is recorded. In the following this
procedure is called a “test”. To perform a test, a standard PC with a sound card
and microphone is sufficient. However, it always has to be connected to the Internet.
Then the user logs into the system, selects a patient and a test and performs the
recording. The recorded data is then sent directly to the server.

Unfortunately, many places where the data acquisition took place could not pro-
vide Internet access. Therefore, an offline version of PEAKS was developed: PEAKS-
local. As Figure 4.3 shows, it simulates a full PEAKS server for a single user. The
following three steps have to be performed to do recordings locally:

1. Initialization of the Server: The Server has to be initialized in order to
allow local recordings over the Internet. During the initialization procedure, all
tests which can be performed by the system are downloaded to the local file
system. Furthermore, the information about the patients the user has access
to are downloaded. This enables the user to create another recording of an
already existing patient. For this reason the user has to input his username
and password during the initialization process.
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Figure 4.3: The Architecture of the PEAKSlocal system: The normal PEAKS client
is connected to a simulated PEAKS server which has just the ability to store new
recordings. Later on, the recorded data can be committed to the real PEAKS server.

2. Local Recordings: After the server was initialized, the user can create local
recordings. Instead of the real PEAKS server, he connects to the PEAKSlocal
server. Since the PEAKSlocal server supports only a single user, username
and password are not required to log into the PEAKSlocal server. Unlike the
PEAKS server, the local server supports only the creation of new users and the
recording of new tests.

3. Commit of the Server: After the recordings took place, the data have to
be committed to the PEAKS server. Therefore, Internet access is required
again. During the commit procedure, the local server transmits all of the newly
acquired data to the server. Lastly, the local audio and user data is deleted and
the local server remains uninitialized.

Another problem in the data acquisition are the different acoustic conditions in
which the recordings take place. For example, noisy fans inside the recording com-
puters and cheap microphones are to be avoided. Very expensive microphones and
sound hardware, however, pose the problem that they are often difficult to use. Fur-
thermore, microphones using a microphone stand collect a lot of the sound events in
the environment which can alter the result of the analyses.

For our purpose, headsets work best for the acquisition of the data. On a standard
PC, a normal headset was used. Data acquisition using mobile computers often posed
the problem that their power adapters could not filter out the frequency of the AC
power during AC/DC conversion properly. These frequencies were still audible on
the recorded sound track. The use of a USB headset with integrated analog/digital
conversion solved this problem on most mobile PCs.
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Preprocessing

Preprocessing is the second step in a classification system (cf. [Niema 03, p.26])
directly after the acquisition of the data. Its object is to improve the signal quality
before the feature extraction step. Unlike feature extraction which results in a feature
vector and represents the most important aspects of the signal, the preprocessing is
intended to preserve most information of the signal, i.e., it is still suitable to be
presented to humans.

In intelligibility assessment the preprocessing is integrated into the feature extrac-
tion step and can hardly be separated from it. The step during feature extraction
which could be part of a preprocessing as well is the noise reduction using cepstral
mean subtraction. Since linear distortions are additive in the cepstrum of the signal,
they can be removed by subtraction. The basic idea is to model the distortion as the
mean value of the cepstrum of a certain number of time steps. Then for each time
step the distortion is subtracted from the feature vector [Schuk 95].

For the assessment of single words, quite a lot of preprocessing has to be done:
First the words which are relevant for the test have to be spotted and segmented.
Since the children tend to use carrier sentences like “This is a . . . ” which are not part
of the test. These must be excluded from the further processing. Then, the speaker
has to be identified since the young participants often have to be encouraged by the
supervisor during the test. In virtually all tests the supervisor’s voice is audible.
In order not to accidentally assess the words of the supervisor, his words have to
be removed from the data. Chapter 4.2 describes these necessary computations in
detail.

Feature Extraction

As features to represent the properties of the speech data we apply many different
algorithms. While we give just a brief overview here, the exact computation of these
features is presented in Chapter 4.2.

• Mel Frequency Cepstrum Coefficients (MFCC): The most commonly
used features in speech recognition [Stemm05, Gallw 02, Stemm01, Schuk 95]
which have already been successfully applied to speaker and speaker group iden-
tification [Bockl 07c, Yang 04, Reyno 95], detection of hypernasality [Maier 07c],
and the recognition of emotions [Schul 07].

• Prosodic Features: Primarily, prosodic features were designed to model the
segmental and suprasegmental speaking style [Noth 91, Niema 93]. Therefore,
the fundamental frequency, energy, pauses, durations, jitter, and shimmer are
extracted from the signal. Using these features it is possible to detect the
boundaries between phrases [Batli 95]. Furthermore, prosody can be used to
detect emotions [Huber 02], the user state [Adelh 03, Batli 03b], and the focus
of attention [Hacke 06]. Even in pronunciation scoring [Hacke 07a] and speaker
recognition [Chen 06, Chen 05], prosodic information could improve the recog-
nition further.

• Pronunciation Features: Further information about the pronunciation is
modeled using pronunciation features. In most scenarios they are used in
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computer-assisted pronunciation training (CAPT) or computer-assisted lan-
guage learning (CALL) [Hessl 05, Hacke 07b]. The features as described in
[Hacke 05b] are independent of the first language of the language learner. This is
done by the computation of phone confusion tables, likelihood scores, duration
features, and recognition accuracy. Another approach to model pronunciation
variations of a language learner is to model often occurring pronunciation er-
rors. This, however, has to be done for each first and second language pair
individually. An example for German and English is given in [Hessl 05]. A
thorough description of pronunciation and pronunciation variants of different
languages is found in [Canep 05].

• Teager Energy Profiles (TEP): The Teager operator [Teage 90] is used to
model non-linear events in speech and is highly sensitive to multi-component
signals. As shown in [Cairn 94], it can be used to detect stress in speech data.
Furthermore, in [Cairn 96a] the proof was given that it can also represent nasal
events in speech. Again the Teager Energy Operator’s sensitivity can be ex-
ploited since nasal speech below the second formant is a multi-component signal
while normal speech is not (cf. Chapter 4.2.4).

• Word Recognition Rate and Word Accuracy: The word recognition
rate and the word accuracy are also used as features in the PEAKS sys-
tem. Actually these rates were designed to measure the performance of a
speech recognition system [Schuk 95]. In our case we turn their function upside
down: Since the recognition performance in normal speakers of our recogni-
tion system was validated before, we can estimate the intelligibility from the
number of misunderstood, i.e., not recognized words. As previously shown
[Hader 04, Schus 05, Schus 06a, Maier 07d], the word recognition rate and the
word accuracy have significant and high correlations with the mean opinion of
multiple experts.

Assessment

From the different features, the scores for each child can be computed. These can
be obtained either by classification or regression analysis. Classification assigns the
child, represented as a vector of features, one of K classes. In PEAKS the following
methods are implemented:

• Gaussian Mixture Models: These models are standard classifiers in pattern
recognition. The idea is to model the distribution of the feature vectors as
a combination of a fixed number M of Gaussian densities. The mean values
and the covariance matrices are estimated using the Expectation-Maximization
(EM) algorithm [Demps 77].

• Support Vector Machines: The basic idea of Support Vector Machines is to
model the border between two classes by the feature vectors which are closest to
the class border. These vectors are called Support Vectors. Only the Support
Vectors have to be saved instead of the whole training set. Classification is then
performed by selection of the closest Support Vector. During this procedure
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different kernels can be applied in order to model non-linearities in the data
[Schol 97].

In the case of regression analysis, the score is computed as a best estimate from
the training data. The assigned value, however, is not a class but a floating point
value. For this kind of prediction, the following methods are integrated into PEAKS:

• Multiple Regression Analysis: Since Pearson’s regression [Pears 96] is only
defined for 1-D inputs and 1-D outputs, i.e. target values, the method is not
applicable to multivariate data. In [Cohen 83] an extension to multidimensional
inputs is formulated. Therefore, a parameter vector is determined which pro-
duces the best linear estimate of the 1-D outputs by the computation of the
Moore-Penrose pseudo-inverse [Moore 20, Penro 55] of the data matrix. Using
this technique, a multiple correlation analysis can be performed as well by cal-
culation of the correlation between the estimates and target values.

• Support Vector Regression: In a similar method to Support Vector Ma-
chines, Support Vectors can also be used to determine a set of parameters in
order to predict a target value from a given input. Unlike the Multiple Re-
gression Analysis, the Support Vector Regression uses the outliers to compute
the regression weights. Therefore, this kind of regression is known to be more
robust to outliers.

Report Generation

A major aim of the PEAKS system is the creation of reports which give an easy access
to the information. Therefore, a report is generated which has several features:

• Intelligibility Score: The intelligibility is presented as word accuracy and
word recognition rate. Furthermore, both are displayed using a marker in the
respective value’s distribution of the patients of the same patient group.

• Phonematic Assessment: An evaluation of the patient’s speech is computed
for certain articulation disorders and reported as a number of detected events.
The kind of pronunciation score can be selected from a panel of different pro-
nunciation assessment tools which are reported in more detail in Chapter 4.3.

• Visualization: The speaker dependencies are visualized on the report using
the Sammon Mapping (cf. Chapter 4.2.3). It displays the parameters of a
speaker-adapted word recognizer which represents the speaker. In order to re-
duce the dimensionality, the parameters are mapped to 2-D or 3-D points which
preserve the distances of an arbitrary measure best. As shown in [Hader 06b],
this method produces maps which have sensible axes representing e.g. the in-
telligibility.

• List of Affected Phones: At the end of the report, a list of the phones which
were confused the most by the recognizer is found. It can be used to draw
conclusions on the type and extent of the speech disorder.
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4.1.4 Security and Collaboration Concepts

In a medical environment, the security of the data is a crucial point. The patients’
privacy must be kept under all circumstances. Therefore, PEAKS implements a
couple of security methods presented in the following.

Furthermore, PEAKS provides access permissions on user level. Users can register
to the system and can start recording instantaneously. Later on, the access to a user’s
patient can be shared with other users in order to enable collaboration between
different users.

General Security Concepts

PEAKS has several built-in security features which ensure the safety of the patients’
data:

• Secure Transmission: All data which is sent between the client and the server
is encrypted using the Secure Sockets Layer (SSL, [Resco 01]). SSL is a hybrid
encryption protocol. SSL is located above the transport layer in the ISO OSI
layer model [Zimme 80]. It works transparently. The encryption is not visible
to the application layer. Hence, it is easy to use.

The end-to-end connection uses a symmetric key algorithm in order to encrypt
the data. The message integrity is kept by computation and transmission of
check sums.

Asymmetric encryption methods are also optionally provided for the authenti-
cation of the hosts during the establishment of the connection. This is usually
done with a hand shake.

• Timeouts: In order to keep the patients’ data safe in a clinical environment,
the connection to the client system times out after a period of 20 Minutes of
no communication with the client.

This is sensible since in a medical environment emergency situations might
appear in which the user forgets to log off properly from the system. This
could be a security hole since an intruder might take advantage of the emergency
situation and take control of the abandoned client system.

• Pseudonymization: The patient’s name and other sensible information must
not be entered into the system. Instead, a pseudonym is used to identify the
patients.

Common methods to create such an alias is to use either the patient’s ID ob-
tained from the patient administration software of the clinic or user hashes1.

1Such hashes can be created by any combination of a fixed number of letters from the patient’s
first and last name and a fixed number of digits from the patient’s date of birth. For example,
using the first letter of the first name and the last name plus six digits of the date of birth yields
“AM261180” for the author of this work.
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Access Control

The access to the data should be limited for all users of the system in order to keep
the data of each single user safe. Therefore, each user has to register with the system.
Furthermore, it should be possible to allow certain users to share the data they are
working on.

• Registration and Identification Process: In order to register with the
system, the user has to fill out a registration form via Internet. The form asks
for an unique username, a password, an e-mail address, a standard working
directory, and the user’s date of birth. Right after the completion of the form
the user’s speech is recorded. This enables the system later on to automatically
exclude the user’s speech data from the speech evaluation process with speaker
identification techniques.

All data is then transferred to the server. The password is transformed to an
MD5-hash [Rives 92] before the transmission. Therefore, the password cannot
be restored if the user forgets the password. The only way to recover the access
to the system is to ask the system administrator to install the MD5-hash of a
new password. Later on, the user can identify himself to the system with his
username and password2.

• Shared Access: In clinical practice a single patient is looked after by many
persons. Hence, users of PEAKS have to be able to share the access to their
patients. Users are able to work together in a group of users. The data of each
individual user can be shared with other users.

New recordings for the patients of another user can be created, and the prop-
erties of the patient, like weight, height, and disorder specific characteristics,
can be altered. Deletion of patients who were created by other users is not
permitted. Patients may only be deleted by the user who actually created the
patient entry. The recordings of the patient will not be visible any longer to
other users.

To gain or remove privileges, the users have to contact the administrator. Users
are not allowed to share their data themselves due to the layer 8 problem
[Zimme 80].

2For security reasons both should be memorized by the users but not written down, because an
attacker might gain access to the written copy of the login data.
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4.2 Mathematical and Algorithmic Concepts

This section describes the necessary mathematical and algorithmic concepts which
are employed in the PEAKS system. First, the methods to measure agreement are
discussed since some of the measures form the basis of the later algorithms. Three
different methods for the computation of the correlation are presented: Pearson’s,
Spearman’s, and Cohen’s method. Furthermore, two other parameters which are
commonly used in the literature — Kappa and Alpha — are presented and their
advantages and disadvantages are discussed.

Next, an introduction to Support Vector Machines is given in Chapter 4.2.2. The
section explains Support Vector Classification and Support Vector Regression.

For the feature extraction and the visualization, dimensionality reduction tech-
niques are required. Therefore, the Principal Component Analysis, the Linear Dis-
criminant Analysis, and the Sammon Mapping are presented.

Speech processing is a fundamental part in the analysis of pathologic speech. The
relevant methods which are discussed are feature extraction, speaker recognition,
acoustic modeling, language modeling, decoding, prosodic analysis and the pronun-
ciation assessment.

At the end of this section, some techniques to cope with the effects of different
ages are described: Maximum Likelihood Linear Regression and Vocal Tract Length
Normalization.

4.2.1 Measurements of Agreement

Since there are many scales and evaluation methods (cf. Chapter 3.1), there are also
many methods to measure the agreement between different raters. A very robust
and simple method to compute the agreement between different raters are correla-
tion methods. These are especially useful if a quantitative evaluation method was
employed since correlation measures are also defined on e.g. direct magnitude esti-
mation scales.

If a nominal scale, e.g. a Likert-scale (cf. Table 3.1), was employed, Kappa and
Alpha values can often be found in the literature to demonstrate the agreement. In
the following these measures are discussed.

Correlation and Regression

Correlation coefficients and regression were developed in the biological sciences in
order to proof evolutionary theories. Pearson was a student of Galton—a cousin of
Charles Darwin. He developed the product-moment correlation coefficient in order
to show the connection between parent and children generations in size and weight
[Pears 96]. Today, correlation and regression have become very powerful tools in order
to show whether a set of variables is connected or not. Note that correlation can only
grasp the connection between two random variables but not clarify which variable is
the cause and which one is the effect.

• Correlation Coefficients: The original correlation and regression as pre-
sented in [Pears 01] are computed using two variables X and Y , where xi and
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yi are the respective values which correspond to the same observation. The
correlation rXY between both variables is now computed as

rXY =
σ2
XY

σXσY
with (4.1)

σXY =

√√√√ 1

N

N∑
i=1

(xi − µX )(yi − µY) (4.2)

σX =

√√√√ 1

N

N∑
i=1

(xi − µX )2 (4.3)

µX =
1

N

N∑
i=1

xi , (4.4)

where σX is the standard deviation of X , σXY the covariance between X and Y ,
µX the mean of X , and N the total number of observed pairs of both variables.
σY and µY are defined analog to the respective values of Y .

The correlation can be interpreted as a normalized covariance between both
variables. If the variables are not correlated, i.e. rXY = 0, both variables are
independent of each other, i.e. σXY = 0. The extreme values of rXY are 1
and −1. If rXY is close to 1, both variables are directly proportional, i.e. high
values of X correspond to high values of Y and vice versa. If rXY is near −1
both variables are inversely proportional i.e. high values of X correspond to low
values of Y and vice versa. In the literature rXY is often called r for simplicity
reasons if the variables which are concerned can be inferred from the context.
This procedure is used for this work as well.

Regression addresses the problem of the prediction of a target value yi from an
observed value xi which is also called prediction value. The linear regression
solves this by the computation of yi using a linear transformation of xi :

yi = c1xi + c0 + εi , (4.5)

where c1 is the slope of the regression, c0 the intercept, and εi the error which
cannot be explained linearly. The slope c1 and intercept c0 which have the least
square error εLSE [Pears 01] are calculated as

c1 =
σXY
σX

(4.6)

c0 = µY − c1µX with (4.7)

εLSE =
N∑

i=1

ε2i . (4.8)

The predicted values ŷi which have the minimum square error are obtained by

ŷi = c1x1 + c0. (4.9)
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Note that the correlation between X and Y can also be formulated as the
correlation between Ŷ and Y since Ŷ was created by linear transformation of
X :

rŶY =
σ2
ŶY

σŶσY
=

c1σ
2
XY

c1σXσY
=

σ2
XY

σXσY
= rX̂Y , (4.10)

i.e. the normalized covariance
σ2
ŶY
σŶ

is the same as σ2
XY
σX

.

According to Spearman the correlation of the actual values after Pearson is very
sensitive to outliers [Spear 04]. Therefore, he proposed to project the actual
values onto their rank within the respective variable:

xi ,rank = frank(xi) (4.11)

where frank(xi) determines the rank of xi . Spearman’s rank correlation ρXY is
computed as

ρXY = rXrankYrank . (4.12)

Especially for the evaluation of perceptive ratings, Spearman’s correlation was
shown to be more reliable. Furthermore, data with large outliers might increase
Pearson’s correlation artificially. Spearman’s rank correlation is more robust to
these outliers. In normally distributed data, r and ρ lie in the same range.

• Multiple Regression / Correlation Analysis: According to [Cohen 83] the
problem formulated in Equation 4.5 can also be formulated for a prediction of
yi using a multidimensional vector x i with n dimensions:

yi = cnxn,i + cn−1xn−1,i + . . .+ c1x1,i + c0 + εi (4.13)

This can be rearranged to matrix annotation with the vectors y containing all
target values and c with all prediction parameters to

y = c>X (4.14)

where X is the data matrix containing the vectors x i as column vectors plus an
additional entry 1 for the intercept of the regression. The prediction parameter
vector c can now be computed as

c> = yX ∗ (4.15)

where X ∗ is the Moore-Penrose pseudo-inverse of X [Moore 20, Penro 55] which
computes the best approximation of the inverse according to the least square
error using singular value decomposition. Thus, the predictions of yi can now
be computed as

ŷi = c>
(
x i

1

)
. (4.16)

In order to compute the correlation between the multidimensional input variable
X and Y , the one-dimensional version of the correlation can be employed since
Equation 4.10 is still valid. Thus, the multi-correlation is

RXY = rŶY . (4.17)



4.2. Mathematical and Algorithmic Concepts 49

• Significance Tests: In order to determine the significance of a result at a
certain level of chance α, the probability that the result which was observed
is pure coincidence pα is computed. This probability can be formulated as the
integral of the probability density function of r from 1−α to 1. The probability
density function of r , however, is dependent on the number of test cases N , the
degrees of freedom fdf = N − 2, and on the actual value of r .

Instead of the computation of all possible density functions of r , the density
function is usually transformed to a density function with well-known statistics.
The density function of r can be mapped to Student’s distribution. According
to [Stang 71] the integral in Student’s distribution t is computed as:

t =
r√

1− r 2

√
fdf (4.18)

Now, the significance decision can be done according to the following rules:

|r |


= 0 if t < tfdf;1−α

> 0 if t > tfdf;1−α

(4.19)

The statistics for tfdf;1−α can be reviewed in most text books on statistics
[Stang 71].

In order to compute whether two correlations r1 and r2 are significantly different,
the distributions of r1 and r2 have to be transformed to a single distribution
of known statistics. In this case, both can be mapped to a standard normal
distribution [Stang 71]. The integral u between 1 − α and 1 is now computed
as

u =
z (r1)− z (r2)√

1

N1 − 3
+

1

N2 − 3

with (4.20)

z (r) =
1

2
ln
(

1 + r
1− r

)
(4.21)

where N1 is the number of cases in r1, and N2 is the number of cases in r2. The
decision is now performed according to:

r1


= r2 if |u| < u1−(α/2)

6= r2 if |u| > u1−(α/2)

(4.22)

Again the values of u1−(α/2) can be reviewed in common statistics text books
[Stang 71]. For small numbers of test subjects and high correlations, the ap-
proximations for the significance might be incorrect. In [Ogus 07], significance
tables for r > 0.2 and sample sizes of 18 or less are given.
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Kappa

Cohen’s Kappa (here denoted as K) reports the agreement between two raters A and
B [Cohen 60]. In order to compensate that two raters might be in concordance by
chance, the actually observed agreement π(A,B) is normalized by the chance agreement
π

(A,B)
ε between both raters. K is only applicable to nominal data, i.e., data which is

separated into a fixed number of classes or categories.

K(A,B) =
π(A,B) − π

(A,B)
ε

1− π
(A,B)
ε

(4.23)

According to Krummenauer [Krumm99], πA,B can be computed as

π(A,B) =
K∑

κ=1

K∑
ι=1

π(A,B)
κ,ι (4.24)

where π(A,B)
κ,ι denotes the probability that a subject is assigned to class Ωκ by rater A

and to category Ωι by rater B , and K is the total number of classes.
The chance agreement π(A,B)

ε is determined as

π(A,B)
ε =

K∑
κ=1

K∑
ι=1

π(A)
κ · π(B)

ι (4.25)

where π(A)
κ and π(B)

ι are the probabilities for raters A and B to choose the classes Ωκ

and Ωι at all.
Since the probabilities π(A,B)

κ,ι and π
(A)
κ are usually not available, they have to be

estimated from the data set:

π̂(A,B)
κ,ι =

#(κ, ι)

N
and (4.26)

π̂(A)
κ =

#(κ)

N
(4.27)

#(κ, ι) denotes the number of confusions between Ωκ and Ωι and #(κ) the total
number of occurrences of Ωκ.

An extension to Cohen’s Kappa is to weigh the disagreement between two raters
using a weighting function [Fleis 69]. In [Cicch 76] an absolute and a squared weighting
function w (A,B)

κ,ι ∈ [0, 1] are proposed:

w (A,B)
κ,ι,abs = 1−

∣∣∣∣ κ− ι

K − 1

∣∣∣∣ (4.28)

w (A,B)
κ,ι,sqr = 1−

(
κ− ι

K − 1

)2

(4.29)

Either of both can be applied in the following extension of K(A,B):

π(A,B) =
K∑

κ=1

K∑
ι=1

π(A,B)
κ,ι · w (A,B)

κ,ι (4.30)

π(A,B)
ε =

K∑
κ=1

K∑
ι=1

π(A)
κ · π(B)

ι · w (A,B)
κ,ι (4.31)
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Note that Equation 4.23 still applies for the computation of K(A,B).
A multi-rater version of Kappa KDF is presented in [Fleis 71, Davie 82]. Therefore,

the Kappa between two raters is normalized by the chance agreement between both
of them and then combined for all raters R according to:

KDF =

R∑
A=∞

R∑
B6=A

[1− π(A,B)
ε ] · K(A,B)

R∑
A=∞

R∑
B6=A

[1− π(A,B)
ε ]

(4.32)

Note that this combination of the binary Kappas K(A,B) is possible for the weighted
and for the non-weighted case.

The major advantage of the weighted multi-rater Kappa is that the chance factor
of the agreement is leveled out. However, it is only applicable for nominal classes
and it can not handle missing data. Therefore, it is only applied in this work if both
constraints are met.

Alpha

In order to handle missing data, Krippendorff’s Alpha (here denoted as A) models
the disagreement D0 and the expected disagreement Dε between the raters instead of
the agreement [Kripp 03]:

A = 1− D0

Dε

with (4.33)

D0 =
1

N

K∑
κ

K∑
ι 6=κ

υκι · δ2
κι (4.34)

Dε =
1

N (N − 1)

K∑
κ

K∑
ι 6=κ

#(κ) ·#(ι) · δ2
κι (4.35)

δ2
κι = (κ− ι)2 (4.36)

where υκι is the observable disagreement for Ωκ and Ωι, A is 0 if the expected dis-
agreement Dε equals the observed disagreement D0.

For the computation of υκι the number of observed confusions #s(κ, ι) between
class Ωκ and class Ωι for each subject s has to be determined. Then υκι is computed
as

υκι =
∑

s

#s(κ, ι)

#(s)− 1
(4.37)

where #(s) is the number of ratings which were given to subject s .
While Alpha solves the problem of missing data by the computation of the dis-

agreement, it is still just defined on nominal classes. In principle, real valued classes
may be used. However, the values of all classes must be in the same range in order
to get a feasible Alpha.
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 2.5

Dimension 1

Ωκ

Ωι

dι

dκ

Ωι

Ωκ

Figure 4.4: In order to separate two classes from each other, an optimal plane can
be found. In the example the Support Vectors are marked with circles.

4.2.2 Support Vector Machines

The theory of Support Vectors (SVs) goes back to Vapnik who developed the Gen-
eralized Portrait algorithm in the sixties of the last century in Russia [Vapni 63].
The Support Vector Machines (SVMs) used today are a further generalization of this
algorithm. One of the strong points of SVMs is that they still have a good general-
ization even if the training set is quite small and that they model outliers well. In
the following, SV classification and SV regression are described.

Support Vector Classification

Support Vector Classification [Schol 97] tries to find a plane which separates two
classes Ωκ and Ωι from each other. Therefore, we don’t need to remember all N
observations in the training set. Only a small number of observations is really impor-
tant for the classification task. As shown in Figure 4.4, only those vectors which are
marked by a circle are important for the decision. We want to determine (w , b) which
define the plane that separates the feature space of the individual feature vectors x i .
In mathematical terms this problem can be formulated as

(w>x i) + b) ≥ 1, for y = 1 (4.38)
(w>x i) + b) ≤ −1, for y = −1 (4.39)

where yi = 1 denotes that x i is a member of class Ωκ and yi = −1 assigns x i to class
Ωι. A set of inequalities can be formed:

yi((w
>x i) + b) ≥ 1, i = 1, . . . ,N (4.40)
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If we just consider the points for which the equality in equations Eq. 4.38 and Eq. 4.39
hold, we get points which are located on two hyperplanes Hκ : w>x i + b = 1 and
Hι : w>x i + b = −1. The plane Hκ has a perpendicular distance to the origin of
|1−b|/||w || where ||w || is the norm of vector w and Hι has a distance of |−1−b|/||w ||
to the origin. Thus, the distances between the optimal hyperplane and Hκ and Hι

are dκ = dι = 1/||w ||. The margin between both planes is simply 2/||w ||. Hence
minimizing ||w || subject to the constraints from Eq. 4.40 gives the normal vector of
the hyperplane which separates the feature space optimally.

The optimization problem can now be formulated as a Lagrangian using the La-
grange multipliers αi . The primary Lagrangian LP is formed as

LP =
1

2
||w ||2 −

∑
i

αiyi(w
>x i + b) +

∑
i

αi (4.41)

For optimality the gradient of LP needs to vanish for w and b. Setting the respective
derivatives to zero yields the following equations:

w =
∑

i

αiyix i (4.42)

0 =
∑

i

αiyi (4.43)

Note that Eq. 4.42 states that the normal vector of the optimal hyperplane is com-
posed of a weighted sum of all feature vectors which a non-zero αi , i.e. the Support
Vectors. Equations Eq. 4.42 and Eq.4.43 can now be plugged into Eq. 4.41 which
yields the so-called Wolfe dual [Fletc 87]:

LD =
∑

i

αi −
1

2

∑
i ,j

αiαjyiyjx
>
i x j (4.44)

In order to allow misclassifications (cf. Figure 4.5), a slack variable ξi ≥ 0 is
introduced. Equation 4.40 becomes

yi((w · x i) + b) ≥ 1− ξi , i = 1, . . . ,N . (4.45)

According to [Burge 98] this yields the following extended primary Lagrangian with
Lagrange multipliers αi and ηi :

LP =
1

2
||w ||2 + C

∑
i

ξi −
∑

i

αi [yi(w
>x i + b)− 1 + ξi ]−

∑
i

ηiξi (4.46)

C is a penalty parameter which is to be chosen by the user. The larger C is the higher
is the penalty to errors. Using Karush-Kuhn-Tucker conditions [Fletc 87], Eq. 4.46
can be reduced again to Eq. 4.44. Another great advantage is that SVMs can be easily
extended with a so-called kernel function which allows to use non-linear separation
functions [Burge 98]. Without loss of generality, this procedure can be extended to
more classes. Therefore, all planes between the two respective classes Ωi and Ωj have
to be determined in the same manner.
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 2.5

Dimension 1

Ωκ

Ωι

ξi

Ωι

Ωκ

Figure 4.5: In the non-separable case, misclassifications have to be allowed. There-
fore, slack variables ξi are introduced.

ξi

+ε
-ε

ξ∗i

training data (xi , yi)

target value y

in
pu

t
va

lu
e

x

Figure 4.6: Support Vector Regression finds a function that has at most ε deviation
from the targets yi . In order to allow deviations larger than ε, a slack variable ξi is
introduced again. Note that the support vectors are outside the ε-tube.
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Support Vector Regression

In order to approximate an arbitrary function, Support Vector Regression (SVR)
[Smola 98] can be applied. Its goal is to compute an estimate value ŷi for each of the
N feature vectors x i which deviate at most ε from the original target value yi . This
leads to the following equation:

ŷi = w>x i + b. (4.47)

The variables w and b are found by solving the problems

yi − (w · x i + b) ≤ ε and (w · x i + b)− yi ≤ ε. (4.48)

To allow deviations greater than ε, slack variables ξi and ξ∗i are introduced again.
Equation 4.48 can be rewritten to

yi − (w · x i + b) ≤ ε+ ξi and (w · x i + b)− yi ≤ ε+ ξ∗i . (4.49)

In order to constrain the type of the vector w , we postulate flatness. One way to
achieve this is to minimize its norm ||w ||. We end in the following minimization
problem:

minimize
1

2
||w ||2 + C

∑
i

(ξi + ξ∗i )

subject to


yi − (w · x i + b) ≤ ε+ ξi

(w · x i + b)− yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

(4.50)

Similar as for the case of SVMs, a primal Lagrangian can be formulated introducing
Lagrange multipliers αi , α∗i , ηi , and η∗i in order to solve this problem.

LP =
1

2
||w ||2 + C

∑
i

(ξi + ξ∗i )−
∑

i

αi(ε+ ξi − yi + w>x i + b)

−
∑

i

α∗i (ε+ ξ∗i + yi −w>x i − b)−
∑

i

(ηiξi + η∗i ξ
∗
i )

(4.51)

Again, C denotes a penalty parameter to be chosen by the user. The saddle point
condition of a minimum requires the derivative of LP to vanish for the primal variables
w , b, ξi , and ξ∗i . Therefore, partial derivation of LP yields the following equations:

0 =
∑

i

(α∗i − αi) (4.52)

w =
∑

i

(αi − α∗i )x i (4.53)

0 = C − α
(∗)
i − η

(∗)
i (4.54)
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By substitution of the equations Eq. 4.52 to Eq. 4.54 in Eq. 4.51, the following
optimization problem is obtained:

maximize


−1

2

∑
i ,j

(αi − αj )(α
∗
i − α∗j )x

>
i x j

−ε
∑

i

(αi − α∗i ) +
∑

i

yi(αi − α∗i )

subject to


∑

i

(αi − α∗i ) = 0

αi , α
∗
i ∈ [0,C ]

(4.55)

Note that the Lagrange multipliers ηi and η∗i are eliminated in the derivation of
Eq. 4.55. According to [Smola 98] the constraint αiα

∗
i = 0 has to be met. Thus, there

can never be a set of variables αi and α∗i which both are nonzero at the same time.
Furthermore, αi and α∗i are zero if |ŷi − yi | ≤ ε. Therefore, Support Vectors can only
be found outside the ε-tube (cf. Figure 4.6). With Eq. 4.53 the prediction of ŷi from
Eq. 4.47 can now be written without the actual weight vector w :

ŷi =

[∑
j

(αj − α∗j )x j

]>
x i + b (4.56)

4.2.3 Dimension Reduction Techniques

In pattern recognition the reduction of the dimension of a feature space is desirable.
This is useful to extract the important information in terms of classification, regres-
sion, or visualization. Basically this can be done by linear and non-linear methods.

All linear methods can be written as a matrix product [Niema 03, p.154]

x̂ = Φx (4.57)

where x̂ denotes the transformed feature vector of dimension n ′, Φ the transformation
matrix, and x the original feature vector of dimension n. The linear dimension
reduction techniques presented in the following are the Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), and Feature Selection (FS). They differ
just in the configuration of the matrix Φ.

As non-linear dimensionality reduction techniques the Sammon Mapping, which
tries to preserve the topology of the high-dimensional space, and an extension to the
Sammon Mapping, which incorporates additional prior knowledge on the mapping,
are presented.

Principal Component Analysis

The PCA finds the principal components which contain the most variance and project
the data accordingly (cf. Figure 4.7). The optimization criterion for the PCA is the
mean square distance eMSD between all vectors. With N being the number of vectors,
the eMSD between all vectors is defined as

εMSD =
1

N 2

N∑
i=1

N∑
j=1

(x̂ i − x̂ j )
> (x̂ i − x̂ j ) . (4.58)
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Figure 4.7: The PCA projects the features onto their principal components. The axis
which contains the most variance is projected onto the first axis.

The problem of computing optimized features can be reduced to the maximization of
a quadratic form [Niema 03, p. 206]. ΦPCA is obtained by computing the eigenvectors
ϕν from a suitable core matrix Q :

Q ϕν = λν ϕν (4.59)

With λν being the eigenvalues of Q , the n largest eigenvectors ϕν can be computed.
Thus, the transformation matrix ΦPCA is of the from

ΦPCA =


ϕ>

1

ϕ>
2
...

ϕ>
n

 (4.60)

Using the covariance matrix Σ and the mean vector µ of all data points, a suitable
core matrix Q is determined [Maier 08a]:

Q = Σ − µµ> (4.61)

Σ =
1

N

N∑
j=1

x jx
>
j , µ =

1

N

N∑
j=1

x j

The proof to show that this core matrix Q corresponds to εMSD is based on substitut-
ing Eq. 4.58 into Eq. 4.57 [Maier 05b]. The resulting transformation matrix projects
the axis which contains the most variance of the data onto the first component and
the axis containing the second most variance onto the second component and so on
(cf. Eq. 4.60).

Linear Discriminant Analysis

For the LDA another criterion is chosen which takes the class membership into ac-
count. Each vector x κ is member of a class Ωκ. K denotes the number of classes while
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Figure 4.8: A distribution of three classes which cannot be transformed by the PCA
optimally if the dimension is reduced – the “adidas problem” [Schuk 95, p. 116].

Nκ reflects the number of elements in class Ωκ in the training set. Thus, N =
∑k

κ=1 Nκ

is the total number of feature vectors.
As described in [Stemm05, p.41], from this information two covariance matrices

can be computed.

W LDA =
1

N

K∑
κ=1

Nκ∑
j=1

x κjx
>
κj

(4.62)

BLDA =
1

N

K∑
κ=1

Nκµκµ
>
κ −

(
1

N

K∑
κ=1

Nκµκ

)(
1

N

K∑
κ=1

Nκµκ

)>

, where

µκ =
1

Nκ

Nκ∑
j=1

x κj

W LDA states the scatter within one class while BLDA states the scatter between the
classes. The complete covariance matrix Σ can be obtained by the sum of both
matrices.

An optimal transformation in terms of the LDA projects vectors of the same
class very close together and vectors of different classes as far away as possible. We
wish to maximize BLDA while minimizing W LDA. Accordingly, we can formulate the
following criterion:

sc(ΦLDA) =
|ΦLDABLDAΦ

>
LDA|

|ΦLDAW LDAΦ
>
LDA|

(4.63)

In [Fukun 90] it is shown that this criterion can be maximized by setting the rows of
ΦLDA to the largest eigenvectors ϕν of the generalized eigenvector problem:

BLDAϕν = λνW LDAϕν (4.64)

The eigenvectors ϕν which are defined by the equation above are not orthonormal.
The eigenvalues, however, λν are always real and positive. Figure 4.8 shows a data
set with different classes which are separated best by the second principal component.
Transformation with PCA would project the axis with the highest variance onto the
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first component. If the dimension would be reduced, the class-separating information
would be lost. The LDA transforms the data shown in Figure 4.8 onto its second
principal component, which is the most discriminating one.

Feature Selection

The last linear dimension reduction technique presented here is the feature selection.
The linear transformation ΦFS,ν for the removal of a single feature xν is only composed
of ones and zeros. ΦFS,ν is a skewed n × (n − 1) unity matrix. The column which
corresponds to xν contains just zeros:

ΦFS,νx =



1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...

... . . . ... . . . ... . . . ...
...

0 0 · · · 0 · · · · · · 1 · · · 0 0
...

... . . . ... . . . ... . . . ...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1





x1

x2
...
xν
...
xq
...

xn−1

xn


= x̂ (4.65)

xq is an arbitrary entry in the feature vector different from xν . Removal of multiple
features can be performed by the combination of several feature removal matrices
ΦFS,ν after each other.

While the actual removal is rather simple, the algorithms which actually select the
features to be removed are manifold. All of these algorithms require the computation
of a certain “quality” GS of a subset of features S containing NS elements. This
GS can be computed from different distance measures concerning the features in
the subset, classification performance or estimates of the classification performance,
confusion probabilities between the classes, regression analysis of the features to the
class attribute, and many more [Hall 98, Niema 03, Clark 04, Cinca 04a].

In this work two quality criteria are inspected closely due to their direct applica-
tion of regression: Correlation-based Feature Subset (CFS) and Maximum R (MAXR)
selection. Although both of them seem quite similar, there are certain differences
which result in different performance concerning the quality of the resulting regres-
sion.

The idea behind the CFS selection algorithm is to compute the correlation of
a composite variable X S to an outside variable Y as the criterion for the quality.
In [Ghise 64, p.182] a formulation of this correlation as a composition of the inter-
correlations rYxSi

between the target variable Y and the NS individual features xSi
and the intra-correlations rxSi xSj

is found:

rYXS =
NSrYxSi√

NS + NS(NS − 1)rxSi xSj

= GS
CFS (4.66)

r denotes the mean of the respective correlations. In [Hall 98], Eq. 4.66 is used to
create a fast and efficient algorithm to select features which have a good correlation
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with the target variable. The computation is very efficient since the correlations
between all variables just have to be computed once. After their computation the
single correlations are stored in a lookup table which allows fast and easy access to
the values.

However, the question arises why this computation is so simple while the compu-
tation of RYXS from Eq. 4.17 would involve at least one matrix inversion. The answer
is that the correlation determined with Eq. 4.66 is not weighted. Therefore, not the
optimal weighting of the component variable is used in the CFS algorithm but the
fusion of the unweighted components.

As one might suspect, the use of optimally weighted components in a least square
error sense is able to preserve more information during the feature selection process.
An algorithm which employs the multiple correlation coefficient RYXS is described
briefly in [Clark 04, p.34]. The MAXR algorithm simply sets

GS
MAXR = RYXS (4.67)

to compute the quality of the feature subset S.
The calculation of RYXS in Eq. 4.67 is a crucial point for the application of the

algorithm. The formulation of RYXS in Eq. 4.17 involves a matrix inversion with a
theoretical complexity of at least O(N 3

S ) (cf. [Press 92, Courr 05]) for each subset.
This is quite expensive since implementations of the inverse matrix based on the QR
decomposition, like the one in Weka [Witte 05], usually have a complexity of

OR-iter = O(N 2
SN ) (4.68)

where N is the number of training vectors.
A faster approximation of R can be computed by gradient descent: Let X S be the

data matrix which contains all features of subset S. If S is of cardinality n − 1, this
X S can be computed by the multiplication of ΦFS,ν from Eq. 4.65 with X to remove
feature number ν. The parameters cS can be computed according to Eqs. 4.14 and
4.15:

c>S = yX ∗
S = yX ∗Φ>

FS,ν = c>Φ>
FS,ν (4.69)

Note that Φ>
FS,ν is the pseudo-inverse of ΦFS,ν since it is almost a diagonal matrix.

This implies that the computationally very expensive matrix inversion has to be
performed only once for all feature subsets S. In order to refine the approximation
further, a gradient descent can now be performed. The objective function of the
descent is chosen as the sum of the square error of the prediction εR:

εR(cS) =
N∑

i=1

(
c>x i − yi

)2 (4.70)

Differentiation after each component cj yields the following gradient function:

δεR
δcj

=
N∑

i=1

(
c>x i − yi

)
· 2xi ,j (4.71)

Using Eq. 4.69 as initialization for the gradient descent yields a quite good conver-
gence behavior. In terms of complexity, this procedure surpasses all previous methods:



4.2. Mathematical and Algorithmic Concepts 61

Since the sums of Eqs. 4.70 and 4.71 require just a single pass in each iteration, the
complexity OR-grad of this methods is

OR-grad = O(N · NS · 2 · C ) (4.72)

where C denotes a constant which corresponds to the number of iterations of the gra-
dient descent. As soon as OR-iter > OR-grad, the feature selection should be performed
with the gradient descent method in order to speed the feature selection procedure
up. Further methods for the computation of regression for the selection of subsets
are given in [Mille 02]. The methods presented there perform in the same order of
magnitude in terms of complexity.

Having GS determined, the actual selection algorithm can be started. A simple
algorithm which is suitable for a monotonic measure such as correlation is the best
first search:

1. Select the best single feature according to GS for the initialization of S.

2. Evaluate all possible combinations of S and one additional feature which is not
already included in S.

3. Select the best combination to be included in S.

4. If enough features are selected, terminate; else jump to line 2.

For non-monotonic quality criteria, many more complex selection algorithms exist,
e.g. floating forward search [Niema 03, p.246]. However, they are not required to
understand the contents of this work.

Sammon Mapping

A nonlinear method to reduce the dimensionality of a feature space is the Sammon
Mapping or the Sammon Transform (ST). It maps high-dimensional data to a plane
or a 3-D space [Sammo 69]. In the late 1970’s, a fast-converging algorithm for a
generalized Sammon transform was presented by Niemann [Niema 79].

Since then, the use of the Sammon transformation has become more and more
popular. Especially in the field of data selection and visualization the Sammon maps
are often used. Visualizations of the dependencies between different speakers like
presented in [Shoza 04] have many fields of application. They can be used to select a
subset of representative training speakers in order to reduce the number of training
speakers while recognition performance stays in the same range [Nagin 05].

The visualization can also reveal the relations between patients with voice dis-
orders in different graduations [Hader 06b]. Projection of new speakers allows to
compare them to the other speakers. This gives a better understanding of the differ-
ent disorders. Figure 4.9 shows a map of speakers with different degrees of hoarseness.
On the top left, speakers with a substitute voice are found. In these patients the lar-
ynx was removed due to cancer. The artificial voice of the laryngectomized speakers
can be interpreted as an extreme form of hoarseness. The average age of the laryngec-
tomees was about 60 years. At the top right, an age-matched control group of normal
speakers is located. At the bottom of the map are speakers with chronic hoarseness.
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Figure 4.9: Visualization of voice disorders: The properties of the speaker’s voices
are visible in the map. While the y-axis contains the age of the speaker, the x-axis
can be interpreted as the degree of hoarseness of the speakers.

On the bottom right, young reference speakers are found. Hence, the axes of the map
can be interpreted as the age on the y-axis and the degree of hoarseness on the x-axis.
All data were gathered with the same microphone and with the same recording setup.

As already mentioned, the ST uses the distances between the high-dimensional
data to find a low-dimensional representation — called map in the following — that
preserves the topology of the original data, i.e. keeps the distances between the low-
dimensional representation — called star in the following — as close as possible to
the original distances. Doing so, the ST is cluster-preserving. To ensure this, the
function εS is used as a measurement of the error of the resulting map (2-D case):

εS = s
N−1∑
p=1

N∑
q=p+1

(δpq − θpq)
2

δpq
with (4.73)

θpq =
√

(px − qx )2 + (py − qy)2 (4.74)

δpq is the high-dimensional distance between the high-dimensional representations of
p and q , θpq is the Euclidian distance between the corresponding stars p and q in the
map. s is a scaling factor derived from the high-dimensional distances:

s =
1∑N−1

p=1

∑N
q=p+1 δpq

(4.75)
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The transformation is started with randomly initialized positions for the stars. Then
the position of each star is optimized using a conjugate gradient descent library
[Naylo 07] and the following gradient:

∂εS
∂qx

= s
N−1∑
p=1

N∑
q=p+1

2(px − qx )(δpq − θpq)√
(px − qx )2 + (py − qy)2

(4.76)

To project a new star q ′ into an existing map, the high-dimensional distances
of the new star and all the stars in the map is needed. The new star is initialized
randomly on the map. Then the error

εSR = s
N∑

p=1

(δpq ′ − θpq ′)
2

δpq ′
(4.77)

is minimized using gradient descent where the original map contained N stars [Exner 07].

Extended Sammon Mapping

For routine clinical use [Noth 07], however, the use of multiple microphones and
recording setups is required which poses a serious problem. Modern Internet tech-
nologies allow for the recording of speech data at various locations simultaneously in
multi-site studies [Maier 07b]. This also means that all data are recorded in different
conditions with different microphones. Recording conditions have a great influence.
Major factors are the microphone, the distance between the microphone and the
speaker, and the acoustical properties of the recording environment. Given a speaker
uttering a sentence was recorded simultaneously by multiple microphones of different
characteristics at different distances, the points representing the same speaker in the
map are spread across the result of the visualization. Figure 4.10 gives an extreme
example: The speakers form two clusters although the speakers were recorded simul-
taneously. This is caused by the acoustic difference between the two microphones
which were chosen for the recording. The two corresponding representations of the
same speaker are far away from each other in this visualization. The dominating
factor is the microphone in this example.

An extension to the standard Sammon transform can be formulated to solve this
problem. The extension additionally optimizes the distances between the stars ac-
cording to information about the data to be mapped. This information could be
the age of a certain speaker, his intelligibility, or the membership to a certain group.
In our case we assign the same group to the same speaker recorded with multiple
microphones.

Now, a grouping error is introduced to extend the objective function.

G =

 g1,1 · · · g1,N
... . . . ...

gN ,1 · · · gN ,N

 (4.78)

gi ,j indicates the distance between the stars, respectively the high-dimensional fea-
tures, according to the additional information source. Thus, gi ,j = 1 if the feature
vector j is the same as feature vector i , and gi ,j = 0 if they have nothing in common.
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Figure 4.10: 51 speakers recorded simultaneously with two different microphones
(remote and close-talk recordings): The two microphones form two clusters although
both clusters contain the same speakers [Maier 08c].

The original error function of the Sammon transform is altered such that it pe-
nalizes the distance between stars according to their relation in the additional infor-
mation. A new error function εSE is formed:

εSE = s
N−1∑
p=1

N∑
q=p+1

[
wSgp,qθpq + (1− wS)(1− gp,q)

(δpq − θpq)
2

δpq

]
(4.79)

gp,q is the group indicator and wS is a weight factor for balancing the standard Sam-
mon error to the additional error term.

Again, gradient descent is applied. Partial derivation leads to the following gra-
dient:

∂εSE

∂qx
= s

N−1∑
p=1

N∑
q=p+1

[
wSgp,q

−(px − qx )√
(px − qx )2 + (py − qy)2

+

(1− wS)(1− gp,q)
2(px − qx )(δpq − θpq)√
(px − qx )2 + (py − qy)2

]
(4.80)

The derivation for the other coordinates is formed analogous.
Choosing the right weight factor wS is crucial to achieve a good reduction of

recording conditions influences while keeping the mapping error low, i.e. not to remove
the original information presented in the Sammon map. Also the factor must not be
chosen too high because it would corrupt the results when projecting new points
into an existing map. The re-projection is performed mostly in the same way as for
the standard ST since the group information of a new star will be known a priori
[Maier 08c].
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Figure 4.11: The composition of the Mel filter bank with 22 filters

4.2.4 Speech Processing

Automatic speech processing concerns all topics which are required to perform speech
recognition. In order to give a short overview on this field, first feature extraction is
described. The standard features in speech recognition are Mel Frequency Cepstrum
Coefficients (MFCCs). One of the possible fields of application of MFCCs is speaker
recognition with Gaussian Mixture Models (GMMs). As mentioned before the GMMs
are crucial in order to separate children’s speech from adults’ speech. Next, the actual
speech recognizer is presented. It consists of acoustic models — the so-called Hidden
Markov Models (HMMs) and a statistical Language Model. After the examination of
the training procedures for both models, their joint decoding can be performed: The
actual speech recognition process. A short history of speech recognition is given in
[Furui 05].

In addition to speech recognition, two more points are explained in this section:
Prosodic analyses which extract information on the speaking and intonation style
and pronunciation analysis which models common pronunciation errors.

Feature Extraction

We assume that the signal f (t) is sampled in equidistant steps and quantized at 16
bit. Usually the sampling rate varies from 8 kHz (telephone) to 44.1 kHz (CD). In our
experiments, all data were sampled with 16 kHz. Since the signal is an audio stream,
it is one-dimensional. Now feature vectors x (t) are extracted from the signal at each
discrete time t . If the dimension of the feature vector is n, it can be denoted as

x (t) =


x1(t)
x2(t)

...
xn(t)

 = x t . (4.81)

In the following the extraction of MFCCs which are being used for more than
20 years in speech recognition is presented [Davis 80]. They are obtained from the
spectrum of the speech signal [Niema 03]. The spectrum can be computed from the
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Figure 4.12: MFCC features as a 3-D plot: Note that the range of the static features
is much wider than the range of the dynamic features.

speech signal by Fourier analysis. Since we assume to process sampled and quantized
data, only the discrete Fourier transform will be introduced here:

F̃µ =
∑I−1

j=0 f̃j e−i2π(µj
I ) = DFT{f̃j} (4.82)

f̃j = 1
I

∑I−1
µ=0 F̃µe i2π(µj

I ) = DFT−1{F̃µ}

I denotes the length of the signal to be transformed while f̃j and F̃µ stand for the
periodic continuation of the signal (f̃I+1 := f1) and its Fourier transformation. The
correctness can easily be shown with f̃j = DTF−1{DFT{f̃j}} [Niema 03].

In order to analyze the change of the frequencies over time, the signal is split to
short chunks (frames) which are transformed separately. If a rectangular splitting
window is applied, high frequencies can occur because the signal is cut off sharply
at the edges of the time frame. This can be attenuated by window functions like
the Hamming or the Hanning window [Niema 03, Maier 05a, p.9]. In our case this
analysis is done for a period of 16ms with a shift of 10 ms. The overlap is done to
compensate the loss of information caused by the window functions. A spectrogram
showing the progression of the frequencies can be generated.

A lot of the information included in the spectrum is not audible by the human
ear [Moore 86]. Hence, the amount of data can be reduced at this point [Zwick 67].
This is usually done by a filter bank. For the case of MFCCs, 22 filters were used.
Figure 4.11 plots the triangular filters. Note that the lower frequencies are analyzed
better — since more filters are computed and their range is smaller — than the higher
frequencies, just like by the human ear. In each of the filters, the energy is integrated.

In the next step, the base 10 logarithm is applied to the 22 values obtained by
the filter bank. Again, this is done to resemble the characteristics of the human ear.
Plotted in a spectrographic layout, this is known as Mel spectrogram.

In order to compute cepstral parameters, the logarithmic Mel spectrum is inverted
using an inverse discrete cosine transform (iDCT). Note that the word cepstrum is
an inverse — of the word spectrum — as well. The Mel cepstrum is formed. In
this thesis the first 12 cepstral coefficients (c0−11) are used for feature computation
since the low coefficients are more important for speech recognition. However, the
first magnitude (c0) is replaced by the log energy because it contains less important
information than the energy. Furthermore, the first derivative for these values is
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computed using a regression line over 5 consecutive frames which yields additional 12
coefficients [Furui 00]. In Figure 4.12 a 3-D plot of MFCC features can be seen. The
amplitude sequence of the dynamic features is much smoother than the amplitudes
of the static features. The range of the dynamic features is smaller.

Speaker Recognition

The most common method to perform speaker and speaker group recognition are
Gaussian Mixture Models (GMMs, [Hertl 99, Cinca 02, Bockl 07b, Bockl 07c]). How-
ever, different approaches exist as well. Overviews are found in [Furui 91, Furui 94,
Furui 97]. In general, the task of speaker recognition is to determine the speaker S
of an utterance X . Therefore, the properties of all NS speakers have to be modeled
with a GMM λGMM. Classification is then performed according to Bayes’ rules by
the selection of the λGMM with the highest a posteriori probability

P(λGMM | x ) =
p(x | λGMM)P(λGMM)

p(x )
. (4.83)

Each GMM is composed of M Gaussian distributions. Each distribution is weighted
by wm ∈ (0, 1) with

∑M
m=1 wm = 1. Each speaker is modeled by M n-dimensional

weighted densities:

p(x | λGMM) =
M∑

m=1

wmNm(x ) with (4.84)

Nm(x ) =
1

(2π)n/2 | Σm |1/2
e−(1/2)(x−µm )TΣ−1

m (x−µm ) (4.85)

Each of the GMMs λGMM is determined by the parameters wm ,µm ,Σm , where µm
is the mean value, Σm the covariance matrix, and wm the weight of distribution m.

Figure 4.13 shows the first two dimensions of the GMMs of three different speak-
ers. Each speaker is modeled with four Gaussian distributions. Each distribution
characterizes different acoustic properties of the speakers. Although all distributions
of the speakers are different, the positions of the mean vectors and the covariances
resemble each other.

Next, these maximum-likelihood parameters have to be estimated on a given
training set. The Expectation-Maximization (EM) algorithm [Demps 77, Redne 84]
can be applied to solve the problem of the model parameter estimation with a given
training set. The algorithm iteratively refines the GMM parameters by maximizing
the likelihood of an estimated model using the observed training feature vectors X .
In each iteration a new model λ̃GMM with increased likelihood is estimated from an
initial model λGMM according to:

p(X | λ̃GMM) ≥ p(X | λGMM) (4.86)

The EM algorithm consists of the following four steps:

• Determination of initial model parameters

• E step: Calculate a posteriori probabilities
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Figure 4.13: 2-D example of speaker models each using 4 Gaussian mixtures — after
[Bockl 07b]

• M step: Calculate new estimation values of the maximum-likelihood parameters
wm ,µm ,Σm

• repeat E and M step until convergence

The initialization is performed by a vector quantization (VQ) algorithm. It creates
an initial segmentation with M densities from the given training set. This initial
segmentation is then used to determine a first parameter set. Next, these parameters
are improved iteratively with the EM algorithm [Niema 03]. The most commonly used
VQ algorithms are the k-means [Ander 73] and the LBG approach [Linde 80, Buzo 80],
named after the inventors Linde, Buzo and Gray.

In the E step, the a posteriori probabilities of the feature vectors x t for every
mixture m of each GMM λGMM are calculated by a modification of the Bayesian
formula Eq. 4.83

p(m | x t ,λGMM) =
wmNm(x t)∑M
i=1 wiNi(x t)

. (4.87)

With these posterior probabilities, the parameters of the improved model are then
reestimated in the M step:

w̃m =
1

T

T∑
t=1

p(m | x t ,λGMM) (4.88)

µ̃m =

∑T
t=1 p(m | x t ,λGMM)x t∑T

t=1 p(m | x t)
(4.89)

Σ̃m =

∑T
t=1 p(m | x t ,λGMM)∑T

t=1 p(m | x t)
(x t − µ̃m)(x t − µ̃m)> (4.90)

After the M step, the model λGMM is set to the new model λ̃GMM. These two steps
are continued until convergence, or a fixed number of iterations has been reached.
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Since training data is always sparse, the use of a Universal Background Model
(UBM) showed to improve the results of speaker recognition in the literature [Reyno 95,
Reyno 00, Yang 04, Brand 05, Deng 05]. The UBM is usually trained on all available
training data to represent as much features of speech as possible. Then Maximum
A Posteriori (MAP) adaptation [Gauva 94] is used to derive speaker-adapted models
from the well-trained UBM parameters with the speaker’s training data. The models
created from a UBM are called coupled models.

MAP adaptation for Gaussian Mixtures consists of two steps, like the EM algo-
rithm described above. The first step determines the a posteriori probabilities with
the UBM parameters. In the second step, wm , µm , and Σm are estimated from each
speaker’s data. Given T training vectors of the speakers X = {x 1,x 2, . . . ,xT} as
training set and a UBM λUBM, the a posteriori probability P(m | x t) of mixture m
given feature vector x t is determined as

P(m | x t) =
wmNm(x t)∑M
i=1 wiNi(x t)

(4.91)

where Nm(x t) is the Gaussian distribution from Eq. 4.85. Using P(m | x t) and the
feature vectors x t , ML estimates of the weight w ′

m , the mean µ′
m , and the variance

Σ ′
m of each mixture m are calculated.

w ′
m =

T∑
t=1

P(m | x t) (4.92)

µ′
m =

T∑
t=1

P(m | x t)x t (4.93)

Σ ′
m =

T∑
t=1

P(m | x t)x tx
>
t (4.94)

In order to create an adapted GMM, these ML estimates can be combined with the
UBM parameter linearly:

ŵm = [α′mwm/T + (1− α′m)wm ]γ (4.95)
µ̂m = α′mµ′

m + (1− α′m)µm (4.96)
Σ̂m = α′mΣ ′

m + (1− α′m)(Σm + µmµ>
m)− µmµ>

m (4.97)

where α′m is an adaptation parameter for the linear combination. α′m is dependent
on the size of the adaptation data Nm

α′m =
Nm

Nm + τ
, (4.98)

and the relevance parameter τ which has to be defined by the user. Is the number
of feature vectors of a given density Nm sparse, then α′m → 0. Thus densities which
were observed seldom cause only small changes in the adaptation parameters. On the
contrary, a high count (α′m → 1) leads to high variations in the adapted parameters.
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Acoustic Modeling for Speech Recognition

A speech recognizer finds the most likely word chain w ∗
1 , . . . ,w ∗

S for a given sequence
of observations oT := (o1, o2, . . . , oT ), ot ∈ Ω, t ∈ [1, . . . ,T ], of length T . Acous-
tic modeling is used to model the acoustic properties of a certain word or phoneme
in order to recognize them. The state-of-the-art approach in speech recognition are
Hidden Markov Models (HMMs) λHMM. These models are able to compute the prob-
ability PAM(oT | wS ) of a given sequence of T observations oT [Huang 01]. Each
ot is element of one class Ωκ, κ ∈ [1, . . . ,K ], where K denotes the total number of
classes. The probability for a certain observation p(oT ) can be written as the product
of conditional probabilities:

p(oT ) = p(o1)
T∏

t=2

p(ot | o1, . . . , ot−1) (4.99)

The Markov assumption that the next observation is only dependent on the current
one can reduce this product to:

p(oT ) = p(o1)
T∏

t=2

p(ot | ot−1) (4.100)

Now we define that the model λHMM, which models the word chain wS , has Ns hidden
states si . Hidden states can emit any of the observations ot at any discrete time step
t . However, the sequence of the states is unknown to the observer. The probability
to emit a certain observation ot differs in every hidden state. Thus, a hidden state
variable qt is introduced.

p(oT | λHMM) ≈
∑

∀qt∈{s1,...,sNs }∀t=1,...,T

P(q1) p(o1 | q1)
T∏

t=2

p(ot | qt) P(qt | qt−1)

(4.101)
P(q1 = si) denotes the probability to start in state si , and P(qt = sj | qt−1 = si)
describes the transition probability from state si at time t − 1 to state sj at time
t . Hence, λHMM can be defined as a triplet (π,A,B) where π is a vector of size Ns

which contains the start probabilities P(q1 = si), A is an Ns × Ns matrix with the
transition probabilities P(qt = sj | qt−1 = si), and B is another Ns ×K matrix with
the output probabilities for each observation P(ot ∈ Ωκ | qt) in every state.

Until now, no restrictions for the transition were done. For example it is possible
to jump from any state to any other state. In continuous speech recognition, this
case is highly unlikely. We assume that transitions only happen to the next state in
positive time direction which is the case in normal speech3. In addition, transitions
to the current state are allowed, too, in order to model variations in speaking rate.
Thus the transition matrix A can be reduced to a Ns×2 matrix. This type of HMMs
is called linear HMM [Schuk 95]. With this definition of HMMs, several problems can
be stated and solved:

3Stuttering, for example, can be modeled by state transitions in negative time direction [Noth 00].
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• Forward Algorithm: The most likely model λ∗
HMM for an observation oT can

be created by choosing the model λHMM which generates the highest probability
P(oT | λHMM) for a given sequence of observations.

λ∗
HMM := argmax

λHMM

P(oT | λHMM) (4.102)

Hence, the problem can be reduced to computing P(oT | λHMM) for each model
λHMM. This can be done with the so-called forward algorithm. According to
[Schuk 95] the forward probability αt(j ) can be computed recursively as

αt(j ) = P(oT , qt = j | λHMM)

=

(
Ns∑
i=1

αt−1(i)aij

)
bj (ot) with α1(j ) = πj bj (o1) . (4.103)

The matrix elements πj , aij and bjk can be obtained from the corresponding
matrices π, A, and B. Using the forward probability αt(j ), the probability
P(oT | λHMM) can now be found by

P(oT | λHMM) =
Ns∑
j=1

αt(j ) . (4.104)

• Viterbi Algorithm: The Viterbi algorithm can compute the most likely se-
quence of states qT∗. Hence, the probability P(qT | oT ,λHMM) has to be
maximized. In [Schuk 95] it is shown that this can be done by a recursive cal-
culation of the maximal probability P∗(oT | λHMM) which can be reached for
a sequence of observations oT , given a certain model λHMM. This is done by
computation of the maximum probabilities θt(j ) and a matrix which stores the
best previous state φt(j ) at time t for state sj simultaneously. The recursion is
initialized with

∀j : θ1(j ) = πj bj (o1) and ∀j : φ1(j ) = 0. (4.105)

Then new values are computed in each recursion step by

∀j : θt(j ) = max
i

(θt−1(j )aij ) bj (ot) and ∀j : φt(j ) = argmax
i

θt−1(i)aij .

(4.106)
Now qT∗ can be found as

qT∗ = (q∗1 , q
∗
2 , . . . , q

∗
T ) with (4.107)

q∗T = argmax
j

θt(j ) and q∗t = φt(q∗t+1) .

In this manner the most likely sequence of states can be found.

• Baum-Welch Algorithm: In order to determine the parameter matrices π,
A, and B, the Markov models have to be trained with oT which is now regarded
as the training set. It is used in order to estimate the model parameters. This
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is done with the Baum-Welch algorithm. The forward probabilities αt(j ) which
were already given in Eq. 4.103 are applied again. Furthermore, backward
probabilities βt(j ) are needed as well. In [Schuk 95] they are defined as

βt(i) =
Ns∑
i=1

aij bj (ot+1)βt+1(j ) with βT (i) = 1 . (4.108)

Since the forward and the backward probabilities are needed, the algorithm is
also known as forward-backward algorithm. Furthermore, the probability γt(j )
that the hidden state qt is state sj at time t is needed, too.

P(qt = sj |O ,λHMM) =
P(O , qt = j |λHMM)

P(O |λHMM)
=

αt(j )βt(j )∑
i αt(i)βt(i)

= γt(j ) (4.109)

Now the maximum likelihood estimates of the parameters of λ are computed
by

π̂i = γ1(i) (4.110)

âij =

∑
t

αt(i)aij bj (ot+1)βt+1(j )∑
t

αt(i)βt(i)
(4.111)

b̂jκ =

∑
t

γt(j )χ[ot∈Ωκ]∑
t

γt(j )
. (4.112)

χ[ot∈Ωκ] is the characteristic function which returns 1 if ot is element of Ωκ and
0 if it is not. In this manner all model parameters can be estimated. However,
the ot are discrete symbols for one class Ωκ. Hence, every feature vector x t has
to be classified first. It can be assigned to a certain class Ωκ. These kind of
HMMs are known as discrete hidden Markov models.

With semi-continuous hidden Markov models (SCHMM), the hard classification
of one vector to exactly one class as assumed before is smoothened. The features
are soft-quantized [Schuk 95]. Therefore, a codebook with M Gaussian densities
is introduced. For each density m, the mean µm and the covariance Σm are
computed. Probabilities for multidimensional feature vectors can be calculated.
Unlike continuous HMMs, which have one codebook per state, SCHMMs share
one codebook for all states and models.

The bj (ot) are now computed for feature vectors x t by

bj (x t) =
M∑

m=1

cjmNm(x t),
M∑

m=1

cjm = 1 . (4.113)

Nm(x t) is a unimodal Gaussian distribution according to Eq. 4.85. By mixture
of a sufficient number of components, any density function can be approximated.
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Again, maximum likelihood parameters for µm and Σm can be estimated using
a training set xT = (x 1,x 2, . . . ,xT ). To do this the probability ζt(j ,m) to
select component m at time t in state sj is needed. It can be calculated with
the forward (Eq. 4.103) and backward (Eq. 4.108) probabilities by

ζt(j ,m) = P(qt = sj ,mt = m | xT ,λHMM) (4.114)

=


1

P(xT | λHMM)

∑
i

αt−1(i)aij cjmNm(x t)βt(j ) t ≥ 1

1
P(xT | λHMM)

∑
i

πj cjmNm(x t)β1(j ) t = 1
.

Now the estimates can be computed as

ĉjm =
1∑

t

γt(j )

∑
t

ζt(j ,m) (4.115)

µ̂m =
1∑

t

ζt(j ,m)

∑
t

ζt(j ,m)x t (4.116)

Σ̂m =
1∑

t

ζt(j ,m)

∑
t

ζt(j ,m)x tx
>
t − µmµ>

m . (4.117)

Next, both the codebook and the Markov models can be trained. Both esti-
mations are done in an alternating manner because new HMM parameters will
produce new posteriors ζt(j ,m) (cf. Eqs. 4.115, 4.116, and 4.117) while new
codebook densities refine the values of bj (x t) (cf. Eq. 4.111). First an initial
codebook is estimated by identification of a Gaussian mixture distribution with
M components with the training set xT . In addition, initial Markov models
with uniform transition probabilities are built. Then the re-estimation of the
models, using Baum-Welch training, and the codebook starts. In this work
10 re-estimations of the models are done followed by one re-estimation of the
codebook in each re-estimation step. During the training, 10 such re-estimation
steps are done in total.

Language Modeling

With a language model, further linguistic information is supplied to the recogni-
tion process. This is accomplished with various approaches using formal grammars
or stochastic information. While formal grammars are useful to create quite re-
stricted speech recognition systems, like a phone-number recognition system or a
simple voice command system, stochastic language models are state-of-the-art in
spontaneous speech recognition systems. Therefore, only stochastic language models
are presented at this point.
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So-called n-gram models are used to describe the linguistic information. These
n-grams give the probability for a certain word wi in a context of n − 1 preceding
words. For a word sequence wS , the probability PLM(wS ) is approximated as

PLM(wS ) := P(w1 . . .wS ) = P(w1)P(w2 | w1)P(w3 | w1w2) . . .P(wS | w1 . . .wS−1)

= P(w1)
S∏

j=2

P(wj | w1, . . . ,wj−1)

≈ P(w1) . . .P(wn−1 | w1, . . . ,wn−2)
S∏

j=n

P(wj | wj−n+1, . . . ,wj−1) (4.118)

where n ≥ 3. Further common n-grams are the zerogram model (n = 0) where
all words wi are distributed equally, the unigram P(wi) (n = 1), the bigram model
P(wi | wi−1) (n = 2), and the trigram model P(wi | wi−2,wi−1) (n = 3).

For small values of n, the models are estimated by counting the occurrences of
the word wi in the desired context in a large text corpus. A probability for every
word and context is found. Nevertheless, it happens that a certain word in a certain
context is not a member of the training corpus but of the test set. For this case
the language model would prohibit its recognition since it was never observed. The
problem is solved by interpolation: Only words are counted which appear twice or
more in a certain context. The probability mass which was not assigned can be
distributed among the words and contexts which appeared less than twice. This kind
of smoothing is also known as Good-Turing-Smoothing (cf. [Nadas 85] and [Schuk 95,
p.217]).

If bigger contexts are chosen, like in the case of 4-grams, this simple interpolation
is not sufficient since only few of the possible 4-grams are observed even in a large
training corpus [Allis 06]. Therefore, categories Ci are employed which are assigned
to every word wi . PLM(wS ) for n-grams can be written as

P(wi | wi−n+1, . . . ,wi−1) := P(wi | Ci) P(Ci | Ci−n+1, . . . ,Ci−1) (4.119)

In this manner the same n-gram context can be observed much more often. Usually
the categories are found by linguistic categories like “verbs” and “articles” or semantic
categories like “place names” or “player names”. Of course, data-driven approaches
exist as well [Knese 93].

In this thesis all recognition results are done with a category-based unigram or 4-
gram model as already used in [Gallw 02] and [Hader 04]. The categories were chosen
semantically to match the words of the test (cf. Chapter 5.1).
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recognized word chain reference %
WA this is moon bucket and a a ball this is a moon a bucket and a tree 56
WR this is moon bucket and a a ball this is a moon a bucket and a tree 67
WA tiger moon bucket apple ball moon bucket tree 0
WR tiger moon bucket apple ball moon bucket tree 67

Table 4.1: Example of the effects of the automatic reference on the WA and WR. We
assume that the spoken utterance is “This is a moon, a bucket, and a tree”. Thus,
the automatic reference is “moon bucket tree”.

Decoding

Now that the acoustic model probability PAM(oT | wS ) and the language model prob-
ability PLM(wS ) are found, the most likely word chain w ∗

1 , . . . ,w ∗
S can be computed

by decoding. According to [Stemm05] this can be written as

w ∗
1 , . . . ,w

∗
S := argmax

wS
PAM,LM(wS | oT ) (4.120)

= argmax
wS

PAM(oT | wS )PLM(wS )

P(oT )

= argmax
wS

PAM(oT | wS )PLM(wS ). (4.121)

Unfortunately, Eq. 4.121 can only be applied as is in the case of a zero- or unigram
model. For the case of bigger contexts, a search tree has to be built. In order to prune
the search tree, a beam search is done. This kind of search filters out non-probable
candidates which are outside the search beam. When the tree is built, its branches
can be re-scored. In this phase a language model with a large context is applied since
the possible context is fixed by the beam search. Then the best word chain is found
by the application of the A∗ algorithm [Niema 03]. The latest version of the decoding
as applied in this work is described in [Stemm05].

For the evaluation of the decoded sequence, two measures are commonly used:
the word accuracy (WA) and the word recognition rate (WR).

WR =
C
R
× 100 %

is computed as the percentage of correctly recognized words C and the number of
reference words R. In addition,

WA =
C − I

R
× 100 %

weighs the number of wrongly inserted words I in this percentage. The WA punishes
the insertion of additional words compared to the reference chain. The upper limit
of both measures is 100 %. The lower bound of the WR is 0 % while the WA does
not have a lower bound. It gets negative as soon as the recognizer inserts more
wrong words than it actually recognizes correctly. Table 4.1 gives an example for the
difference in computation.
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Word level features
Feature Description
PauseSilenceBeforeWord Length of the pause before the current word
PauseSilenceAfterWord Length of the pause after the current word
EnergyRegCoeffWord Slope of the regression line of the energy contour
EnergyMseRegWord Mean square error of the regression line of the energy

contour
EnergyEneAbsWord Absolute energy of the current word
EnergyMaxPosWord Position of the maximal energy in the current word
EnergyMaxWord Value of the maximal energy in the current word
EnergyMeanWord Mean value of the energy in the current word
DurLenAbsWord Duration of the current word
DurLenAbsSyllableWord Mean duration of the syllables in the current word
F0RegCoeffWord Slope of the regression line of the F0 contour in the cur-

rent word
F0MseRegWord Mean square error of the regression of the F0 contour in

the current word
F0MaxWord Maximal F0 value in the current word
F0MinWord Minimal F0 value in the current word
F0MeanWord Average F0 value of the current word
F0OnsetWord First value of the F0 contour in the current word
F0OffsetWord Last value of the F0 contour in the current word
F0OnsetPosWord Position of the F0 Onset in the current word
F0OffsetPosWord Position of the F0 Offset in the current word
F0MinPosWord Position of the minimal F0 value in the current word
F0MaxPosWord Position of the maximal F0 value in the current word

Table 4.2: Overview on the prosodic features computed on word level

Prosodic Analysis

The prosody module takes the output of our word recognition module in addition to
the speech signal as input. In this case the time-alignment with the Viterbi algorithm
of the recognizer and the information about the underlying phoneme classes (like long
vowel) can be used by the prosody module [Batli 00].

First, the prosody module extracts so-called base features from the speech signal.
These are the energy, the fundamental frequency (F0) after [Bagsh 93], and the voiced
and unvoiced segments of the signal. In a second step, the actual prosodic features are
computed to model the prosodic properties of the speech signal. Therefore, a fixed
reference point has to be chosen for the computation of the prosodic features. We
decided in favor of the end of a word because the word is a well–defined unit in word
recognition, it can be provided by any standard word recognizer, and because this
point can be more easily defined than, for example, the middle of the syllable nucleus
in word accent position. For each reference point, we extract 21 prosodic features
(cf. Table 4.2). These features model F0, energy and duration, e.g. maximum of
the F0. Fig. 4.14 shows examples of the F0 features. In addition, 16 global prosodic
features for the whole utterance are calculated (cf. Table 4.3). They cover each
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Turn level features
Feature Description
F0MeanGlobalWord Mean of the F0 value in the current utterance
F0VarianceGlobalWord Variance of the F0 value in the current utter-

ance
Mean_jitter Mean value of the jitter in the current turn
Variance_jitter Variance of the jitter in the current turn
Mean_shimmer Average of the shimmer in the current turn
Variance_shimmer Variance of the shimmer in the current ut-

terance
Num_V_Segments Number of voiced segments in the current ut-

terance
Num_UV_Segments Number of unvoiced segments in the current

utterance
Len_V_Segments Length of the voiced segments in the current

turn
Len_UV_Segments Length of the unvoiced segments in the cur-

rent turn
MaxLen_V_Segments Maximal length of a voiced segment in the

current utterance
MaxLen_UV_Segments Maximal length of an unvoiced segment in

the current utterance
RatioNum_VUV_Segments Ratio of the number of voiced and unvoiced

segments in the current turn
RatioLen_VUV_Segments Ratio of the length of voiced and unvoiced

segments in the current turn
RatioLen_VSignal_Segments Ratio of the length of the voiced segments

and the current utterance
RatioLen_UVSignal_Segments Ratio of the length of the unvoiced segments

and the current utterance

Table 4.3: Overview on the prosodic features computed on turn level

of mean and standard deviation for jitter and shimmer, the number, length and
maximum length each for voiced and unvoiced sections, the ratio of the numbers of
voiced and unvoiced sections, the ratio of length of voiced sections to the length of
the signal and the same for unvoiced sections. Jitter and shimmer are extracted as
described in [Levit 00, p.14]. The last global feature is the variance of the fundamental
frequency F0. In order to evaluate pathologic speech, we calculate the average, the
maximum, the minimum, and the variance of the 37 turn- and word-based features
for the whole text to be read. Thus, we get 148 features for the whole text.

The mean value F0MeanGlobalWord is computed for a window of 15 words (or
less if the utterance is shorter) [Batli 99, Batli 01] so it is regarded as turn level feature
here.

In contrary to features of many other research groups, our features do not make
a hard decision: instead of ‘stylizing’ the F0 contour (‘hat contour’, ‘rise’, ‘rise fall’,
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Figure 4.14: Computation of prosodic features within one word (after [Kiess 97])

‘high tone’, ...), we extract features such as Min, MinPos, Max, and MaxPos which
implicitly describe the F0 and also the energy contour and leave the decision to the
classifier.

The features proved to be effective for linguistic and emotion analysis [Batli 03a,
Huber 02], the detection of boundaries between phrases [Batli 95], the user state, such
as “tired” or “not tired” [Adelh 03, Batli 03b], and the focus of attention [Hacke 06].

Pronunciation Analysis

For the analysis of the pronunciation, further features are extracted from the speech
signal. Unlike the prosodic features, the pronunciation features are designed to model
variations in speech which are typically caused by altered pronunciation of non-native
speakers. This should also be applicable to pathologic speech. Different approaches
are pursued in this work: Features which are independent of the actual language and
language-dependent features.

To model pronunciation variations language-independently, some kind of prior in-
formation has to be implemented to the feature extraction process. This is performed
either data-driven or by the use of heuristics in order to model specific characteristics
of speech:

• PronFex: Pronunciation features, as described in [Hacke 05b], were designed
to rate a speaker’s pronunciation in a data-driven approach. They are used for
measuring the progress in learning a foreign language [Cinca 04b]. In this work,
we study these features’ applicability to the detection of pathologic speech.
More precisely, we only analyze a subset of these features that is based on
phoneme confusion probabilities on word level. To calculate these phoneme con-
fusion features, we compare the result of the forced alignment with the Viterbi
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algorithm (cf. Chapter 4.2.4) of every word to the result of a phoneme recog-
nizer. The phoneme recognizer uses semi-continuous hidden Markov models as
described in Chapter 4.2.4 and a 4-gram language model (cf. Chapter 4.2.4).
It is based on MFCCs calculated every 10 ms with a frame size of 16ms. From
these informations phoneme confusion matrices C are built. They contain for
every pair of phonemes a, b the probability that a was detected by the recog-
nizer when there should be b according to the forced alignment

cab = P(a | b) (4.122)

where cab is the corresponding entry of matrix C . From the training set, we
calculate two confusion matrices: one for the pathologic speech data and one
for the normal data. The quotient Q is calculated for every frame:

Q =
Ppathologic(a | b)

Pnormal(a | b)
(4.123)

From these frame-wise results, we calculate the following features for the phone
level [Cinca 04a, p.162]:

– Goodness of Pronunciation (GOP): Likelihood obtained by a GMM clas-
sifier (cf. Chapter 4.2.4) which was trained with speech of the target
language. In non-native speech, the likelihood is known to drop in mis-
pronounced phones.

– Duration Score: Probability of the observed phone duration, given the
duration distribution observed in native speakers

– Acoustic Score: Confidence of the speech recognizer for the current phone
(cf. Chapter 4.2.4)

– Confidence Score: Q

– Actual Duration: Observed duration

– Expected Duration: Mean value of the duration distribution observed in
native speakers

For word level the following features are extracted [Cinca 04a, p.162]:

– PC1: Mean of Q

– PC2: Maximum of Q

– PC3: Minimum of Q

– PC4: Variance of Q

– PC5: Median of Q

– A1: Phoneme correctness

– A2: Confidence score of the recognized word, computed by the speech
recognizer (cf. Chapter 4.2.4)
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• Nasality Detection using the Teager Energy Operator: The Teager En-
ergy Operator is a heuristic approach of language-independent pronunciation
feature extraction. The Teager Operator [Teage 90] has been applied to de-
tect nasality in sustained vowels and consonant-vowel-consonant combinations
[Cairn 96b]. The Teager Energy operator (TEO) is defined as:

ψ[f (n)] = [f (n)]2 − f (n + 1)f (n − 1) (4.124)

f (n) denotes the time-domain audio signal. The TEO’s output is called the
Teager Energy Profile (TEP).

As described in [Cairn 96a] and [Cairn 96b], the TEP can be used to detect
hypernasal speech because it is sensitive to multicomponent signals. When
normal speech is low-pass-filtered in a way that the maximum frequency flowpass

is somewhere between the first and the second formant, the resulting signal
mainly consists of the first formant. However, doing the same with hypernasal
speech results in a multicomponent signal due to the anti-formant (cf. Eq. 3.3).
If we now compare the low-pass-filtered TEP to the TEP of the same signal that
was bandpass-filtered around the first formant, we should see more difference
in case of a hypernasal signal. We measure that difference with the correlation
coefficient (cf. Eq. 4.1) of the TEPs. The bandpass filter covers the frequency
range ±100Hz around the first formant. The values with the best results for
flowpass were determined experimentally and are listed in [Reuss 07].

Figure 4.15 shows examples for this. Figure 4.15(a) displays a low-pass filtered
and a bandpass-filtered TEP of the same audio frame with a rather high cor-
relation, and Figure 4.15(b) shows the same for a different audio frame with a
low correlation between both TEPs. Figure 4.15(a) represents what we expect
to observe in case of normal speech while Figure 4.15(b) demonstrates the hy-
pernasal case. Both figures show frames classified as an /i:/ (SAMPA notation,
cf. [Wells 97]).

For the language-dependent case, an interesting approach is stated in [Hacke 07b].
The idea is to model the pronunciation variants which occur often as additional entries
in the lexicon of a speech recognizer. The speech recognizer selects the best-fitting
model form the lexicon during the decoding process (cf. Chapter 4.2.4). This yields an
integrated recognition of pronunciation errors during the speech recognition process.

However, this method has a major drawback: All pronunciation variants have
to be determined before the recognition process. In [Hessl 05], for example, this has
been done in cooperation with a teacher for the English language. From the manually
created pronunciation variant list, a set of rules was derived which was then applied
to a vocabulary list in order to create further pronunciation variants.

4.2.5 Normalization of Age Effects

For the recognition of children’s speech, the age plays an important role. In general,
the speech of children is more variable than adults’ speech [Wilpo 96]. In order to
cope with this variance, the speaker-adaptation of the speech recognizer is beneficial
[Maier 06b]. Furthermore, the anatomy of children differs from adults. The children’s
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Figure 4.15: Examples of high and low correlation between a low-pass- (1900 kHz)
filtered and a bandpass-filtered TEP
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vocal tract and the vocal cords are shorter than in adults. This results in higher
fundamental and formant frequencies in the speech of children. Using Vocal Tract
Length Normalization (VTLN, cf. [Eide 96]), this effect can be attenuated.

Speaker Adaptation

The Gaussian densities of the speech recognizer can be adapted similar to the MAP
adaptation described in Chapter 4.2.4. In addition, improvement can be achieved by
Maximum Likelihood Linear Regression (MLLR) adaptation. The idea is to find a
set of linear transformation matrices W for the mean values and H for the covari-
ance matrices based on the ML estimate. In order to perform the adaptation, these
matrices are applied in the following manner:

µ̂m = Aµm + b = [Ab]

[
µm
1

]
= W ξm (4.125)

Σ̂m = HΣmH > (4.126)

ξm denotes the extended mean vector which is found by concatenating 1 to the mean
vector µm . W consists of a transformation matrix A and a translation vector b. The
covariance Σm is adapted by applying H . According to [Gales 97] the matrices can
be computed by a version of the EM algorithm. In the expectation step, a likelihood
function L(λ, λ̂) is computed. In the most general form, this can be written as

L(λ, λ̂) = K0 −
1

2

∑
m

∑
t

γt(m)
[
Km + log

(∣∣∣Σ̂m

∣∣∣)+ (x t − µ̂m)> Σ̂
−1

m (x t − µ̂m)
]
.

(4.127)
λ denotes the original models while λ̂ are the adapted models. Σ̂m and µ̂m are the
adapted mean and covariance. K0 is a constant only dependent on the transition
probabilities, and Km is the normalization constant corresponding with the Gaussian
component m. The γt(m) give the probability to select Gaussian component m at
time t which can be computed with the Baum-Welch algorithm from Chapter 4.2.4.
In Eq. 4.109 only γt(j ) is computed which can be used to compute γt(m) by

P(qt = sj , kt = m|xT ,λ) = γt(j )
cjmNm(x t)
M∑
l

cjlNl(x t)

= ζt(j ,m) (4.128)

γt(m) =
∑

j

ζt(j ,m) . (4.129)

In the maximization step of the algorithm, the likelihood function is maximized. The
problem is simplified by several restrictions to the transformation of µ̂m and Σ̂m . In
the following mean transformation and covariance transformation are presented.

• Mean Vector Transformation: In order to transform the mean vector, the
transformation matrix W is applied in the following manner:

µ̂m = Aµm + b = W ξm (4.130)
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The estimate of the covariance matrix Σ̂m is set to Σ . Thus, the likelihood
function can be simplified to

L(λ, λ̂) = K0 −
1

2

∑
m

∑
t

γt(m)
[
Km + log (|Σm |) (4.131)

+ (x t − µ̂m)>Σ−1
m (x t − µ̂m)

]
.

The following system of equations is obtained by setting the derivative to zero
in the M step:∑

t

∑
m

γt(m)Σ−1
m x tξ

>
t =

∑
t

∑
m

γt(m)Σ−1
m W ξtξ

>
t (4.132)

Unfortunately, W is inside a sum over t and m which is computationally expen-
sive. In [Gales 96] the problem is solved by calculation in variance-normalized
domain. The inverse of the covariance matrix Σ−1

k is decomposed to its Cholesky
factor Cm :

Σ−1
m = CmC>

m (4.133)

Cholesky factorization can be done on any symmetric positive definite matrix
[Wilki 71]. The whole system can be normalized by application of the Cholesky
factor which enables a fast computation of µ̂m :

µ̃m = C>
mµm (4.134)

µ̂m =
[
C>

m

]−1
ÃC>

mµm + b (4.135)

µ̆m = Ãµ̃k + b̃ =
[
Ãb̃
] [ µ̃m

1

]
= W̃ ξ̃m (4.136)

The matrices W̃ and Ã and the vectors b̃, µ̃m , and ξ̃m denote the respective
matrices and vectors in variance-normalized domain. Now the maximization in
normalized domain for µ̆m yields a system of equations similar to Eq. 4.132:∑

t

∑
m

γt(m)C>
mx t ξ̃

>
m =

∑
t

∑
m

γt(m)W̃ ξ̃k ξ̃
>
m (4.137)

= W̃
∑

t

∑
m

γt(m)ξ̃m ξ̃
>
m

However, this system can be resolved easily in order to compute W̃ . Then
Eq. 4.135 can be applied to find the transformed MLLR estimate µ̂k outside
the normalized domain.

• Covariance Transformation: According to [Gales 96], for MLLR covariance
adaptation the covariance Σm is transformed using the transformation matrix
H as defined in Equation 4.126. Again, the Cholesky factor Cm of Σ−1

m from
Eq. 4.133 is applied to transform the system of equations into the normalized
domain:

Σ̂m =
[
C>

m

]−1
ĤC−1

m (4.138)
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Figure 4.16: The composition of the Mel filter bank with 22 filters after VTLN with
a scaling factor of 1

ν
= 1.2 (cf. Figure 4.11 for the configuration before the VTLN)

Using this definition the following likelihood function L(λ, λ̂) is derived from
Eq. 4.127:

L(λ, λ̂) = K0 −
1

2

∑
m

∑
t

γt(m)
[
Km + log

(∣∣∣[C>
m

]−1
ĤC−1

m

∣∣∣)(4.139)

+ (x t − µ̂m)>
[
C>

m

]−1
ĤC−1

m (x t − µ̂m)
]

This estimate is maximized by computation of the derivative and setting it to
zero. The solution of the emerging system of equations is found as

Ĥ =

∑
m

{
C>

m

[∑
t γt(m) (x t − µ̂m) (x t − µ̂m)>

]
Cm

}
∑

m

∑
t γt(m)

. (4.140)

Note that the estimate µ̂m of the mean vector µm is necessary to compute
Ĥ . Thus, the µ̂m have to be computed in a first pass on the adaptation set
according to Eq. 4.135. In a second pass over the whole adaptation set, Ĥ is
found afterwards.

Vocal Tract Length Normalization

VTLN is used to warp the length of the vocal tract of one person to the length of
another person. In our case we desire to warp either children’s speech to adults’
speech or vice versa.

In [Eide 96] a linear approach for VTLN is presented. According to [Fant 73] the
frequency of the formants are dependent on the length of the vocal tract L. The
formant frequency Fk of the k th formant is directly proportionate to k

L . Thus, a
linear scaling of the vocal tract length according to a scaling factor ν yields L′ := Lν:

F ′
k ∝

k
L′

=
k
Lν

=
1

ν

k
N
∝ 1

ν
Fk (4.141)

Hence, a linear scaling of the vocal tract length L corresponds to a linear scaling
of the frequency axis with 1

ν
. Such a linear VTLN can easily be integrated into

the feature extraction process described in Chapter 4.1.3 by adaptation of the filter
banks. Figure 4.16 shows the configuration of the filter banks after a scaling of 1

ν
= 1.2
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(cf. Figure 4.11 for the configuration before the VTLN). In [Stemm05] an overview
on further VTLN methods is given.
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4.3 PEAKS Architecture

In this section the architecture of PEAKS is described in detail. As already shown in
Figure 4.2, PEAKS can be divided into three major blocks: The client, the transport
layer, and the server.

4.3.1 Classes of the PEAKS Client

Most of the classes in the client block are part of the graphical user interface. The
corresponding methods are embedded in the respective part of the graphical user
interface. Since PEAKS employs Swing4 for the graphical user interface, this part
also uses the Swing terminology, i.e. “JApplet” refers to a JavaTM program which is
executed as a part of a web page, “JFrame” is a window which is opened additionally
by the applet, and “JPanel” is a graphical user interface which can either be embedded
into a JApplet, a JFrame, or a JPanel.

Tables 4.4, 4.5, and 4.6 give an overview on the most important classes in the
PEAKS client. The tables are grouped according to their functionality: The ad-
ministration tools (cf. Table 4.4) can only be opened by a user who is flagged as
administrator in the system. Furthermore, a special administrator version of PEAKS
which is not available on the Internet is necessary to gain access to these functions. In
the following the classes which handle the PEAKS client functionality (cf. Table 4.5)
are described. PEAKS provides classes to register new users and patients. Further-
more, patients can be recorded using various different tests depending on the type
of patients and the intended type of examination. Additional applets (cf. Table 4.6)
provide the functionality to create recordings easily from the home of the patient
without having to use the full PEAKS client software. Another additional applet can
be employed to test whether the client PC fulfills all technical requirements to use
PEAKS. A detailed description of all functionalities of the PEAKS client is given in
the PEAKS manual [Maier 06a].

4For a documentation of Swing, please go to http://java.sun.com/docs/books/tutorial/uiswing/

Administration tools
super class name description
JFrame AdminCommandFrame This frame gives an administrator of

the system access to various functions
such as management of access control
for the users or the modification of
PEAKS internal pronunciation lexicon.

JFrame GroupAccessControlFrame A frame to control the access permis-
sions of the individual users.

JFrame LexiconEditor A frame to manipulate the pronuncia-
tion lexicon of PEAKS.

Table 4.4: Administration classes of the PEAKS client

http://java.sun.com/docs/books/tutorial/uiswing/
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PEAKS client functionality
super class name description
JApplet Peaks The main applet of PEAKS all panels are linked

to this applet in order to be displayed. By default,
the Peaks applet shows the login screen.

JPanel UserRegisterPanel The panel which is used to register new users to
the system.

JPanel MainMenu The main menu GUI which gives access to all func-
tionalities of PEAKS

JFrame LogFrame A frame which logs all important messages of
PEAKS. It is opened if the web browser does not
provide access to the JavaTM console.

JPanel PatientRegisterPanel This panel is used to add new patients to the
PEAKS system.

JPanel PatientEditPanel A panel to edit the information on a patient in the
system.

JPanel PatientLabelPanel This panel is used to enter subjective evaluations
into the PEAKS system.

JPanel RecordSelection In this panel the test to be recorded is cho-
sen. Furthermore, it enables the user to create
a “RecordLink” which can be sent via e-mail to a
patient to perform the recording from his home.

Runnable APstarter A process which can be applied to create batch
recordings of multiple tests right after each other.

JPanel AudioRecPanel The actual recording panel. It can display a se-
quence of pictograms or texts or both at the same
time.

JPanel ExpertLabelingPanel The panel which is used to enter the detailed as-
sessment of a speech therapist.

Runnable FileDataTransmission A process which buffers the audio data for the
transmission. In this manner PEAKS can also be
used from computers with a slow Internet connec-
tion.

JPanel TransmissionHandler This panel displays the progress of the transmis-
sion after the recording was performed.

JPanel RecordInfoPanel A panel to supply further information about a
recorded test.

JPanel TranscriptionPanel Using this panel the audio data can be transcribed.
abstract
Object

Utils An abstract class which contains common methods
which are used in PEAKS.

abstract
Object

ClientTransfer Class to handle the communication with the
server.

Interface ReturnApp An interface which enables to send information be-
tween different panels.

Interface ReturnAppUpdateName An extension of the ReturnApp interface to select
a specific user in the main menu.

Table 4.5: Main classes of the PEAKS client
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Additional PEAKS applets
super class name description
JApplet SimpleExerciseRecorder The applet which is used to perform the

“RecordLink” recording.
JApplet PeaksTest A small applet which checks for the cor-

rect JavaTM version and port blocks in
the firewall of the client system.

Table 4.6: Additional classes of the PEAKS client

4.3.2 Classes of the PEAKS Transport Layer

A crucial part in the PEAKS system are the classes of the transport layer. In the
following we describe the transfer objects which are employed in the transfer and the
classes that handle the transfer.

While basically all classes from the previous section were part of the application
layer, the classes of the transport layer can be divided into transfer objects which are
used by the client and the server side to exchange information and transfer handlers.
On the client side, all transfers are managed by the class “TransferHandler”; on the
server side the corresponding class is “ServerThread”. The transfer objects are listed
in Table 4.7. All transfer objects implement the JavaTM interface “Serializable” which
enables the objects to be written into a stream. Result objects also implement the
interface “SQLData” since they have to be written into an SQL database.

A special role in the data exchange between the client and the server play the
User and Session objects since they are used in order to set up the connection. In
order to log into the system, the client sends first a User object, where only the
member variables “name” and “password” (MD5-encrypted [Rives 92]) are set. All
other member variables are set to null. The server checks now whether the password
matches the password in the database and returns a Session object if the password
is correct or aborts the connection if the password did not match. All subsequent
connections are now initialized with the Session object instead of the username and
the password since the Session object can be used to identify the user. Furthermore,
the Session object has an expiry time which is only stored on the server side in order
to avoid manipulation by the client. Session objects which do not come from the
same host as the initial password request came from are discarded.

The transfer objects are used for all communication in PEAKS. The objects can
be used as both result and request. All data transfers in PEAKS follow the gen-
eral convention that “empty” objects, i.e., objects with null reference variables, are
regarded as requests while “full” objects are regarded as results. If the client, for
example, desires more information about a specific patient but knows just the ID of
the patient, the client will produce a new User object with the corresponding patient
ID. The server will then check whether the requesting user has access to the patient
data and will return a User object with all member variables filled if the check was
successful. All other communication in PEAKS is performed in the same manner.
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Transfer objects
super class name description
Object AccessControl Object to store access control information.
Object Command Object to implement special commands into the

PEAKS transfer layer.
Object Exercise Object to represent a test to be recorded. An ex-

ercise consists of multiple turns.
Object Turn One sentence or word within an exercise.
Object FileData Representation of the audio data which was

recorded in one turn.
Object PatientContext A context group of patients, e.g. children with

cleft lip and palate.
Object Result Object to represent an arbitrary result obtained

for one or multiple FileData objects.
Object SammonMap Representation of a visualization of a patient

group.
Object Session Object to represent a PEAKS session.
Object User Object to represent users and patients of the

PEAKS system.
Result IntelligibilityResult Representation of the result of the subjective eval-

uation of one FileData object by one user.
Result ExpertRating Result of the detailed assessment of one FileData

object by an expert listener.
Result TranscriptionResult Transcription of one FileData object performed by

a User.
Result Lexikon Object to store the global pronunciation lexicon.
Result DoubleValueResult Object to store an arbitrary double value as result.
Result ProsodicFeatures Result type to store the outcome of the prosodic

analysis for a whole test.
Result WAResult Result type to store the recognition result of a test.
Result WordHypothesisGraph Result to store the time alignment performed by

the speech recognizer for one FileData object.
Result WordPhoneAlignment Result to store the phone time alignment within

one word. This object is used in WordHypothesis-
Graph to store the time alignment information of
the individual words.

Table 4.7: Overview on the transfer objects in the PEAKS transfer layer
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PEAKS main server classes
super class name description
Object PeaksServer The main class of the server. It is used to

start the server.
Runnable ServerThread The thread which processes a request of a

PEAKS client
Runnable ServerThreads The thread which accepts new connections

and spawns new ServerThread objects.
abstract
Object

Definitions Class to provide constant values like frame
length and sampling rate to the PEAKS
server.

PEAKS auxiliary server classes
super class name description
Object Database Gateway to the database. Provides all func-

tions to access the database.
Object DocumentWrapper Class to generate PDF result sheets.
Object RecognitionWrapper Class to provide access to the underlying

code of the speech recognizer and other as-
sessment methods as described in Chap-
ter 4.2.

Object ImportVoiceTest Class to import new tests to PEAKS from
text files.

Table 4.8: Overview on the classes in the PEAKS server

4.3.3 Classes of the PEAKS Server

The PEAKS server consists of four main server classes and four auxiliary classes (cf.
Table 4.8). The main class “PeaksServer” is used to start the PEAKS server. It
will spawn a “ServerThreads” object which starts listening on port 7070. If a client
connects to that port, a new “ServerThread” is spawned to handle the request of
the client. After the request is processed, the “ServerThread” is removed from the
memory by the JavaTM garbage collection. An abstract class “Definitions” holds the
constant variables, such as the frame length or the sampling rate of the audio data.

The auxiliary classes are used to gain access to certain information sources or
sinks. The class “Database” provides access to a MySQL database which should be
running in the same network as the PEAKS server. It provides all functions to store
and load all types of transfer objects into the database. While all transfer objects
which are of the type “Object” are stored in individual tables, the “Result” types are
stored in the table “result” as binary large objects (BLOBs)5. This procedure is very
convenient to implement, but it also has the disadvantage that any changes to the
structure of the result object causes a modification in the serialization of the object.
Hence, special serialization procedures have to be written manually, or the changes
to the result objects have to be performed in inherited classes.

5In fact, the type MEDIUMBLOB is used since BLOB defaults to 65535 characters which is not
as large as the term “binary large object” suggests.
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The class “DocumentWrapper” is used to create PDF documents such as reports
about the patients. Therefore, a LATEX document is created and compiled. The
report includes visualization, recognition performance, and other assessment results
in comparison to a patient group. These reports can then be sent to the client where
they can be reviewed.

In order to compute the various assessment and evaluation procedures which are
offered by PEAKS, the class “RecognitionWrapper” is employed. In the PEAKS
server, there is just a single instance of the “RecognitionWrapper”. All tasks to be
performed by it are stored in a queue and are processed in a first-in-first-out (FIFO)
manner since some parts of the speech recognition engine cannot run concurrently.
Furthermore, there is no need for real-time processing of the data since all processing
is offline. As long as there are still tasks in the queue of the wrapper, it will work until
all tasks are finished. The respective results are stored in the database where they
can easily be accessed by the client. With the “RecognitionWrapper” it is possible to
run all the computationally intensive analyses described in Chapter 4.2 in C or C++
while the client written in JavaTM is platform-independent.

The class “ImportVoiceTest” offers methods to integrate new voice and speech
tests into PEAKS easily. Therefore, a test file in a specific format has to be uploaded
to a publicly accessible web server. If the test should contain pictures as well, these
must also be uploaded to the web server. Then the URL of the file can be supplied to
the import routine. This causes the import routine to create all corresponding entries
in the database, thus enabling recordings of the test. In order to enable automatic
evaluation, the pronunciation of all words of the test has also to be supplied to the
recognition system (cf. Chapter 6).
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Chapter 5

Data Collection

This chapter reports all data which were collected during the work of this thesis. All
data were collected during a German speech test – the Psycho-Linguistic Analysis
of Children’s Speech Disorders. Reference data were collected in several areas of
Germany. About 800 control children were collected throughout this work. Further-
more, about 400 children with cleft lip and palate were recorded at the University
Hospital in Erlangen. Informed consent had been obtained by all parents prior to the
recordings.

5.1 Psycho-Linguistic Analysis of Children’s Speech
Disorders

The Psycho-Linguistic Analysis of Children’s Speech Disorders is a semi-standardized
test commonly used by speech therapists. The test is called “Psycho-Linguistische
Analyse kindlicher Sprechstörungen” in German and abbreviated as PLAKSS [Fox 02].
It is designed for the assessment of speech disorders in children aging between 4 and
18 years. Some of the children who are tested are not yet able to read. Hence, the test
consists of pictograms. During the test the speech therapist shows the pictograms to
the child and encourages it to say the names of the presented items. The test consists
of 99 words on 33 slides. 97 of the words are disjoint. Two words appear twice (“Ball”
and “Pilz”). The vocabulary of the PLAKSS test can be reviewed in Appendix A.1.1.
All German phonemes are included in the test. The German phonemes are tested in
beginning, center, and end position of a word. Vowels, however, are not targeted in
the test.

Figure 5.1 shows an example of the slides. Slide 13 consists of the German words
“Trecker, Zitrone, Jäger” which mean tractor, lemon, and hunter in English. The slide
gives a good example of the test: While the tractor and the lemon are quite easy to
identify, the hunter often poses a problem. Many children do not recognize the rifle
on the back of the hunter and call the pictogram “man with a dog”. Furthermore,
the word “Trecker” is rather uncommon in the southern part of Germany. Children
tend to prefer variants such as “Traktor” or “Bulldog”. Therefore, the vocabulary of
the PLAKSS test has to be extended with common word alternatives and regional
variants, if their detection is desired. A list of all common word alternatives is
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Figure 5.1: Slide 13 of the PLAKSS test: “Trecker, Zitrone, Jäger” (tractor, lemon,
hunter)

presented in Appendix A.1.2. The assessment procedure, however, is only defined on
the target phonemes given by the test. The forms for the perceptive assessment of
the PLAKSS test are presented in Appendix A.2.

In the first version of the speech data collection software, the data were recorded
by PC directly to a local harddisk. All the data of one test were stored in a single
file. This procedure had several disadvantages. First of all, the data had to be
transliterated completely before they could be further processed since no additional
information is known. Another disadvantage was that no information about the
speech therapist is known. Data collection, however, was performed by more than
one speech therapist. Thus, speaker identification techniques could not be applied.
The speech of the therapist had to be separated manually from the children’s speech.
All data of the first version were automatically segmented at long pauses into turns
before the manual processing (cf. [Stemm05]). Then the turns were listened to
in order to exclude the speech therapist. The last step in the processing was the
transliteration. Due to the high effort which is necessary during the segmentation
and transliteration, the processing time was about ten times the time consumption
of the actual recording in this first assessment.

In order to enable automatic evaluation of the test, the PEAKS software environ-
ment was created (cf. Chapter 4). A large advantage of PEAKS is that the slides
of the pictograms are displayed with the same software as the data recording is per-
formed. Therefore, the data can be segmented according to the slides. This procedure
provides additional information which can be used in the evaluation process in order
to provide fully automatic assessment. Furthermore, since the speech therapist has
to log into PEAKS. Thus, he is also automatically identified. This information is
then saved in order to simplify the automatic segmentation between the therapist
and the child. Annotation of the perceptive evaluation is also part of the PEAKS
system. Specific panels for the assessment using Likert-scales and phoneme level an-
notation are provided by the system. Screenshots of their graphical user interface are
presented in Appendix A.3.
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5.2 Control Groups

The collection of the control group speech data was performed in five different cities
of Germany to test for dialectal influences. Non-native children’s speech was excluded
from the data. Therefore, the mother tongue of the child’s mother and father were
noted down. Later, the decision whether the child was native or non-native was
decided perceptually. Most of the data were collected in Erlangen. In the following
the datasets are described in detail. In order to provide a better overview on the
data, the datasets are grouped by the city in which they were collected.

5.2.1 Erlangen (Franconia)

In Erlangen, data were recorded at two different locations: An elementary school —
the Michael-Poeschke-Schule — and a kindergarten — the Erna-Zink-Kindergarten.

In the Michael-Poeschke-Schule, data collection was performed three years sub-
sequently. For the time of the data collection, the school’s library was dedicated as
recording room. The room had dimensions of about 6m × 5m × 3m. Two of the
walls were covered by bookshelves. In the room no strong reverberation was audible.
Furthermore, there were no noise sources such as active PC fans or air-conditioners.
Since no Internet connection was available, PEAKSlocal (cf. Figure 4.3) was used to
simulate the real PEAKS server. In the first year, in January 2006, data were recorded
using a Sennheiser close-talking microphone (handgrip K3U with ME 80 head). Since
the microphone is very sensible to background noises, they had to be reduced. The
microphone was placed in a box with dimensions of about 1m×1m×1m. The walls
of the box were covered by foam rubber in order to absorb sounds. One side of the
box had a hatch which could be opened in order to place microphone and laptop into
the box. The box was placed on a table, and a chair was put in front of the hatch
of the box. For the recording, the hatch was opened, and the child was sat on the
chair in front of the box. The distance of the children’s mouth to the microphone
was approximately 20 cm. Since the sound card of the laptop produced noise around
50 Hz when the power adapter was connected — caused by the AC power supply —
digital analog conversion was performed using the converter in a TASCAM DA-P1
DAT recorder. The data were then directly streamed onto the harddisk of the laptop
using PEAKSlocal. Sampling was performed at 48 kHz during the recording but later
on resampled at 16 kHz. Quantization was performed at 16 bit. Figure 5.2 shows this
recording setup.

In order to keep the time of missed classes as short as possible, the children left the
class one by one and were escorted to the recording room. After the test, each child
was brought back to the classroom, and the next child could follow. In total, data of
89 children (46 female and 43 male) at an age of 8.8±1.3 years were recorded with the
PLAKSS test. The recordings were in good quality. Only slight background noises
occurred. Most of them were caused by children playing in the courtyard of the school
during the breaks between the lessons. These data are called Michael-Poeschke-06 in
the following.

One year later — in April 2007 — more data were gathered at the Michael-
Poeschke-Schule. In order to simplify the recording setup, a different configuration
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Figure 5.2: First setup of the recording environment

for the data collection was chosen. Instead of the recording box, the DAT recorder,
and the Sennheiser microphone, we chose a USB head set (Plantronics Audio USB
510). So the recording laptop PC was placed on a table and a chair in front of it.
Before the test each of the children had to put on the head set. Before each recording
the microphone of the head set was adjusted to be in front of the child’s mouth. The
data were sampled at 16 kHz and quantized at 16 bit. Hence, no further resampling
had to be performed. The recording quality of the head-mounted USB microphone
was only slightly worse than the previous setup with the recording box. Due to
the head-mounted microphone, fewer background noises were audible. Moreover,
data collection was paused during the breaks between the lessons. Since the new
recording configuration was much simpler and faster to deploy, and the audio quality
was similar or only slightly worse, the setup was selected as the standard recording
setup for the collection of control data. Figure 5.3 shows the simplified recording
setup. Additional documentary images of the recording situation are presented in
Appendix A.5. 76 children (39 female and 37 male) at the age of 8.5 ± 1.4 years
were recorded. The data of the Michael-Poeschke-Schule collected in April 2007 are
denoted Michael-Poeschke-07 throughout this work.

In February 2008, a third time data were collected at the Michael-Poeschke-Schule.
The recording setup, location, microphone, PC, and software were the same as in
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Figure 5.3: Simplified recording setup used since March 2007

2007. In the third year, 157 children (76 female and 81 male) at the age of 8.4± 1.2
years were recorded. The data are referred to as Michael-Poeschke-08 in the following.

The youngest control group was recorded at a local kindergarten in Erlangen.
21 boys and 17 girls at the age of 5.7 ± 0.7 years were recorded with the PLAKSS
in the Erna-Zink-Kindergarten. Additionally, the children were also looked at by a
dentist in order to document missing teeth which might cause sigmatism. For the
recording a USB head set (Plantronics Audio USB 510) was attached to a laptop
PC (cf. Figure 5.3). No Internet connection was available. Therefore, PEAKSlocal
was used again. As in all recordings performed with PEAKS, the sampling rate was
16 kHz and quantization 16 bit. The dataset is referred to as Erna-Zink-07.

5.2.2 Nuremberg (Franconia)

In Nuremberg, data were collected at a high school — the Sabel Schule. The school
did also strongly support this work. They dedicated a room during the time of the
recording. The room had the size of a normal classroom with about 50 m2. The walls
were even and plain. Reverberation was reduced by furniture, like tables and chairs
for about 30 pupils. Using the new recording setup consisting of laptop PC and head
set (cf. Figure 5.3), 48 children (20 female and 28 male) at the age of 13.2±1.2 years
were recorded in March 2007. The dataset is denoted as Sabel-07 in the following.
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5.2.3 Hannover (North Rhine-Westphalia)

In order to test whether our evaluation methods are independent of the dialect, data
were collected all over Germany. Speech data representing standard German were
collected in Hannover. The Eichendorff elementary school agreed to allow recordings
at their school. They dedicated one room, which is usually used as library and reading
room, to the data collection. The area of the room was about 60 m2. Half of the
walls were covered by bookshelves. The other half was plain with some decorations
attached to the walls. Furniture, such as tables, chairs, and couches reduced the
reverberation in the room. Recordings were performed with the new data collection
setup (cf. Figure 5.3). In total, data of 126 children (68 female and 58 male) at the
age of 8.6 ± 1.1 years were gathered in April 2007. The dataset is called Hannover-
07 subsequently.

5.2.4 Karlsruhe (Baden)

For the representation of a south-western dialect, Karlsruhe in Baden was chosen.
Three schools — the Gutenberg Schule, the Nebenius-Grundschule, and the Hans-
Thoma Schule — agreed to contribute to the data collection which was performed
between May and June 2007. Recording conditions were similar in all three schools
since all of them provided individual rooms for the data collection. In the Gutenberg
Schule, a room which is usually dedicated to medical examinations was used. It was a
rather small room with an area of about 25 m2. The room was calm and did not have
any noise sources. In May 2007, 63 children (30 female and 33 male) at an average
age of 8.3± 1.2 years were recorded. The dataset is referred to as Gutenberg-07.

In the Nebenius-Grundschule, the data collection was performed in the library of
the school. The room had an area of about 50 m2. On the walls were some bookshelves
which reduced reverberation. The 44 children (25 female and 19 male) at the age of
8.7± 0.9 years are labeled as Nebenius-07.

The recordings in the Hans-Thoma Schule were performed in the office of a teacher.
The area of the office was about 20m2. The office was rather quiet although a
classroom was situated right next to it. In this school only one second class with
24 children (12 female and 12 male) was recorded. The group of children with an
average age of 7.7 ± 0.6 is called Hans-Thoma-07 in the following. The union of all
three schools in Karlsruhe is referred to as Karlsruhe-07.

5.2.5 Leipzig (Saxony)

To represent a dialect of eastern Germany, Leipzig was chosen. The Dritte Grund-
schule supported this work by admission of the recordings. They dedicated one office
in the cellar of the school to the recordings. The area of the room was about 15 m2.
Overall recording situation was calm and neither echo or reverberation posed a prob-
lem to the sound quality. Between March and July 2007, 61 children (40 female and
21 male) with an average age of 7.9± 2.1 years were collected. This dataset is called
Leipzig-07 throughout this work.
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5.3 Patient Groups

Collection of the patient groups started already before the development of the first
version of PEAKS. Therefore, this section is divided into two parts. First, the data
which were gathered before the first version of the PEAKS client was finished are
described. Next, the patient data recorded with the PEAKS client are presented in
detail.

5.3.1 Preliminary Recordings

Recording of children with cleft lip and palate started already in 2002 in the Oral
and Maxillofacial Clinic of the University Hospital of Erlangen. The hospital has an
examination room for the follow-up care of the children with CLP. The recordings
for this work were gathered during the regular out-patient examination. The room
in which the recordings took place has an area of about 15m2. The room contains
two shelfs, a patient chair, and an endoscope with PC tower. In the room no echo
nor reverberation was audible. Additional noise sources, like the hardware required
for endoscopy, were always turned off before any audio data were captured. Until
late January 2006, before the first version of the PEAKS client became available,
123 children (54 female and 69 male) were recorded. All data of the CLP children
recorded with the old recording software are referred to as CLP-02-06. The children
had an average age of 8.2 ± 3.6 years. 16 of the children had an isolated cleft lip,
30 an isolated cleft palate. In the children with cleft lip and palate, 57 had the
unilateral phenotype while 20 had the bilateral one. The recording was performed
directly at the PC, however, there was no automatic segmentation performed during
the test. As microphone a dnt Call 4U Comfort at a sampling frequency of 16 kHz
quantized with 16 bit was used. The children wore it as head set. Then, the recording
was started. In this first version of the recording software, the PLAKSS slides had
to be shown on paperback to the children. The PC was just used to store the
audio data. This procedure had several disadvantages. In order to process the data
with speech recognition technology, at least some segmentation is desired. During
spontaneous speech, some pauses occur at phrase or sentence boundaries. These were
used to automatically segment the data into turns. In total, the data were segmented
into 5176 turns, i.e., 42 turns per child on average. Before any evaluation could be
performed all of the data had to be transliterated. This is a laborious process which
has a real-time factor of about 10. The transliteration contains 17831 words, i.e. 3.4
words per turn. All the data had to be listened to manually, and every word uttered
had to be noted down. In total, the vocabulary contains 605 words plus 1062 word
fragments and pathologic word alternatives. Compared to the 99 target words, 605
words seem a lot more. However, one has to keep in mind that all words which
were uttered by the children were written down in the transliteration. It contains
also carrier sentences like “this is a . . .” or “I can see a . . .”. Moreover, description
words, such as colors and other item properties appear in the transcript. A serious
difficulty in transliteration of pathologic speech data are the word fragments which
also contain pathologic word alternatives. For an inexperienced listener, it is very
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category criterion abbreviation
nasality hypernasality HN

nasalized consonant NC
backing laryngeal replaced LR

pharyngeal backing PB
articulation palatalization PA

weakened plosives WP
lisp lateralization LA

interdentalization IN

Table 5.1: Overview on the pronunciation rating criteria

difficult on the one hand to understand the child at all and on the other hand to find
a good alphabetic representation of the word.

The first 31 recordings (9 girls and 22 boys) of the CLP-02-06 dataset were per-
ceptively assessed by five speech professionals using PEAKS. A screen shot of the
evaluation screen is shown in Appendix A.3 (cf. Figure A.6). The children with CLP
were in the age from 4 to 16 years (mean 10.1±3.8 years) at the time of the recording.
Two had an isolated cleft lip, five an isolated cleft palate, 20 a unilateral cleft lip and
palate, and four a bilateral cleft lip and palate. The total duration of the children’s
audio files was 120 minutes, consisting of 5330 words in 2209 turns. The vocabulary
contains the 795 words which occur in the data (97 unique words of the test, 266 ad-
ditional adjectives and nouns which were used by the children to explain the pictures,
and 432 additional representing word fragments). The average turn length is short
with 2.4 words. The recordings showed a wide range in intelligibility. This subset of
CLP-02-06 is called CLP-Intel. It is used for intelligibility assessment in Chapter 6.

A subset of 26 children (5 female and 21 male) of CLP-Intel was furthermore as-
sessed by a speech therapist using the forms presented in Appendix A.2. The speech
therapist had been working with children with cleft lip and palate for many years.
Therefore, she could differentiate many criteria: “hypernasality”, “nasalized conso-
nant”, laryngeal backing as “laryngeal replaced” and “pharyngeal”, “palatalization”,
“weakened plosives”, “lateralization”, and “interdentalization”. The criteria listed in
Table 5.1 were selected in order to match Table 2.2. Two of the children in the
dataset had an isolated cleft lip, three an isolated cleft palate, 19 unilateral CLP, and
another two bilateral CLP. Assessment was only performed on the PLAKSS target
words. Hence, only the 1916 words of the transliteration which could be mapped
onto one of the 99 target words were used. In average, 73.7 target words could be
recovered from the audio data per child. Some of the words could not be obtained
from the audio files because they were either not uttered by the child, or the uttered
word could not be mapped to the target word, i.e., an uncommon word alternative
or word fragment was uttered by the child. Annotation according to the forms in
Appendix A.2 based on the target phonemes of the PLAKSS words. This is basically
a phoneme level annotation. However, only some phonemes of the words are marked.
In order to obtain a full phoneme level annotation, a second perceptive assessment
by a speech expert was performed based on the annotations of the first expert. Using
the phoneme level annotation module of PEAKS (cf. Appendix A.3), the evaluation
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Figure 5.4: If the turns are in a sequence which present all German phonemes early
the development of the mean value and the variance of the score gets stable. Hence,
a criterion can be defined which allows to abort the assessment procedure if the mean
value of the score and its standard deviation get stable.

was performed directly at the PC. With these detailed annotations, frame, phoneme,
word, and speaker level experiments can be performed on this dataset. Hence, the
set is called CLP-Phone-Eval.

In 2004, a preschool study of children’s speech was performed at the Department
of Phoniatrics and Pedaudiology of the University Hospital Erlangen. All children
were tested with the PLAKSS test and recorded with a DAT recorder at 48 kHz and
16 bit quantization. None of the children had cleft lip or palate. However, some of the
children had other language and speech disorders. Hence, the audio data could not
be used for this work. Transliteration, however, of the data showed to be beneficial.
The transliteration of the data could be employed to extend the list of frequent word
alternatives of the target words of the PLAKSS test. Moreover, the data could be
used to train the language models required in some segmentation steps. The dataset
contains speech of 50 children (14 female and 36 male) at an average age of 5.3± 1.1
years and is referred to as Preschool.

5.3.2 Recordings with PEAKS

The first patient was recorded with PEAKS on January the 20th, 2006. Subsequently,
until March the 17th, 35 children (13 female and 22 male) with CLP at the age of 8.5±
3.5 years were recorded to form the first patient group gathered with PEAKS — CLP-
Intel2. The recordings were performed with the same microphone as the previous
patient groups (dnt Call 4U Comfort) at 16 kHz with 16 bit quantization in the same
room. Eight of the children had an isolated cleft lip, nine an isolated cleft palate, 13
unilateral CLP, and five bilateral CLP. Due to the new data collection procedure, the
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exact time is known when the supervisor of the test moved from one slide to another.
Hence, manual transcription and segmentation were no longer required since the text
reference of the respective slide can be used instead.

All data of CLP-Intel2 were also evaluated by five speech professionals using the
evaluation module as shown in Appendix A.3 (cf. Figure A.6). The evaluation was
performed as discussed in Chapter 3.1. Since the speech experts complained about the
laborious evaluation procedure of every single turn, a faster procedure was designed.
Using the data of the first evaluation session on CLP-Intel, it could be shown that
already about 30% of the scores would be sufficient. However, the turns have to
be reordered since the setup of the PLAKSS test focuses on different phonemes in
the beginning than in the end. Otherwise it might happen that some phonemes did
not appear although already half of the test was scored. In some children, however,
only certain phonemes are affected by the clefting. Hence, the slides were brought
to a new sequence which presents all phonemes of the German language already in
the first third of the audio data. Figure 5.4 shows an example. In the beginning
of the scoring procedure, the mean value and the standard deviation of the score
strongly vary. This also causes a high mean square error compared to the final score
of the patient. At the time when all phonemes appearing in the speech data of the
patient were listened to at least once, the error drops. Moreover, the mean value
and the standard deviation of the score show only little variation until the end of
the assessment session. Further scores contribute only little to the final score. The
heuristic criterion ecrit(tr) to decide whether to continue the assessment at turn tr or
not is computed as follows:

ecrit(tr) =
{
[µ(tr)− µ(tr − 1)]2 + [σ(tr)− σ(tr − 1)]2

}
+0.5

{
[µ(tr − 1)− µ(tr − 2)]2 + [σ(tr − 1)− σ(tr − 2)]2

}
+0.2

{
[µ(tr − 2)− µ(tr − 3)]2 + [σ(tr − 2)− σ(tr − 3)]2

}
(5.1)

µ(tr) denotes the mean score and σ(tr) the standard deviation computed only with
the ratings known at time tr . The rating was considered to be sufficient when at
least half of the turns were scored and the criterion ecrit(tr) was less than 10 % of the
maximal variation vmax until turn tr . vmax is computed as

vmax = argmax
tr

[µ(tr)− µ(tr − 1)]2 + [σ(tr)− σ(tr − 1)]2 . (5.2)

This procedure showed to have about half of the error compared to other heuristic
procedures as shown in Chapter 6. In this manner about 30% of the ratings were
omitted.

Until 2008, more and more data of patients were gathered. In January 2008, a
total of 189 children (85 female and 104 male) were already recorded. 21 of them had
a cleft lip, 48 a cleft palate, 102 unilateral CLP, and 18 bilateral CLP. The average age
at the time of the recording was 9.2± 4.3 years. The dataset is called CLP-06-08 in
the following.

Most of the control data were collected from children in elementary school age.
Hence, a subset of CLP-06-08 was selected to form an age-matched patient group.
All children in CLP-06-08 in the age from 6 to 10 years were included to form the set
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CLP-School. It contains speech of 59 children (27 female and 32 male) at the age of
8.5±1.6 years. 14 of the children had an isolated cleft lip, 16 an isolated cleft palate,
24 unilateral CLP, and five bilateral CLP.

A subset of CLP-School was evaluated on phoneme level using the phoneme level
annotation module of PEAKS (cf. Appendix A.3). All phonemes of the PLAKSS
test target words were assessed by two experienced speech therapists. As described in
the literature review in Chapter 2, the most important and distinct feature in speech
of children with CLP is the enhanced nasal air emission. Therefore, the speech
therapists investigated only the nasality of the speech data of the subset. Since the
speech therapists were less experienced than the speech expert who annotated the
data in the CLP-Phone-Eval data, the categories “hypernasalization” and “nasalized
consonants” were merged into the category “nasalization”. The resulting set CLP-
Phone-Eval2 contains speech data of 32 children (17 female and 15 male). Their
average age was 8.7± 1.7 years at the time of the recording. Five of the children had
a cleft lip, seven a cleft palate and 20 a unilateral cleft lip and palate. Children with
bilateral CLP did not appear in the data set.

A subset of CLP-06-08 with twelve children was recorded two times. At the time
of the first recording, the children were 9.4 ± 3.9 years old on average. The group
contained six male and and six female children. Nine of the children had an isolated
cleft lip and palate, one a bilateral cleft lip and palate, one a cleft lip, and one a
cleft palate. The second recording was performed one year later. This means that
the progress the children made can be measured in this group and is therefore called
CLP-Progression.

5.4 Training Data of the Speech Recognition System
The speech recognition system had been trained with acoustic information from
spontaneous dialogues of the VERBMOBIL project [Wahls 00] and normal children’s
speech.

The training population of the VERBMOBIL project consisted of normal adult
speakers from all over Germany and thus covered all regions of dialect. All speakers
were asked to speak “standard” German. 90 % of the training population (85 male
and 47 female) were younger than 40 years. The used subset had a total duration of
4.4 hours and is also referred to as “VERBMOBIL tiny” [Hader 02, p.39].

The speech data of non-pathologic children (23 male and 30 female) were recorded
at two local schools in Erlangen — the Montessori Schule and the Ohm Gymnasium —
and consisted of read texts. The 25 children (17 female and 8 male) of the Montessori
Schule were in average 11.6± 0.7 years old. 10.5± 0.5 years is the average age of the
18 children (12 female and 16 male) recorded at the Ohm Gymnasium. The mean
age of all children in both groups together is 11.0 ± 0.8 years. As microphone the
same dnt Call 4U Comfort was employed as for the collection of the patient groups
in the Oral and Maxillofacial Clinic of the University Hospital of Erlangen. Sampling
rate was 16 kHz, quantization 16 bit. The children are a subset of the children who
were recorded for the Aibo database [Batli 04]. Moreover, non-native English speech
data were collected from the same children. Results of the evaluation are presented
in [Hacke 07a]. The total playing time of the children’s speech was 9.1 hours.
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label location # recording date avg. age chapter
Erna-Zink-07 Erlangen 38 March 2007 5.7± 0.7 5.2.1
Michael-Poeschke-06 Erlangen 89 January 2006 8.8± 1.3 5.2.1
Michael-Poeschke-07 Erlangen 76 April 2007 8.5± 1.4 5.2.1
Michael-Poeschke-08 Erlangen 157 February 2008 8.4± 1.2 5.2.1
Sabel-07 Nuremberg 48 March 2007 13.2± 1.2 5.2.2
Hannover-07 Hannover 126 April 2007 8.6± 1.1 5.2.3
Gutenberg-07 Karlsruhe 63 May 2007 8.3± 1.2 5.2.4
Nebenius-07 Karlsruhe 44 May 2007 8.7± 0.9 5.2.4
Hans-Thoma-07 Karlsruhe 24 June 2007 7.7± 0.6 5.2.4
Karlsruhe-07 Karlsruhe 131 May 2007 8.3± 1.1 5.2.4
Leipzig-07 Leipzig 61 March 2007 7.9± 2.1 5.2.5

Table 5.2: Summary of the data collected as control groups: In total, 726 children
were recorded as controls.

All adult speaker’s data were then vocal tract length normalized (cf. Chapter 4.2.5)
to simulate children’s speech. The scaling factor was determined experimentally on
the children’s evaluation set. During training an evaluation set was used that only
contained children’s speech. Optimal results were obtained at a scaling factor of 0.83.

5.5 Summary

In this chapter the data acquisition for this work was described. All data were
collected using the PLAKSS test. The test contains all German phonemes in different
positions. The target words are shown to the children as pictograms. Hence, the test
is also suitable for children who are not yet able to read.

Control groups were collected in cities all over Germany to test for dialectal influ-
ences. In the first year, data was collected with a complex setup in order to optimize
the sound quality. In the subsequent years, more data were gathered with a more
simple setup: In order to guarantee a similar audio quality on different recording
computers and on different sites, a USB head set was used. This simplified the setup
a lot. A summary of the recorded control data is presented in Table 5.2.

Since 2002, 312 children with cleft lip and palate were recorded in the Oral and
Maxillofacial Clinic of the University Hospital of Erlangen. Until 2006, 123 children
were recorded directly to a PC located in the clinic, i.e., the predecessor of PEAKS.
Hence, the time when the supervisor moved to the next slide was unknown. All data
had to be transliterated manually for these children. A subset of 31 children were
perceptively scored with respect to their speech intelligibility. 26 of these children
were further assessed on phoneme level. In order to reduce evaluation efforts PEAKS
was introduced in January 2006. A total of 189 children were recorded until 2008.
The intelligibility of 35 of them was assessed by five speech experts. 59 of these
children were in elementary school age at the time of the recording. Phoneme level
evaluation was performed on a subset of 13 children. Table 5.3 gives a summary of
the patient data collected for this work.
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label # CL # CP # UCLP # BCLP
∑

avg. age chap.
CLP-02-06 16 30 57 20 123 8.2± 3.6 5.3.1
CLP-Intel 2 5 20 4 31 10.1± 3.8 5.3.1
CLP-Phone-Eval 2 3 19 2 26 9.4± 3.3 5.3.1
Preschool - - - - 50 5.3± 1.1 5.3.1
CLP-06-08 21 48 102 18 189 9.2± 4.3 5.3.2
CLP-Intel2 8 9 13 5 35 8.5± 3.5 5.3.2
CLP-School 14 16 24 5 59 8.5± 1.6 5.3.2
CLP-Phone-Eval2 5 7 20 - 32 8.7± 1.7 5.3.2
CLP-Progression 1 1 9 1 12 9.4± 3.9 5.3.2

Table 5.3: Overview on the patient data collected in Erlangen: 312 children with
cleft lip and palate were recorded. Note that some of the listed sets are subsets of
larger sets.

At the end of this chapter, the data used for the recognizer training was described.
The data consist of speech of children from two local schools and adults’ speech from
the VERBMOBIL project which was adapted to children’s speech.
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Chapter 6

Experiments

In this chapter the previously described methods are evaluated to whether they are
suitable for clinical purposes. Therefore, the algorithms have to be as reliable or even
more reliable as human raters since they are regarded the reference. The evaluation of
one expert is still subjective. Therefore, the perceptive evaluation of multiple speech
professionals is desirable. Hence, the results concerning the perceptive evaluations of
the databases are presented in the first section of this chapter.

Next, the results on the speech intelligibility are described. First experiments are
based on the fully transliterated patient data, as described in Chapter 5.3.1. This
is followed by results which are computed automatically. In order to enhance the
prediction quality further, prosody is incorporated into the assessment procedure.
Finally, the results obtained on the control groups are presented.

Intelligibility is a global outcome parameter. A more detailed analysis is possible
if single articulation disorders of the patients’ speech are evaluated. Hence, the
third section of this chapter deals with the automatic assessment of the patients’
articulation. Again, first the results on the transliterated data are presented and
discussed. Then, the results on the non-transliterated data are presented.

The last section of this chapter presents the results of the visualization using
the extended Sammon mapping. With this technique it is possible to remove the
differences between the different acoustic conditions to create a unified map for all
microphones.

6.1 Perceptive Evaluations

As described in Chapter 3, two different kinds of perceptive evaluations were per-
formed for this work: Intelligibility assessment using Likert-scales [Liker 32] and
phoneme level annotation of aspects according to Chapter 2.

6.1.1 Perceptive Scoring of the Intelligibility

As standard procedure for the perceptive evaluation of the speech intelligibility a
five-point Likert-scale was chosen for this work. As shown in [Maier 07d], such a
procedure converges already with four expert listeners. Hence, four to five experts
were chosen.

107
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CLP-Intel
rater mean of other raters

r ρ
rater B 0.95 0.92
rater K 0.94 0.93
rater L 0.94 0.93
rater S 0.94 0.92
rater W 0.96 0.92

Table 6.1: Agreement of the raters on the CLP-Intel database measured with Pear-
son’s correlation r and Spearman’s correlation ρ

criterion error / patient # of scores error / score
“three turns” 0.385 93 0.128
“five turns” 0.227 155 0.045
“ten turns” 0.091 310 0.009
“30 turns” 0.028 930 0.001
“every phoneme at least
once”

0.036 714 0.002

“ecrit” (cf. Chapter 5.3.2) 0.024 1124 0.001
“every phoneme at least
once” & ecrit

0.017 1095 0.000

Table 6.2: Comparison of different criteria for the abbreviation of the scoring proce-
dure, computed using the 2209 turns of the CLP-Intel database.

The first dataset on which the intelligibility was scored, is CLP-Intel. To ensure
convergence, a number of five experts was chosen. Table 6.1 shows the inter-rater
correlations (cf. Chapter 4.2.1) of the speech intelligibility scores on the dataset. The
correlations denoted in the table are computed between one rater and the mean of
the other raters. Both Spearman’s and Pearson’s correlation coefficients are in the
same range. The overall agreement is very high with significant correlations between
0.92 and 0.96 (p < 0.001). Alpha (cf. Chapter 4.2.1) was also very high with 0.75.
Since the weighted multi-rater Kappa (cf. Chapter 4.2.1) is only defined on integer
values the average scores had to be rounded to the next integer for its computation.
Kappa also showed high agreement with 0.59.

The labeling of each turn individually was perceived as laborious and monotonic
by most of the labelers. A method for the abbreviation of the rating procedure was
desired. Several methods were investigated. As criteria the evaluation of a fixed
number of turns and the heuristic error criterion as defined in Chapter 5.3.2 were
investigated. Table 6.2 gives an overview on the errors obtained with the different
criteria. The first four criteria concern only a fixed number of turns which have to
be evaluated per patient. With an increasing number, the error per patient and per
score is reduced. However, there might be better criteria to determine whether the
number of scores is already sufficient or not. Hence, the criteria “every phoneme at
least once” and ecrit (cf. Eq. 5.1) were investigated. Both turn out to produce very
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CLP-Intel2
rater mean of other raters

r ρ
rater M 0.92 0.88
rater L 0.93 0.88
rater S 0.95 0.92
rater W 0.90 0.87

Table 6.3: Agreement of the raters on the CLP-Intel2 database

NC LR PB WP LA IN Intel
HN 0.52 (**) -0.07 -0.08 0.73 (**) 0.03 -0.11 0.48 (*)
NC 0.57 (**) 0.43 (*) 0.55 (**) -0.10 -0.08 0.73 (**)
LR 0.87 (**) 0.31 -0.04 -0.12 0.60 (**)
PB 0.22 0.07 -0.19 0.55 (**)
WP -0.08 0.00 0.59 (**)
LA -0.20 0.22
IN -0.13
** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 6.4: Pearson’s correlation between the different evaluation criteria: hypernasal-
ity (HN), nasalized consonants (NC), laryngeal replacing (LR), pharyngeal backing
(PB), weakened plosives (WP), lateralization (LA), interdentalization (IN), and the
intelligibility (Intel).

low errors as well. The best, i.e. lowest, error was found as a combination of both
methods. The error found per score is close to zero.

On the second database — CLP-Intel2 — assessment of the intelligibility was only
performed by four experts. Furthermore, the scoring procedure was abbreviated as
previously described. Again, the agreement was very high with an Alpha of 0.80 and
a Kappa of 0.68. Table 6.3 presents Pearson’s and Spearman’s correlation coefficients.
The correlations are in the same range as on the CLP-Intel database although slightly
lower. All correlations are significant (p<0.001), and the consistency is very good.

6.1.2 Perceptive Assessment of the Altered Articulation

The phoneme level evaluation of the children’s speech was performed on two databases.
While the data of CLP-Phone-Eval were completely transliterated, no manual translit-
eration on the CLP-Phone-Eval2 data was performed. Annotation was done for typ-
ical alterations such as “hypernasality” (HN), “nasalized consonant” (NC), laryngeal
backing as “laryngeal replacing” (LR) and “pharyngeal backing” (PB), “weakened plo-
sives” (WP), “lateralization” (LA), and “interdentalization” (IN) (cf. Table 5.1) by an
experienced speech therapist on the CLP-Phone-Eval data. “Palatalization” was not
found in the data by the speech therapist. The CLP-Phone-Eval2 data were evalu-



110 Chapter 6. Experiments

Component
1 2 3

HN -0.17 0.94 0.11
NC 0.54 0.68 -0.06
LR 0.97 0.11 -0.01
PB 0.94 0.02 0.14
WP 0.20 0.88 -0.07
LA -0.06 -0.07 0.79
IN -0.15 -0.07 -0.75

Table 6.5: Factor loadings on the three principal factors of the perceptive evaluation
of CLP-Intel

ated by two speech therapists according to the criterion “nasality”, i.e., the union of
“hypernasality” (HN) and “nasalized consonant” (NC).

In total, 867 words in the CLP-Phone-Eval were identified to be part of one of
these categories. A detailed overview on the patients and the number of marked
words is shown in Appendix A (cf. Table A.7). Since the total number of words
differed from child to child, the percentage of marked words was used for all speaker
level computations. On speaker level, Table 6.4 shows highly significant correlations
between HN, NC, WP, and the mean of intelligibility scores given by the five speech
experts — denoted as “Intel”. Furthermore, LR is highly correlated with PB (r =
0.87; p < 0.001), i.e. both types of backing are closely related. Most of the criteria are
related to the speech intelligibility. Only LA and IN show no significant correlation
to the intelligibility.

In order to gain further insight on the data factor analysis was performed with
PCA (cf. Chapter 4.2.3). Since intelligibility is a global criterion it was excluded
from the factor analysis. Using scree analysis [Catte 66], three factors were extracted
(cf. Figure A.8). The factor loadings are presented in Table 6.5. The first component
shows the highest loadings on the criteria LR and PB. A slight loading of NC is
also found. Hence, the component could be interpreted as a “backing” component.
Component 1 has a correlation of r = 0.55 (p < 0.01) with the intelligibility scores
of the experts. The highest loadings of component 2 appear in HN, WP, and NC.
Thus, this component can be regarded as the “nasalization” component. It also has a
rather high correlation to the speech intelligibility (r = 0.58; p < 0.01). In the third
component, only LA and IN have high loadings. Note that both loadings have the
opposite sign, i.e. they point into diametric directions. The third component, hence,
can be regarded as a “lisp” component. No significant correlation to the speech
intelligibility is found (r = 0.20). Linear regression of all three components to the
speech intelligibility shows a significant correlation of R = 0.82 (p < 0.001). However,
the contribution of the third component is insignificant with p = 0.12. This means
that the global outcome parameter of the test — the speech intelligibility — can be
divided into a backing component and into a nasalization component in CLP speech.
A third component is found — the lisp component. However, it is not or only slightly
related to the speech intelligibility.
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nasality nasal (rater 1) non-nasal (rater 1)
nasal (rater 2) 127 203
non-nasal (rater 2) 152 2499

Table 6.6: Confusion between both speech therapists who rated the criterion “nasal-
ity” on the CLP-Phone-Eval2 database

On the CLP-Phone-Eval2 data, only the criterion “nasality” was scored. The
agreement is quite good. Table 6.6 shows that the agreement on non-nasality is very
high. 2499 of the 2981 words were not marked as “nasal”. However, only 127 words
were marked as “nasal” by both raters. This corresponds to a true positive rate of
human rater 1 of 45.5% at a false positive rate of 7.5 %. Rater 2 had a true positive
rate of 61.5 % with a false negative rate of 5.7 %. Hence, both raters know “non-nasal”
well, but their agreement on “nasal” is only moderate.

Correlation on speaker level also showed good consistency. When the percentages
of marked words per speaker of both raters are compared, a correlation of 0.80 is
obtained.

6.2 Automatic Evaluation of the Intelligibility

Now that the agreement of the human raters was discussed, their evaluations can
be used to create a reference for an automatic speech assessment system. The first
semi-automatic and automatic experiments focused on the evaluation of the speech in-
telligibility of the children. Experiments concerning the intelligibility were performed
on the CLP-Intel and the CLP-Intel2 databases. On the CLP-Intel data, all speech
had to be transliterated before the processing. Hence, the assessment is just semi-
automatic. Fully automatic assessment was performed on the CLP-Intel2 database.

6.2.1 Semi-Automatic Evaluation

For the CLP-Intel data, a complete transliteration was available. Because of the very
limited amount of data, we used the transliteration of all recordings as training set
for the unigram language model. The vocabulary size is still large enough so that
the acoustic realization by the children has high enough an influence on the word
accuracy (the test set perplexity is 94).

Since children’s speech is more difficult for speech recognition, the use of adap-
tation for the improvement of the speech recognition system was first investigated.
When compared to the average of the raters, the word accuracy (WA; cf. Chap-
ter 4.2.4) for the recognizer had a correlation of r = −0.89 and ρ = −0.85 for the
adapted case and r = −0.84 and ρ = −0.80 for the non-adapted case. Note that these
values are slightly different from [Maier 06b] since two additional raters became avail-
able for the data. Figure 6.1(a) shows the correspondence between the non-adapted
recognizer and the expert panel while Figure 6.1(b) displays the adapted case. The
coefficients are negative because high recognition rates come from “good” speech with
a low score number and vice versa (note the regression line in the figure). Because the
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(b) adapted recognizer

Figure 6.1: Comparison between adapted and non-adapted speech recognizers for the
measurement of the speech intelligibility

agreement in the adapted case was better, speaker adaptation is always performed
before the decoding step for the rest of this work.

Table 6.7 lists the correlations between the individual raters and the adapted
speech recognizer. The correlations are all in the same range. The highest correlations
are found between the mean opinion of the experts and the speech recognition system.

If the adapted speech recognizer is added to the group of raters, problems for
the computation of Kappa and Alpha occur. For both, the scaling of the recognizer’s
scores has to be adjusted to the dimensions of the Likert-scales. This can be performed
in a linear, equidistant way or non-linearly with different interval sizes. With the
spacing as proposed in [Schus 06a] (borders at 0, 15, 25, and 40% WA), a Kappa
of 0.53 and Alpha of 0.75 are obtained. Equidistant borders yield a Kappa of 0.44
and Alpha of 0.58. If the borders are chosen to be optimal according to the given
criterion (borders at -5.2, -3.9, 17.5, and 40.9 for Kappa and -5.2, 16.1, 27.5, and 48.9
for Alpha), Kappa yields 0.56 and Alpha 0.77. This means that for all comparisons
with the Multi-Rater-Kappa and Alpha between the human raters and the automatic
scoring, such a score transformation has to be applied. Hence, all scores computed
with Kappa and Alpha are highly dependent on this transformation and show a
lot of variation. Regarding Alpha, the first result with the scaling as presented in
[Schus 06a] is the same as in the group of experts. Using the equidistant spacing,
the values of Kappa and Alpha are quite a lot lower than in the experts’ group. The
optimally computed Alpha turns out to be even higher than in the experts without the
recognizer. Pearson’s and Spearman’s correlation coefficients allow for a comparison
between the experts and the raters without any of these ambiguities. Hence, further
computations of Kappa and Alpha are skipped.
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WA WR
r ρ r ρ

rater B -0.87 -0.86 -0.86 -0.85
rater K -0.84 -0.82 -0.83 -0.80
rater L -0.86 -0.81 -0.84 -0.76
rater S -0.86 -0.82 -0.86 -0.82
rater W -0.85 -0.81 -0.83 -0.76
all raters -0.89 -0.85 -0.88 -0.82

Table 6.7: Correlations between the different raters and the recognition rate of the
adapted speech recognizer in the CLP-Intel data

LOO
iterations

SVM
predicted
expert score

word accuracy

word recognition rate fe
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ur
e
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n features with
lowest mean rank

148 prosodic features

Figure 6.2: Proposed system for the prediction of the expert scores
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feature prediction SVR reference raters
r ρ

word accuracy 0.86 0.84 all raters
+ minimum EnergyRegCoeffWord 0.86 0.82 all raters
+ mean Mean_shimmer 0.87 0.82 all raters
+ minimum F0MeanWord 0.85 0.87 all raters
word accuracy 0.85 0.83 rater B
word accuracy 0.82 0.80 rater K
+ minimum F0MaxWord 0.84 0.86 rater K
word accuracy 0.83 0.78 rater L
word recognition rate 0.82 0.79 rater S
word accuracy 0.84 0.81 rater W

Table 6.8: Prediction of the experts’ scores by different feature sets on the CLP-
Intel database

In [Hader 06a] it was shown that — besides the recognition rate of a speech recog-
nizer — prosodic features also hold information on the intelligibility. Hence, a system
was designed to include several information sources into the prediction process. This
automatic evaluation system employs SVR (cf. Chapter 4.2.2) for the prediction of
the experts’ scores.

As displayed in Figure 6.2, the system utilizes on the one hand the WA and the
WR of a speech recognizer (cf. Chapter 4.2.4). On the other hand, 148 prosodic
features (cf. Chapter 4.2.4) are used in the system. So 150 features are obtained in
total. In order to select a subset of the features, we applied the Maximum R algorithm
based on the multiple regression/correlation analysis as described in Chapter 4.2.3.
The algorithm builds — based on the best (n − 1) subset — all possible sets with
n features and picks the set with the best regression to the target value (here: the
mean opinion of the experts). The algorithm returned better features than other
feature selection algorithms, like correlation-based feature subset selection [Hall 98]
or consistency subset evaluation [Liu 96]. However, the algorithm can select m − 1
features at most where m is the number of subjects in the test set. If a feature was
not selected, we assigned rank 149.

All evaluations presented here were done in a leave-one-speaker-out (LOO) manner
since the number of patients in each group is rather small. In order to present a feature
ranking for the feature selection, we computed the mean rank of all LOO iterations
for each feature. This, however, does not mean that the particular feature has been
selected in all LOO iterations.

The combination of the prosodic features and the result of the speech recognizer is
beneficial for the prediction of experts’ scores (cf. Table 6.8). Now, all correlations are
positive since they denote the dependency between the predicted score and the actual
score. The best feature for the prediction of the intelligibility is for all raters either
the WA or the WR. The mean of all raters is best predicted in the sense of Pearson’s
correlation with the word accuracy, the minimum energy contour regression slope
per word, and the mean of the mean shimmer in each turn. In terms of Spearman’s
correlation, the prediction can be improved by adding the minimum mean F0 per
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WA WR
r ρ r ρ

rater M -0.83 -0.78 (*) -0.88 -0.90 (*)
rater L -0.78 -0.75 -0.84 -0.86
rater S -0.76 -0.72 (*) -0.85 -0.88 (*)
rater W -0.78 -0.76 -0.86 -0.83
all raters -0.82 -0.81 (*) -0.90 -0.93 (*)

Table 6.9: Correlations between the different raters and the recognition rate of the
adapted speech recognizer in the CLP-Intel2 data: Significant differences (p < 0.05)
between WA and WR are marked with (*).

word. As shown in Table 6.8, the selection of the first feature does not yield any
improvement. The combination with more features, however, refines the prediction
of the experts’ scores.

For the prediction of individual experts, only the prediction of a single expert could
be improved (rater K) by adding one prosodic feature. In general, the prediction of the
individual raters is performed with a Pearson correlation r > 0.80 and a Spearman
correlation ρ > 0.75. Note that the correlations are lower than in the previous
experiment since all experiments were conducted in a LOO manner. |r | = 0.89 of the
first experiment is reduced to 0.86, and |ρ| = 0.85 becomes 0.84 if the experiments
are computed in LOO mode.

6.2.2 Fully Automatic Evaluation

Until this point the transliteration of all audio data was a necessity which could not
be omitted. However, this procedure costs a lot of time and manpower. Since a new
recording and evaluation software was developed, the exact time when the reference
slide was moved to the next slide is known in the CLP-Intel2 data. This information
can be exploited to approximate a reference word chain. This reference word chain
contains just the words which are shown on the slide. Unfortunately, this is not
sufficient to calculate a good word accuracy since most of the children use carrier
sentences like “This is a . . .” which are regarded as wrongly inserted words even if
the recognition were perfect. Table 6.9 shows the effect of these carrier words: The
correlation between the human evaluation and the WA is lower than the correlation
between the human experts and the WR in all cases. Cases in which the difference
is significant are marked with (*). The best Spearman correlation is found with
ρ = −0.93 which is better than all human experts (cf. Figure 6.3).

Additional use of prosody does not improve the correlation further (cf. Table 6.10).
If the mean of all raters is the target value, only the WR is selected as best feature with
a Pearson correlation of 0.89 and a Spearman correlation of 0.92 in LOO evaluation.
For half of the individual raters, however, the use of prosody yields an additional
improvement. The correlation to rater M is increased from 0.86 to 0.88 and from
0.89 to 0.90, respectively. For rater S the agreement to the automatic system is
enhanced from 0.79 to 0.84 in terms of Pearson’s correlation and from 0.85 to 0.89
for the case of Spearman’s correlation.
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Figure 6.3: Agreement between the mean scores of the panel of experts and the WR:
The evaluation of the speech recognizer is as reliable as the best human raters.

We relate the weak performance of the additional prosodic features to three dif-
ferent reasons. First of all, the PLAKSS test is based on single words. Hence, there
is only little prosody is to be expected. Many of the children just named the single
items. Only some of the children create connected sentences to describe the items,
i.e., there is not much prosody in the data at all. Secondly, the quality of the voice
of the children with CLP may be reduced, but not in all cases. In our experiments
there was only little difference in intonation and prosody between the CLP and the
control children. In experiments of Haderlein [Hader 07a], the difference of the voice
quality could be exploited to improve the intelligibility assessment of patients with
severe voice disorder because the primary voice signal was disturbed. Hence, the
extracted fundamental frequency features were significantly different to the ones of
a control group, i.e., the prosodic feature set is more suitable for the assessment of
voice disorders than the assessment of articulation disorders. Thirdly, prosody in
children is related to the personality of the child, e.g. a shy child normally speaks
with a low energy and rather monotone. This, however, is not clearly dependent on
the articulation skills as seen by the clinicians during the examination of the children.

Since the WR as single feature proved to have the highest correlations with the
mean opinion score of the experts, we evaluated this score on the CLP data and on
the control groups in elementary school age. Table 6.11 displays the mean age and the
mean WR. Note that all control groups (Michael-Poeschke-06, Michael-Poeschke-07,
Michael-Poeschke-08, Hannover-07, Karlsruhe-07, and Leipzig-07) are age-matched
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feature prediction SVR reference raters
r ρ

word recognition rate 0.89 0.92 all raters
word recognition rate 0.86 0.89 rater M
+ maximum F0MinWord 0.83 0.89 rater M
+ mean PauseAfterWord 0.84 0.89 rater M
+ variance F0MeanWord 0.86 0.89 rater M
+ maximum EnergyMeanWord 0.88 0.90 rater M
word recognition rate 0.80 0.84 rater L
word recognition rate 0.79 0.85 rater S
+ maximum F0MinWord 0.84 0.89 rater S
word recognition rate 0.85 0.82 rater W

Table 6.10: Prediction of the experts’ scores by different feature sets on the CLP-
Intel2 database

group location # avg. age WR
Michael-Poeschke-06 Erlangen 89 8.8± 1.3 60.5± 10.7
Michael-Poeschke-07 Erlangen 76 8.5± 1.4 62.7± 10.4
Michael-Poeschke-08 Erlangen 157 8.4± 1.2 61.1± 9.0
Hannover-07 Hannover 126 8.6± 1.1 63.7± 10.0
Karlsruhe-07 Karlsruhe 131 8.3± 1.1 64.1± 8.6
Leipzig-07 Leipzig 61 7.9± 2.1 59.0± 9.8
CLP-School Erlangen 59 8.5± 1.6 52.2± 15.2

Table 6.11: Comparison of the distribution of the WR in the control groups from all
over Germany and the patient group collected in Erlangen

age controls patients
# WR # WR

six 61 54.2± 7.3 16 43.9± 10.0
seven 188 59.1± 9.0 9 42.4± 10.5
eight 155 63.2± 9.1 11 54.0± 18.5
nine 127 65.8± 8.5 9 57.7± 15.3
ten 94 68.0± 8.7 15 62.2± 12.4

Table 6.12: Overview on the WR in the control and the patient group
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ID cleft age WR
type 1st 2nd diff. 1st 2nd diff.

625 UCLP 15.9 16.6 0.7 65.7 69.7 4.0
4958 BCLP 12.7 13.9 1.2 64.7 70.7 6.1
5235 UCLP 12.8 14.0 1.2 71.7 76.8 5.1
12163 UCLP 9.3 10.1 0.8 34.3 28.3 -6.1
15017 UCLP 7,9 8.9 1.0 51.5 69.7 18.2
15552 UCLP 7.7 8.7 1.0 38.4 34.3 4.0
17661 CL 6.9 8.0 1.1 44.4 52.5 8.1
19646 UCLP 6.7 7.8 1.1 31.3 34.3 3.0
19793 UCLP 16.0 16.9 0.9 29.3 26.7 -3.0
21402 UCLP 6.0 6.9 0.9 45.5 48.5 3.0
24219 CP 6.2 6.7 0.5 45.5 35.4 -10.1
27159 UCLP 4.7 5.7 1.0 35.4 37.4 1.0
avg. - 9.4 10.3 0.9 46.5 48.6 2.1
stddev. - 3.9 3.9 0.2 14.2 18.6 7.4

Table 6.13: The children in the CLP-Progression dataset were recorded a second time
after one year. Hence, their progress within this year can be compared.

and the patient group (CLP-School), i.e., there is no significant difference between
each of the control groups to the patient group according to their age distribution.
However, this is not true within all control groups. For example, Leipzig-07 may
not be compared to Hannover-07 since their age distributions differ significantly.
Mutual comparison between the control groups and the patient group revealed that
the distribution in the control groups is always significantly higher (p < 0.003) than
in the patient group. The overlap between patient and control groups is caused by
the fact that children with CLP must not necessarily have a reduced intelligibility.
Hence, children with normal WR also occur in the patient group.

In order to define age-dependent WR values, we put all control children together
and formed a group for each age. So we created five groups for the ages six to ten
for the control children and the CLP children. Table 6.12 lists the results. The
difference between the means of the patient and control groups is about 10 percent
points in all age groups. The variance of the WR in the patient children is also higher
than in the control groups. In the control group, a significant improvement in WR
is found each year (p < 0.01). This was expected since it is a known fact in the
literature [Wilpo 96]. In the patient group, however, these significant improvements
are missing. Between two subsequent age groups, no significant difference is found
at all, even between seven and eight years (p > 0.09). This is of course related
to the small number of children in the groups, but also to the fact that the speech
disorder reduces the normal improvement in speech intelligibility, i.e., the speech of
these children is not appropriate for their age. Furthermore, one has to consider
that children stop coming to the follow-up care as soon as their speech is regarded
as normal. Hence, only the children with speech disorder are recorded. The mended
children do not appear in these statistics.
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Figure 6.4: Mean Opinion Scores (MOS) obtained by the 3SQM [OPTI 04] procedure
on the CLP-Intel2 patient group and the Michael-Poeschke-06 control group

Table 6.13 shows the children of the CLP-Progression group. The children were
recorded twice with one year in between. About half of the children gain 3 to 5
percent points which is normal (cf. Table 6.12). However, some of the children (IDs
12163, 19793, 24219, and 27159) show little progress or even degradation. Perceptual
evaluation confirmed this finding. In case of ID 24219, the decline in WR is amplified
by a slight noise in the signal. Note that the children with no or just little progress
are the children whose WR is already far below the age-matched average. Three of
the children (IDs 4958, 15017, and 17661) improved above the age-matched average.
Again, this finding could be perceptually confirmed. Especially, ID 15017 showed a
lot of improvement. In average, the CLP children gain just 2.1 percent points which
is lower than the children in the control group do. As in Table 6.12, the standard
deviation is high, since some children improve and some don’t. The group is too small
to find significant differences within one year, but since all findings were perceptually
confirmed, we believe that the method is suitable for documentation and screening
of children’s speech disorders.

A standard procedure to measure the quality of a speech channel is the Perceptual
Evaluation of Speech Quality (PESQ) [Beere 02a, Beere 02b]. It is standardized by the
International Telecommunication Union (ITU) [ITU01]. The Result of the procedure
is a score which was previously trained with the mean scores of a panel of experts.
This Mean Opinion Score (MOS) is defined on a scale where 1.0 is worst and 5.0
best. Since the reference signal and the distorted signal are required to compute the
PESQ MOS score, it cannot be applied to any of our datasets.

In contrary to PESQ, 3SQM can compute the MOS score without the need of
the reference signal [OPTI 04]. Hence, it can be applied to the data presented here
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easily. 3SQM is also standardized by the ITU [ITU04]. Details on the evaluation
algorithm cannot be provided here. The implementation of 3SQM used in this work
was provided binary by OpticomTM.

Figure 6.4 shows a histogram of the MOS, computed with the 3SQM algorithm for
the CLP-Intel2 and the Michael-Poeschke-06 data sets. Mean and standard deviation
are equal on both datasets (2.3± 0.9), i.e., both datasets are recorded in comparable
audio quality. The result, however, also shows that the 3SQM algorithm is not
applicable to determine the speech intelligibility in children with CLP.

6.3 Assessment of the Pronunciation
A major part of this work is the automatic evaluation of the pronunciation of children
with CLP on frame, phoneme, word, and speaker level. Pronunciation evaluation is a
typical classification problem since each frame, phoneme, or word has to be assigned
either to class correct (“O”) or to class wrong (“X”). This decision is performed by
a classifier. Previously, two important classifiers were presented: The SVMs (cf.
Chapter 4.2.2) and the GMMs (cf.Chapter 4.2.4). However, in order to be more
flexible, this work employs more than these two classifiers. In the following, also
classifiers of the WEKA toolbox [Witte 05] are used:

• OneR: The classifier divides the numeric features — also often called attributes
in machine learning — into intervals which contain only observations — also
called instances — of one class. In order to prevent over-fitting, mixed intervals
are also allowed. However, each interval must hold at least a given number
of instances in the training data. Then a decision rule for classification is
created for each attribute. At the end of the training procedure, the attribute
is selected for the classification which has the highest accuracy on the training
set [Holte 93].

• DecisionStump: DecisionStumps are very simple classifiers. They are com-
monly used if training has to be performed often like in boosting algorithms.
The classifier selects one attribute and a threshold or decision value to perform
the classification. Selection is performed with correlation in the numeric case
and entropy in the nominal case. Then, the selection value with the highest
classification rate on the training set is determined.

• LDA-Classifier: The LDA-Classifier is also called “ClassificationViaRegres-
sion” [Frank 98a]. It basically determines a feature transformation matrix, like
described in Chapter 4.2.3, and reduces the dimension to one. If no nominal
class information but a numeric class is given, a Multiple Regression Analysis
(cf. Chapter 4.2.1) is performed to reduce the dimension to one. Then, a simple
threshold can be chosen to perform the classification. Again, the threshold is
determined on the training set according to the best classification rate.

• NaiveBayes: The naïve Bayes classifier is trained according to Bayes’ decision
rule [Niema 03, p.315]. As probability density function a unimodal Gaussian
mixture is chosen [John 95]. This classifier is equivalent to a GMM classifier with
just one Gaussian distribution (cf. Chapter 4.2.4) with equal prior probabilities.
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• J48: The J48 is an implementation of a C4.5 decision tree [Quinl 93]. In
order to build a C4.5 decision tree, all instances in the data set are used to
create a set of rules. Later on, the rules are pruned in order to reduce their
number. Subsequently, a tree is generated which holds one simple decision
rule concerning only one attribute, i.e., a DecisionStump in every node. At
the leaves of the tree a class label is assigned. Classification is then performed
starting from the tree root according to rules in the node. At the end of the
classification, a leaf is reached which assigns the class to the observation.

• PART: In order to modify rules for a decision tree, two dominant approaches
exist. The first one is dropping rules like the J48 tree does. The second one
extends rules by replacing one or multiple rules by a better more refined rule.
PART generates partial trees using both approaches and merges them later on.
According to [Frank 98b] this method is much faster in training compared to
J48 while having a similar or even better recognition accuracy.

• RandomForest: This kind of classifier is composed of multiple trees which are
created randomly. For each tree a random subset of the training data is chosen.
Then, a random subset of attributes is selected to be used in the tree. At each
node, features are picked at random to determine the rule of the actual node.
The rule which creates the best split for the current subset is computed. Such
a random tree may not be pruned. The fusion of a random number of trees is
then composed to a random forest [Breim 01].

• AdaBoost: Boosting is a common procedure to enhance simple classifiers. The
idea of boosting is to join many weak classifiers to one single strong classifier.
This is achieved by training in several iterations. In the following iteration,
the data are re-weighted. Previously wrongly classified instances get a higher
weight while correctly classified ones get a reduced weight. In this manner
the classifiers adapt to the misclassified instances. Therefore, the algorithm is
called AdaBoost [Freun 96].

In the following, the assessment on the completely transliterated dataset CLP-
Phone-Eval is presented. Next, the methods developed for the CLP-Phone-Eval dataset
are applied to the CLP-Phone-Eval2 data where only the reference as pictures is
known.

6.3.1 Semi-Automatic Assessment

The experiments on the pronunciation evaluation of the children with CLP on translit-
erated and non-transliterated data are similar. In fact, the experimental setup is the
same. However, in the CLP-Phone-Eval data, some preprocessing steps have to be
performed manually since no further knowledge about the test is available.

Experimental Setup

After the recording the data, they have to be preprocessed which is the first step in
a classification system (cf. [Niema 03, p.26]). In the transliterated case, the spotting
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SegmentationSpotting of target words

Feature Extraction Classification Result

Speaker Feature Extraction Regression Result

Feature Extraction Classification ResultFrames

Words Feature Extraction Classification Result

Audio Data

Preprocessing

Feature Extraction Classification ResultPhonemes

Figure 6.5: Experimental setup for the pronunciation assessment: After the prepro-
cessing, the data are segmented to frame, phoneme, word, and speaker level. Results
of the respective previous level are combined to the next level.

of target words was performed in the following manner: In a first segmentation step,
the data was segmented automatically at long pauses. Next, all words which were
spoken in the segments were transliterated, i.e., noted down by a naïve listener.
During the transliteration procedure, all segments — which are also called “turns”
in the literature — were cleaned from speech of the instructor of the test manually.
The turns in which only the instructor was speaking were saved for preliminary
experiments for speaker identification (cf. Chapter 4.2.4 and Chapter 6.3.2).

Next, the words which correspond to the PLAKSS words had to be identified.
One of the main problems was that the pictograms on the slides of the PLAKSS
test (cf. Chapter 5.1) cannot be projected one-to-one onto words. Most of the pic-
tograms are ambiguous. Hence, a list of possible and common word alternatives has
to be defined (cf. Appendix A.1.2). In order to get a preliminary mapping, the
transliteration of each test of all the transliterated data (262 children from CLP-02-
06, Preschool, and Michael-Poeschke-06) were force-aligned to the sequence of the



6.3. Assessment of the Pronunciation 123

label level # description
RecAcc speaker 2 Accuracy of the speech recogni-

tion (WA and WR)
2-D Sammon Coordinates speaker 2 Coordinates on a 2-D Sammon

map
3-D Sammon Coordinates speaker 3 Coordinates on a 3-D Sammon

map
ProsFeat word 37 Features based on the energy, the

F0, pauses, and duration to model
the prosody of the speaker

PronFexW word 7 Pronunciation features (PronFex)
to score the correctness of the cur-
rent word

PronFexP phoneme 6 Features to score the correctness
of the pronunciation (PronFex) of
the current phone

TEP phoneme 1
Teager Energy Profile to detect
nasality in vowels

MFCCs frame 24 Mel Frequency Cepstrum Coeffi-
cients plus first derivatives

Table 6.14: Overview on the feature sets used in this work (cf. Chapter 4.2.4)

PLAKSS words. Deletions and insertions were weighted with one while the substi-
tutions were weighted by the Levenshtein difference between the two words divided
by the length of the longer word. With this procedure we implicitly assumed that
the children read the pictograms from left to right and that sensible word alterna-
tives have a similar spelling. Both Assumptions were true in most cases. In order to
ensure a correct correspondence between word alternatives and PLAKSS words, all
mappings and their context were checked manually, i.e. 262× 99 = 25, 938 mappings
were looked at and corrected by a human annotator in many hours of work.

With common word alternatives and fragments defined for every PLAKSS word,
the word spotting was performed on the transliteration. Using forced alignment of
the transliteration, the word and phoneme boundaries were determined (cf. Chap-
ter 4.2.4). Then the data were segmented accordingly to word and phoneme level.
Frame level data was created from the phoneme level data as described in Chap-
ter 4.1.3. Figure 6.5 gives an overview of the procedure.

The subsequent steps of the classification system employed here are computed
in parallel on four levels — frame, phoneme, word, and speaker level. Features are
extracted on each of the levels. The different feature sets and their respective level are
listed in Table 6.14. On frame level only MFCCs are used. However, after the training
of a classifier, the training data is classified with the classifier, and functional features
are computed. These functional features are then plugged into the next higher level
of evaluation (here: phoneme level). As functionals the mean, the maximum, the
minimum, the standard deviation, the sum, the count, the relative count, and the
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product of the classification result are computed. This kind of functional features can
be computed for any kind of classifier and yield an abstract view of the lower level
data to the higher-level classifier.

Next, the features of the respective level are fed to a classifier. Using the fea-
tures of the training data, the classifier is first trained. The output of the classifier
is either a class or a probability for each class. Classification is performed in favor of
the class with the highest probability. While the classification on speaker, word, and
phoneme level is performed by a single classifier, preliminary experiments quickly
showed that phoneme-dependent classifiers are required on frame level. Since the
correspondence between the data and the phonemes is clear due to the forced align-
ment, this procedure is valid without any restrictions even for the fully automatic
assessment procedure as shown in the following.

Again, data were sparse which forced computation of all experiments in leave-
one-speaker-out conditions. Hence, some of the features have to be recomputed in
every iteration because they rely on statistics which are also estimated from the
training data. PronFexW and PronFexP are calculated in each iteration newly since
the training and test set must remain disjoint. The result of the evaluation is denoted
as absolute recognition rate (RR) and class-wise averaged recognition rate (CL) since
the distribution of the classes in the data is not balanced. The RR is computed as
the total number of correctly recognized items divided by the number of total items
in the test set. Hence, the rate is biased by the distribution of the classes in the data,
i.e. if 99 % of the data belong to class “O” (here: correctly pronounced) and only
1 % to class “X” (wrongly pronounced), a classification rule which always classifies
an observation to class “O” would always yield 99 % RR. To alleviate this problem, a
second measure — the CL — is introduced. The CL is determined as the average of
the recognition rate per class which is also often referred to as “recall”. This averaged
recall would yield 50 % CL in the previously mentioned example. A rate of 50 %
is considered as chance border in a two-class problem since a random decision rule
converges against this number if sufficient experiments are performed. Again, the CL
is also not perfect: If, for example, class “X” would have a recall of 100% while class
“O” just has a recall of 49 %, this would yield a CL of 74.5 % although only half of
the data were correctly recognized, i.e. RR is 50 %. Hence, evaluation results should
always contain both numbers. The use of an F-measure is set aside in this work since
there are multiple conflicting definitions in the literature [Rijsb 79, Yang 99, Schul 07].

In the following the experiments on hypernasality (HN), nasalized consonants
(NC), laryngeal replacement (LR), pharyngeal backing (PB), and weakened plosives
(WP) are presented. Experiments on interdentalization and lateralization were not
performed since both articulation errors are neither connected to CLP nor to the
speech intelligibility.

Hypernasalization

Hypernasalization experiments were conducted with all available feature sets. On
frame level, GMM classification was performed on all phonemes simultaneously while
the other classifiers were trained for each phoneme individually. For individual
phoneme training, the other classifiers have much fewer training data than the GMMs.
While the RR grows steadily with an increasing number of densities in the GMM
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classifier CL RR
OneR 50.0 % 99.0 %
DecisionStump 54.6 % 87.0 %
LDA-Classifier 55.6 % 91.8 %
NaiveBayes 54.0 % 94.4 %
J48 53.8 % 90.5 %
PART 55.0 % 90.3 %
RandomForest 49.8 % 98.7 %
SVM 56.8 % 91.4 %
GMM (2 densities) 52.2 % 81.7 %
GMM (5 densities) 47.6 % 79.1 %
GMM (10 densities) 48.3 % 84.0 %
GMM (15 densities) 47.2 % 84.4 %

Table 6.15: Overview on the CL and RR of hypernasalization obtained by different
classifiers on the CLP-Phone-Eval dataset on frame level

classifier, the CL drops. With more than two densities, the CL already drops be-
low chance level. The CL with 15 densities is worst. Recognition with a classifier
for each phoneme works much better. The recognition rates are significantly better
than chance except for the OneR classifiers and the RandomForests. However, both
classifiers have very high RRs (99.0 % and 98.7 %).

Table 6.16 lists the classification rates on phoneme level for the CLP-Phone-
Evaldatabase. The application of just the TEP to the data yields much lower recog-
nition rates than found in the literature. Of course, the features were not designed for
children’s speech, but the recognition here is much worse compared to the numbers in
the literature. However, one has to keep in mind, that this work is the first one which
does the complete segmentation semi-automatically and not manually. Moreover,
this is the first time that the methods are applied to real pathologic data of children.
Hence, a reduction of the recognition rates was expected. The OneR classifier and the
RandomForest lie in the same range, as described in [Cairn 96a]. Their CL, however,
is at chance level. In fact, both classifiers assigned virtually always label “O”. Unfor-
tunately, Cairns does not provide exact information about the dataset he used, e.g.
the distribution of this classes. In real data, as presented here, the non-hypernasal
case is predominant. In the CLP-Phone-Eval data, about 50 of the 1916 words of the
dataset contain hypernasal vowels (cf. Table A.7). The actual training data is in the
range of seconds. With the other classifiers, recognition rates are much lower. The
best CL is found for the LDA-Classifier with 59.2 %.

MFCCs perform significantly worse than the TEP features in CL. The best CL is
found with the NaiveBayes classifier based on functionals of the MFCC features com-
puted from the output of a frame level MFCC NaiveBayes Classifier. RR is highest
with 99 % in the RandomForest and OneR classifiers. Their CL, however, is again at
chance level. The best CL is found obtained with the NaiveBayes classifier (56.9%).
Combination of both feature sets is beneficial: The CL can be improved to up to
62.9 % with the DecisionStump classifier. Additional use of pronunciation features
improves only the RR in most classifiers. The CL is only improved in the PART and



126 Chapter 6. Experiments

classifier feature sets CL RR
OneR TEP 50.0 % 97.7 %
DecisionStump TEP 53.9 % 16.6 %
LDA-Classifier TEP 59.2 % 56.4 %
NaiveBayes TEP 52.7 % 45.3 %
J48 TEP 55.7 % 50.9 %
PART TEP 54.7 % 50.9 %
RandomForest TEP 48.1 % 94.2 %
SVM TEP 49.4 % 73.9 %
OneR OneR (MFCCs) 50.0 % 99.0 %
DecisionStump DecisionStump (MFCCs) 53.9 % 85.9 %
LDA-Classifier LDA-Classifier (MFCCs) 52.9 % 92.4 %
NaiveBayes NaiveBayes (MFCCs) 56.9 % 87.5 %
J48 J48 (MFCCs) 53.6 % 91.7 %
PART PART (MFCCs) 52.2 % 90.9 %
RandomForest RandomForest (MFCCs) 50.0 % 99.0 %
SVM SVM (MFCCs) 56.2 % 90.6 %
OneR OneR (MFCCs), TEP 49.9 % 93.4 %
DecisionStump DecisionStump (MFCCs), TEP 62.9 % 87.1 %
NaiveBayes NaiveBayes (MFCCs), TEP 51.2 % 82.6 %
J48 J48 (MFCCs), TEP 53.9 % 93.6 %
PART PART (MFCCs), TEP 51.5 % 92.0 %
SVM SVM (MFCCs), TEP 53.2 % 91.1 %
OneR OneR (MFCCs), TEP, PronFexP 49.8 % 98.7 %
DecisionStump DecisionStump (MFCCs), TEP,

PronFexP
60.6 % 82.8 %

NaiveBayes NaiveBayes (MFCCs), TEP,
PronFexP

51.2 % 94.5 %

J48 J48 (MFCCs), TEP, PronFexP 53.9 % 93.6 %
PART PART (MFCCs), TEP, PronFexP 55.1 % 93.1 %
SVM SVM (MFCCs), TEP, PronFexP 54.9 % 91.6 %

Table 6.16: Recognition rates on phoneme level for hypernasalization on the CLP-
Phone-Eval dataset: The terms in brackets describe the input data to the respective
classifier. The best result for each combination of feature sets is printed in bold face.
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the SVM. The best CL with all phoneme level feature sets has the DecisionStump
with 60.6%.

In Table 6.17 the results on word level are displayed. Again, the RandomFor-
est and the OneR classifier show the highest RRs. In contrary to the OneR, the
RandomForest is above chance level with 51.2% CL and 96.9 % RR. The best result
using just MFCCs is obtained with the SVM with 52.5 % CL. Additional use of the
TEP features increases the CL with the DecisionStump to 57.7 % CL while the RR
stays in the same range as with the SVM. Significant improvement is achieved by
the addition of PronFexP features on phoneme level and feature selection with Max-
imum R (p < 0.05). This yields a recognition of 60.6% CL. Additional use of word
level features like PronFexW and ProsFeat did not bring any further improvements.

On speaker level, significant correlations between the percentage of the detected
hypernasalized vowels and the annotated number are found as presented in Table 6.18.
In the opinion of the author, the correlation between the percentages of annotated
and detected words is more reliable than their number, because each child uttered
a different number of target words which could be mapped onto the words of the
PLAKSS test. Due to the prior processing, the number of detected target words
varies between the different speakers. If just the plain numbers would be correlated, a
good correlation would mean that the classifier detected a matching number of words.
The number of detected words, however, is dependent on the total number of words.
The fewer words, the fewer is the chance to detect words as wrongly pronounced.
This fact might improve correlation artificially. Therefore, the percentage of detected
and annotated words were chosen to compute the correlation.

On the one hand, the RandomForest has a high correlation because it had a very
high RR on word level. On the other hand, the DecisionStump also has a significant
correlation although its RR was significantly lower (p < 0.001). The CL of the
DecisionStump, however, was significantly higher than the CL of the RandomForest.
Hence, it can be concluded that both measures — the CL and the RR — are of
importance to find a good predictor of hypernasality. Insignificant correlations are
not reported in Table 6.18. Addition of further information is beneficial for the
correlation. The RecAcc features improve the correlation to 0.78. If the coordinates
of the Sammon map are further supplied to the prediction, the correlation further
increases to 0.89 which is also highly significant (p < 0.001).

Nasalized Consonants

Table 6.19 lists the recognition performance of the different classifiers on frame level
on the CLP-Phone-Eval dataset. The best RR is obtained with the OneR classifier
which basically assigns all vectors the label “O”. Hence, RR is very high. The CL,
however, is very close to chance level. With the NaiveBayes classifier, i.e. a unimodal
GMM, the best CL with 62.0 % was achieved. The RR of the NaiveBayes classifier
is second-best right behind the OneR classifier. This is significantly better than the
CL of the DecisionStump (p < 0.005) and the RR of the LDA-Classifier (p < 0.05).
On average the NaiveBayes classifier performs best. Classification for individual
phonemes proved to be significantly better than for all phonemes together: The GMM
classifier trained for all phonemes shows significantly worse CL and RR (p < 0.001).
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classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 49.9 % 96.8 %
DecisionStump DecisionStump (DecisionStump

(MFCCs))
45.0 % 68.8 %

LDA-Classifier LDA-Classifier (LDA-Classifier
(MFCCs))

51.7 % 84.2 %

NaiveBayes NaiveBayes (NaiveBayes
(MFCCs))

46.3 % 61.8 %

J48 J48 (J48 (MFCCs)) 50.2 % 71.0 %
PART PART (PART (MFCCs)) 46.1 % 65.8 %
RandomForest RandomForest (RandomForest

(MFCCs))
51.4 % 96.9 %

SVM SVM (SVM (MFCCs)) 52.3 % 70.2 %
OneR OneR (OneR (MFCCs), TEP) 50.8 % 95.8 %
DecisionStump DecisionStump (DecisionStump

(MFCCs), TEP)
57.7 % 69.5 %

NaiveBayes NaiveBayes (NaiveBayes
(MFCCs), TEP)

43.4 % 54.8 %

J48 J48 (J48 (MFCCs), TEP) 51.3 % 76.2 %
PART PART (PART (MFCCs), TEP) 45.2 % 70.0 %
SVM SVM (SVM (MFCCs), TEP) 52.7 % 71.0 %
DecisionStump DecisionStump (DecisionStump

(MFCCs), TEP, PronFexP)
56.8 % 62.0 %

SVM Maximum R (SVM (Maxi-
mum R (SVM(MFCCs), TEP,
PronFexP)))

60.6 % 69.4 %

SVM Maximum R (PART (Maxi-
mum R (PART(MFCCs), TEP,
PronFexP)), PronFexW, Pros-
Feat)

54.1 % 78.3 %

Table 6.17: Recognition rates on word level for hypernasalization on the CLP-Phone-
Eval dataset
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feature sets r
RandomForest (RandomForest (Random-
Forest(MFCCs)))

0.75 (**)

DecisionStump (DecisionStump (Decision-
Stump(MFCCs), TEP))

0.64 (**)

DecisionStump (Maximum R (Decision-
Stump (Maximum R (Decision-
Stump(MFCCs), TEP, PronFexP)))

0.57 (**)

RandomForest (RandomForest (Random-
Forest (MFCCs))), RecAcc

0.78 (**)

RandomForest (RandomForest (Random-
Forest (MFCCs))), RecAcc, 2-D Sammon
Coordinates

0.87 (**)

RandomForest (RandomForest (Random-
Forest (MFCCs))), RecAcc, 3-D Sammon
Coordinates

0.89 (**)

Table 6.18: Correlations on speaker level between the percentage of detected words
and the annotated percentage for hypernasalization on the CLP-Phone-Eval dataset.
(**) marks significant correlations with p < 0.01.

classifier CL RR
OneR 50.8 % 94.2 %
DecisionStump 59.8 % 62.7 %
LDA-Classifier 59.0 % 78.7 %
NaiveBayes 62.0 % 80.2 %
J48 56.1 % 74.1 %
PART 57.9 % 75.3 %
RandomForest 53.2 % 92.3 %
SVM 57.1 % 76.4 %
GMM (2 densities) 56.2 % 53.4 %
GMM (5 densities) 53.4 % 63.2 %
GMM (10 densities) 52.9 % 65.1 %
GMM (15 densities) 49.9 % 73.3 %

Table 6.19: Overview on the CL and RR of nasalized consonants obtained by different
classifiers on the CLP-Phone-Eval dataset on frame level
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Note that the TEP features were not evaluated since they are only defined on voiced
speech, i.e. vowels.

Application of MFCCs on phoneme level gives CL rates of up to 66.7%. RR,
however, is only 53.9 %. OneR and RandomForest yield high RRs, but their CL is
again very close to chance. The PronFexP features also perform quite well. Using
an J48 classifier, a CL rate of 67.5% is achieved. However, RR is only 56.6 %.
Combination of MFCCs with the PronFexP features yields recognition rates which are
comparable to using only one of the feature sets. While the PronFexP features have
slightly better discrimination between the classes, i.e., a higher CL, the RR is better in
the MFCCs. Both effects can be brought to a single classifier by application of further
improvement techniques: Feature selection with Maximum R (cf. Chapter 4.2.3)
and additional boosting of the J48 classifier gives a classifier which is close to the
DecisionStump in CL with 67.9 % while having a significantly higher RR with 79.8 %
(p < 0.001).

Recognition on word level is more difficult than on phoneme level. On the one
hand, there are many possible combinations to choose classifiers on frame, phoneme,
and word level. Moreover, application of the same classifier on each level yields
only suboptimal results, as displayed in Table 6.21. The table lists only the best
combinations which were achieved. The best RRs which could be obtained are around
80 %. The best CL using MFCCs was only 63.6%. The investigation of only word
level features yielded just weak classification: The best CL with the ProsFeat features
was 52.3%. Using PronFexW features, the best CL was 53.9 %. Combination of all
features gave an improvement in CL to 58.4 % which is still lower than the recognition
with just MFCCs.

Table 6.22 shows the results on speaker level. Using just MFCC features, a corre-
lation of 0.71 between the percentage of words which contain nasalized phonemes and
the annotated words is found. Further improvement in the regression is achieved if the
RecAcc features are added to the regression. Addition of 2-D Sammon Coordinates or
3-D Sammon Coordinates enhances the regression even more. The application of all
features on word level with an SVM gave a correlation of 0.47. If all available infor-
mation is provided to the prediction, a correlation of 0.85 is achieved.

Laryngeal Replacement

The multi-level classification system as presented in Figure 6.5 can also be employed
to detect laryngeal replacements. Table 6.23 lists results on the CLP-Phone-Eval data
on frame level. Again very high RRs are found with the OneR classifier and the
RandomForest. The corresponding CLs are, again, at chance level. The best CL
with MFCCs is found with the PART with a CL of 59.8% and a RR of 91.3 %.
Also for the laryngeal replacement, the evaluation with individual classifiers for each
phoneme is beneficial. The CL is significantly higher in the PART classifier compared
to the GMMs trained with all observed phonemes (p < 0.001).

On phoneme level, MFCCs yield good classification results (cf. Table 6.24). With
the J48 a classification with 61.7 % CL is achieved. Even better is classification using
an SVM on phoneme level and a PART classifier on frame level with a CL of 69.5 %.
Additional use of pronunciation features could improve the RR, but not the CL in
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classifier feature sets CL RR
OneR OneR (MFCCs) 51.9 % 94.6 %
DecisionStump DecisionStump (MFCCs) 66.7 % 53.9 %
LDA-Classifier LDA-Classifier (MFCCs) 60.2 % 72.5 %
NaiveBayes NaiveBayes (MFCCs) 63.5 % 56.6 %
J48 J48 (MFCCs) 62.2 % 78.3 %
PART PART (MFCCs) 62.6 % 77.2 %
RandomForest RandomForest (MFCCs) 50.2 % 95.6 %
SVM SVM (MFCCs) 56.1 % 75.5 %
OneR PronFexP 49.9 % 94.5 %
DecisionStump PronFexP 64.4 % 56.6 %
LDA-Classifier PronFexP 59.3 % 60.2 %
NaiveBayes PronFexP 53.7 % 26.6 %
J48 PronFexP 67.5 % 65.3 %
PART PronFexP 61.3 % 61.5 %
RandomForest PronFexP 52.7 % 91.5 %
SVM PronFexP 61.0 % 63.5 %
OneR OneR (MFCCs), PronFexP 52.8 % 94.0 %
DecisionStump DecisionStump (MFCCs), Pron-

FexP
68.5 % 52.2 %

LDA-Classifier LDA-Classifier (MFCCs), Pron-
FexP

63.9 % 74.2 %

NaiveBayes NaiveBayes (MFCCs), PronFexP 64.6 % 70.0 %
J48 J48 (MFCCs), PronFexP 59.3 % 79.8 %
PART PART (MFCCs), PronFexP 63.1 % 78.4 %
RandomForest RandomForest (MFCCs), Pron-

FexP
50.0 % 95.1 %

SVM SVM (MFCCs),PronFexP 56.5 % 72.8 %
AdaBoost (J48) Maximum R (NaiveBayes

(MFCCs), PronFexP)
67.9 % 79.8 %

Table 6.20: Recognition rates on phoneme level for nasalized consonants on the CLP-
Phone-Eval dataset
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classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 52.0 % 79.7 %
RandomForest RandomForest (RandomForest

(MFCCs))
51.4 % 82.5 %

DecisionStump J48 (NaiveBayes (MFCCs)) 63.6 % 63.6 %
OneR ProsFeat 50.1 % 81.5 %
LDA-Classifier ProsFeat 52.3 % 54.9 %
OneR PronFexW 50.1 % 81.4 %
J48 PronFexW 53.9 % 68.3 %
SVM J48 (NaiveBayes (MFCCs), Pron-

FexP), PronFexW, ProsFeat
58.4 % 62.9 %

Table 6.21: Recognition rates on word level for nasalized consonants on the CLP-
Phone-Eval dataset

feature sets R
DecisionStump (J48 (NaiveBayes(MFCCs))) 0.70 (**)
DecisionStump (J48 (Maximum R (Naive-
Bayes (MFCCs))))

0.71 (**)

DecisionStump (J48 (Maximum R (Naive-
Bayes (MFCCs)))), RecAcc

0.82 (**)

DecisionStump (J48 (Maximum R (Naive-
Bayes (MFCCs)))), RecAcc, 2-D Sammon
Coordinates

0.83 (**)

DecisionStump (J48 (Maximum R (Naive-
Bayes (MFCCs)))), RecAcc, 3-D Sammon
Coordinates

0.84 (**)

SVM (J48 (NaiveBayes (MFCCs), Pron-
FexP), PronFexW, ProsFeat)

0.47 (*)

SVM (J48 (NaiveBayes (MFCCs), Pron-
FexP), PronFexW, ProsFeat), Deci-
sionStump (J48 (Maximum R (Naive-
Bayes (MFCCs)))), RecAcc, 3-D Sammon
Coordinates

0.85 (**)

Table 6.22: Correlations on speaker level between the percentage of detected
words and the annotated percentage for nasalized consonants on the CLP-Phone-
Eval dataset. (*) marks significant correlations with p < 0.05 and (**) correlations
with p < 0.01.
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classifier CL RR
OneR 50.0 % 99.3 %
DecisionStump 52.8 % 89.7 %
NaiveBayes 51.7 % 96.4 %
J48 59.7 % 91.2 %
PART 59.8 % 91.3 %
RandomForest 50.0 % 99.6 %
SVM 53.0 % 93.7 %
GMM (2 densities) 49.7 % 92.4 %
GMM (5 densities) 49.5 % 95.9 %
GMM (10 densities) 50.1 % 96.5 %
GMM (15 densities) 50.5 % 91.8 %

Table 6.23: Overview on the CL and RR of laryngeal replacement obtained by dif-
ferent classifiers on the CLP-Phone-Eval dataset on frame level

classifier feature sets CL RR
OneR OneR(MFCCs) 50.0 % 99.6 %
NaiveBayes NaiveBayes(MFCCs) 52.8 % 88.7 %
J48 J48(MFCCs) 61.7 % 89.7 %
PART PART(MFCCs) 59.8 % 91.3 %
RandomForest RandomForest(MFCCs) 50.0 % 99.6 %
SVM SVM(MFCCs) 58.6 % 90.0 %
SVM PART(MFCCs) 69.5 % 88.9 %
SVM PART(MFCCs), PronFexP 65.3 % 92.6 %

Table 6.24: Recognition rates on phoneme level for laryngeal replacement on the
CLP-Phone-Eval dataset
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classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 50.0 % 98.1 %
RandomForest RandomForest (RandomForest

(MFCCs))
50.0 % 98.1 %

LDA-Classifier LDA-Classifier (LDA-Classifier
(MFCCs))

59.1 % 83.6 %

SVM SVM (PART (MFCCs)) 62.0 % 63.9 %
J48 LDA-Classifier (PART (MFCCs)) 63.8 % 80.8 %
PART LDA-Classifier (PART (MFCCs)) 63.8 % 80.8 %
SVM SVM (PART (MFCCs), Pron-

FexP)
57.7 % 72.6 %

PART SVM (PART (MFCCs), Pron-
FexP)

60.0 % 81.1 %

SVM SVM (PART (MFCCs), Pron-
FexP), PronFexW

57.7 % 72.6 %

Table 6.25: Recognition rates on word level for laryngeal replacement on the CLP-
Phone-Eval dataset

most classifiers. The best classifier representing this group was the SVM with 65.3 %
CL.

Table 6.25 lists the results on word level on the CLP-Phone-Eval data. The OneR
and the RandomForest classifiers yield the highest RR with 98.1 % RR. The CL of
50.0 % reveals that both classifiers assigned label “O” in all cases. The class “X” was
never classified. With other classifiers, higher CLs are found. A combination of three
LDA-Classifiers, for example, has a CL of 59.1%. The best combination in terms of
CL using MFCCs only is achieved with a PART classifier on frame level, an SVM on
phoneme level, and either a J48 or a PART on word level with a CL of 63.8%. Use
of additional features on phoneme or word level did not bring any further advances.
Therefore, the table presents only a small number of these combinations.

feature sets R
J48 (LDA (PART (MFCCs))) 0.56 (*)
PART (LDA (PART (MFCCs))) 0.56 (*)
PART (SVM (PART (MFCCs), PronFexP)) 0.50 (*)
PART (LDA (PART (MFCCs))), RecAcc 0.73 (**)
PART (LDA (PART (MFCCs))), RecAcc, 2-
D Sammon Coordinates

0.80 (**)

PART (LDA (PART (MFCCs))), RecAcc, 3-
D Sammon Coordinates

0.81 (*)

Table 6.26: Correlations on speaker level between the percentage of detected
words and the annotated percentage for laryngeal replacement on the CLP-Phone-
Eval dataset. (*) marks significant correlations with p < 0.05 and (**) correlations
with p < 0.01.
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classifier CL RR
OneR 50.1 % 99.1 %
DecisionStump 58.7 % 88.7 %
NaiveBayes 55.0 % 95.6 %
J48 63.6 % 91.4 %
PART 63.2 % 91.5 %
RandomForest 51.2 % 98.6 %
SVM 66.0 % 93.6 %
GMM (2 densities) 49.4 % 88.2 %
GMM (5 densities) 49.5 % 93.5 %
GMM (10 densities) 49.9 % 97.2 %
GMM (15 densities) 49.9 % 97.7 %

Table 6.27: Overview on the CL and RR of pharyngeal backing obtained by different
classifiers on the CLP-Phone-Eval dataset on frame level

classifier feature sets CL RR
OneR OneR(MFCCs) 50.0 % 99.6 %
NaiveBayes NaiveBayes(MFCCs) 65.2 % 92.9 %
J48 J48(MFCCs) 63.6 % 90.9 %
PART PART(MFCCs) 66.7 % 95.6 %
RandomForest RandomForest(MFCCs) 50.0 % 99.6 %
SVM SVM(MFCCs) 63.7 % 89.8 %
OneR OneR(MFCCs), PronFexP 51.9 % 99.5 %
SVM SVM(MFCCs), PronFexP 76.9 % 88.6 %

Table 6.28: Recognition rates on phoneme level for pharyngeal backing on the CLP-
Phone-Eval dataset

The percentage of detected words of the word classifiers showed significant correla-
tions with the perceptively annotated words (cf. Table 6.26). Using only MFCCs yields
a correlation of 0.56 with a combination of PART and LDA classifiers. Improvement
is achieved by addition of the RecAcc features. Inclusion of further information from
2-D Sammon Coordinates or 3-D Sammon Coordinates results in a correlation of up
to 0.81.

Pharyngeal Backing

For pharyngeal backing quite high recognition rates were achieved on frame level
(cf. Table 6.27). With the SVM, a CL of 66.0 % and a RR of 93.6 % were found.
Furthermore, the evaluation for individual phonemes outperforms the recognition
with a single classifier for all phonemes. The GMM classifier shows much lower CLs
than most of the individually trained classifiers.

Table 6.28 lists recognition rates on phoneme level. The best classifier in terms
of CL with MFCCs was the PART. Additional improvement by combination with
PronFexP features could be obtained with the OneR classifier and the SVM. The
SVM yields a significant improvement in CL up to 76.9 % (p > 0.001). Further
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classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 50.0 % 98.2 %
RandomForest RandomForest (RandomForest

(MFCCs))
50.0 % 98.2 %

PART PART (PART (MFCCs)) 59.1 % 82.7 %
DecisionStump DecisionStump (DecisionStump

(MFCCs))
59.8 % 61.8 %

PART PART (PART (MFCCs), Pron-
FexP)

59.6 % 84.8 %

SVM SVM (SVM (MFCCs), Pron-
FexP)

67.9 % 61.8 %

SVM SVM (SVM (MFCCs), Pron-
FexP), PronFexW

67.2 % 60.2 %

Table 6.29: Recognition rates on word level for pharyngeal backing on the CLP-
Phone-Eval dataset

feature sets R
PART (PART (PART (MFCCs))) 0.46 (*)
PART (PART (PART (MFCCs))), RecAcc,
2-D Sammon Coordinates

0.68 (*)

PART (PART (PART (MFCCs))), RecAcc,
3-D Sammon Coordinates

0.70 (*)

Table 6.30: Correlations on speaker level between the percentage of detected
words and the annotated percentage for pharyngeal backing on the CLP-Phone-
Eval dataset. (*) marks significant correlations with p < 0.05 and (**) correlations
with p < 0.01.

combinations of classifiers and features did not yield any improvement and are hence
not reported.

The recognition of pharyngeal backing works also well on word level (cf. Ta-
ble 6.29). Application of MFCCs only resulted in a recognition of 59.1 % CL. Addi-
tional use of pronunciation features on phoneme level brings a further improvement
to 67.9% CL. Pronunciation and prosodic features on word level do not increase the
recognition additionally.

The correlation between the detected and the annotated pharyngeal backing on
the CLP-Phone-Eval data is 0.46. The correlation is further increased by combi-
nation with the RecAcc features and the 2-D Sammon Coordinates to 0.68. If the
3-D Sammon Coordinates are used, a correlation of 0.70 is achieved.

Weakened Plosives

Weakened plosives were detected well already on frame level (cf. Table 6.31). Note
that weakening of the plosives in the region of Erlangen might also be related to
the dialect and not to the clefting. Therefore, the amount of training data was
higher compared to the other articulation disorders. The classification with the GMM
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classifier CL RR
OneR 50.1 % 97.8 %
DecisionStump 71.1 % 81.8 %
NaiveBayes 62.1 % 90.8 %
J48 66.8 % 88.9 %
PART 67.0 % 87.6 %
RandomForest 50.9 % 97.3 %
SVM 67.7 % 88.2 %
GMM (2 densities) 56.1 % 75.4 %
GMM (5 densities) 53.9 % 59.6 %
GMM (10 densities) 53.3 % 76.2 %
GMM (15 densities) 52.4 % 74.7 %

Table 6.31: Overview on the CL and RR of weakened plosives obtained by different
classifiers on the CLP-Phone-Eval dataset on frame level

classifier for all phonemes with a single classifier showed the best results compared to
the other GMM classifiers of the other criteria. However, individual classification of
all phonemes yielded much better CLs and RRs. The best CL was obtained with the
DecisionStump with 71.1 %. The other classifiers, like J48, PART, and SVM, also
have very high CLs.

In Table 6.32 the results for the recognition of weakened plosives on phoneme
level are presented. The best CL using MFCCs only is 71.1% with a DecisionStump
classifier. Slightly lower recognition rates are achieved with the SVM with 67.7 %
CL and the PART with 67.0 % CL. The additional use of PronFexP improves the
recognition for most classifiers. The best CL, with a combination of MFCCs and
PronFexP features, is 71.0%.

Table 6.33 displays the results for weakened plosives on word level. The best
recognition with just MFCCs is 66.1% using a SVM. Further improvement is achieved
by addition of PronFexP. The CL rises to 67.7 %. Prosodic information and more
pronunciation features refine the recognition even more. A CL of 75.8% is obtained.

The assessment of the weakened plosives works also well on speaker level. Us-
ing just the word level features, a correlation of 0.61 is achieved. Addition of the
RecAcc features yields 0.73 correlation. The 3-D Sammon Coordinates improve the
correlation further to 0.81. The best correlation with 0.82 is created by application
of two word level recognizers and the speaker level features.

6.3.2 Fully Automatic Assessment

In order to show that the segmentation of the audio data is also possible automati-
cally, we investigated the speech data of the CLP-Phone-Eval2 database. The exper-
imental setup is very similar to Figure 6.5. However, the segmentation is performed
automatically.
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classifier feature sets CL RR
OneR OneR (MFCCs) 50.1 % 97.8 %
DecisionStump DecisionStump (MFCCs) 71.1 % 81.8 %
LDA-Classifier LDA-Classifier (MFCCs) 64.2 % 89.2 %
NaiveBayes NaiveBayes (MFCCs) 62.1 % 90.8 %
J48 J48 (MFCCs) 66.8 % 88.9 %
PART PART (MFCCs) 67.0 % 87.6 %
RandomForest RandomForest (MFCCs) 50.9 % 97.3 %
SVM SVM (MFCCs) 67.7 % 88.2 %
DecisionStump SVM (MFCCs), PronFexP 70.4 % 88.5 %
LDA-Classifier SVM (MFCCs), PronFexP 69.6 % 88.0 %
J48 SVM (MFCCs), PronFexP 70.4 % 88.5 %
PART SVM (MFCCs), PronFexP 70.4 % 88.5 %
SVM SVM (MFCCs), PronFexP 71.0 % 85.0 %

Table 6.32: Recognition rates on phoneme level for weakened plosives on the CLP-
Phone-Eval dataset

classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 50.1 % 97.8 %
RandomForest RandomForest (RandomForest

(MFCCs))
51.8 % 94.2 %

PART PART (PART (MFCCs)) 63.0 % 61.8 %
SVM SVM (SVM (MFCCs)) 66.1 % 62.3 %
LDA-Classifier LDA-Classifier (SVM (MFCCs),

PronFexP)
67.7 % 70.7 %

LDA-Classifier Maximum R (LDA-
Classifier (Maxi-
mum R (SVM (MFCCs), Pron-
FexP)), PronFexW, ProsFeat)

68.1 % 76.9 %

SVM Maximum R (LDA-
Classifier (Maxi-
mum R (SVM (MFCCs), Pron-
FexP)), PronFexW, ProsFeat)

75.8 % 68.1 %

Table 6.33: Recognition rates on word level for weakened plosives on the CLP-Phone-
Eval dataset
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feature sets R
PART (Maximum R (LDA-Classifier (Maxi-
mum R (SVM (MFCCs), PronFexP)), Pron-
FexW, ProsFeat))

0.61 (**)

PART (Maximum R (LDA-Classifier (Maxi-
mum R (SVM (MFCCs), PronFexP)), Pron-
FexW, ProsFeat)), RecAcc

0.73 (**)

PART (Maximum R (LDA-Classifier (Maxi-
mum R (SVM (MFCCs), PronFexP)), Pron-
FexW, ProsFeat)), RecAcc, 2-D Sammon Co-
ordinates

0.74 (**)

PART (Maximum R (LDA-Classifier (Maxi-
mum R (SVM (MFCCs), PronFexP)), Pron-
FexW, ProsFeat)), RecAcc, 3-D Sammon Co-
ordinates

0.81 (**)

DecisionStump (Maximum R (LDA-
Classifier (Maximum R (SVM (MFCCs),
PronFexP)), PronFexW, ProsFeat))

0.57 (*)

SVM (SVM (SVM (MFCCs))) 0.41 (*)
SVM (SVM (SVM (MFCCs))), PART (Max-
imum R (LDA-Classifier (Maxi-
mum R (SVM (MFCCs), PronFexP)),
PronFexW, ProsFeat)), RecAcc, 3-D Sam-
mon Coordinates

0.82 (**)

Table 6.34: Correlations on speaker level between the percentage of detected words
and the annotated percentage for weakened plosives on the CLP-Phone-Eval dataset.
(*) marks significant correlations with p < 0.05 and (**) correlations with p < 0.01.
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Experimental Setup

As mentioned in Chapter 4.1.3, the preprocessing is only relevant for phoneme and
word level features as they have to be segmented properly. After segmentation, a
decision has to be made whether the spoken word is children’s or adults’ speech.

Since the word chain to be uttered by the child is not known a priori, segmentation
is much more difficult than in read speech where the reference is known. In order
to improve the segmentation, a speech recognizer with a trigram language model is
used. The language model is trained using the transcription of the speech tests of
262 children (namely the transcripts of the Michael-Poeschke-06, CLP-02-06, and
Preschool databases). The categories of the language model were the 97 distinct
words of the speech test used plus an additional category for words which appear
in the “carrier sentences”. In order to enable the recognition of unknown words, an
out-of-vocabulary (OOV) word was added to each category. During this procedure
several points have to be considered:

• Correspondence of the spoken words to the test words: Since the speech
data were transliterated according to the acoustic realization of the child, the
correspondence between the spoken words and the test words is not always clear.
This is caused by the use of synonyms and pronunciation errors. In order to
solve this problem, an alignment was performed between the transliteration of
each test and the correct sequence of words with dynamic time warping (DTW)
[Sanko 83]. In order to improve the alignment of pronunciation variants, the
distance of substitutions was calculated according to the Levenshtein distance
of the two words divided by the number of letters in the longer word. The
procedure still has the problem that it is not capable to model variations in the
sequence of the words which happen when a child names the words from right
to left instead from left to right. Therefore, all found correspondences were
checked manually according to their plausibility. Unplausible correspondences
were removed. So about 20 different realizations of each word of the test were
found. The most common correspondences can be reviewed in Appendix A.1.2.

• Frequency of carrier words: In the transliteration of the 262 speech test
sessions two tendencies could be seen: Some children use many “carrier words”
while others use none at all. Therefore, the segmentation is performed using
two language models for each turn. A “big” one trained on sentences with
two or more carrier words per slide, and a “small” one with two or less carrier
words. Furthermore, two turn-dependent trigram language models were cre-
ated. Again, one with two or more “carrier words” and one with two or less
“carrier words” per target word. In preliminary experiments, trigram language
models proved to yield the best recognition rates in all four cases compared to
language models with larger or smaller context [Bockl 07a].

• Recognition of unknown words: To estimate the probability of the OOV
words, each word which was observed less than three times was used to train
the OOV language model probabilities. The probabilities of the OOV words in
the language model were estimated using the VOCSIM algorithm [Gallw 02].
The acoustic realization of the OOV words is flat, e.g. it is assumed to be
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any sequence of the phonemes of the speech recognizer. The threshold for
the VOCSIM algorithms for the creation of OOVs was chosen to be three as
described in [Bockl 07a].

• Compensation of age effects: Several recognizers were trained for certain
age groups. As previously evaluated in [Bockl 07a], the best groups for the
creation of age-dependent recognizers were found as:

– < 7 years

– 7 years

– 8 years

– 9+10 years

– > 10 years

The adaptation procedure was performed on the acoustic models as well as on
the HMM output probabilities as described in [Maier 05a, Maier 06d, Maier 08b].

• System combination: The recognition was performed for each turn using four
different recognizers with the different language models as described above.
In order to obtain a single word chain, the four best word chains plus the
reference chain, i.e., the object names as shown on the slides, were merged using
the Recognizer Output Voting Error Reduction (ROVER) [Fiscu 97, Maier 05b,
Maier 05c, Maier 05d, Maier 08a].

In this manner, an improved recognized word chain is obtained. In [Bockl 07a],
preliminary experiments were performed using the same data as in this work. An
increase of the recognition rate of normal children speech from 64.7 % to 74.5 % WA
was found. In the CLP speech data, this improvement was even better. The WA of
-11.0 % of the baseline system without any adaptation was pushed to 42.6 %.

Another crucial point in the automatic processing is the identification of the speech
data uttered by the speech therapist who recorded the speech data. After identifi-
cation and segmentation into PLAKSS words, the data is analyzed with speaker
identification techniques. Surprisingly, standard speaker identification methods were
outperformed by a simple energy thresholding algorithm because the speech of the
child is always louder than the speech of the therapist due to the head-mounted mi-
crophone. So, a class-wise averaged recognition rate of 96.5 % could be obtained. The
recall for the class “children” was 98 % [Bockl 07a].

With the segmentation and the identification solved automatically, the experi-
mental setup as displayed in Figure 6.5 is applied.

Results

The automatic identification and segmentation procedure could extract 2793 of the
2981 marked words and assign them successfully to a PLAKSS word. Of the 127
words which were marked as nasal by both raters, 113 were correctly segmented.
In the opinion of the author, this segmentation is reliable enough for the further
processing and classification.
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union intersect
classifier CL RR CL RR
OneR 50.0 % 94.0 % 50.2 % 98.8 %
DecisionStump 46.2 % 46.6 % 51.0 % 80.9%
NaiveBayes 50.1 % 70.2 % 51.9 % 91.4%
J48 47.0 % 64.4 % 51.6 % 84.7%
PART 48.0 % 64.6 % 52.6 % 83.4%
SVM 47.9 % 66.2 % 51.0 % 86.4%

Table 6.35: Overview on the CL and RR of nasalization obtained by different clas-
sifiers on the CLP-Phone-Eval2 dataset on frame level: The columns “union” and
“intersect” denote the decision rule which was chosen in order to assign the labels.

In order to obtain a nasality label per phoneme, one can either decide for the
union or the intersect of the perceptive ratings. In case of the union, the label “nasal”
is assigned if one of the two raters found nasality. The intersect label is assigned if
both raters agreed on their decision on the label “nasality”. Both assignment rules
were investigated. In case of the “union” rule, 449 nasal and 2344 non-nasal words
were found. The “intersect” rule produced 113 nasal words and 2680 non-nasal words.

First evaluations on frame level showed that the label assignment rule “intersect”
yielded more consistent labels than the “union” rule. Therefore, we chose for the
“intersect” rule in the following experiments to obtain the labels.

From frame to phoneme level, most CL rates increase while the RR stays in the
same range. Addition of the TEP to the MFCCs also improves the CL in most cases.
PronFexP also succeed in improving the recognition. The best CL on phoneme level
is obtained by a combination of all three feature types with 64.8 % CL.

As observed with the semi-automatically evaluated data, the recognition rates
drop slightly when moving from phoneme to word level. Table 6.37 list the results
obtained by the different classifiers with different feature sets. The results of unsuc-
cessful combinations are not reported in the table. The best CL on word level is
found with the NaiveBayes classifier with 62.1 % CL.

A receiver operated characteristics (ROC) evaluation [Fawce 06] of the NaiveBayes
(NaiveBayes (NaiveBayes (MFCCs))) classifier shows a detailed report on the clas-
sification performance (cf. Figure 6.6). The axes denote the true and false positive
rate, i.e., the trade-off between the percentage of correctly as “nasal” classified in-
stances p(hit) and the percentage of false alarms p(false alarm). At a true positive
rate of about 40 %, the number of false alarms is about 10 %. However, with increas-
ing true positive rate, the number of false alarms also grows. At more than 65 %
true positive rate, the number of false positives grows at the same rate: The classifier
converges to the random classifier. Hence, the classifier can detect only about 40 %
of the positives reliably. Note that the true positive rate of human rater 1 was 45.5 %
at a false positive rate of 7.5 %, and rater 2 had a true positive rate of 61.5% with a
false negative rate of 5.7% (cf. Table 6.6). The classifier is already close to rater 1,
but rater 2 is still quite a lot better.

Although the classification on word level seemed rather weak, there are significant
correlations between the classification results and the human evaluation. A combina-
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classifier feature sets CL RR
OneR OneR (MFCCs) 49.9 % 98.7 %
DecisionStump DecisionStump (MFCCs) 62.4 % 71.2 %
LDA-Classifier LDA-Classifier (MFCCs) 57.5 % 84.5 %
NaiveBayes NaiveBayes (MFCCs) 56.8 % 59.6 %
J48 J48 (MFCCs) 57.2 % 86.7 %
PART PART (MFCCs) 61.2 % 80.3 %
SVM SVM (MFCCs) 54.4 % 84.8 %
OneR OneR (MFCCs), TEP 50.0 % 98.8 %
DecisionStump DecisionStump (MFCCs), TEP 63.9 % 71.7 %
NaiveBayes NaiveBayes (MFCCs), TEP 57.4 % 60.0 %
J48 J48 (MFCCs), TEP 56.5 % 87.0 %
PART PART (MFCCs), TEP 62.0 % 80.0 %
SVM SVM (MFCCs), TEP 55.1 % 85.4 %
OneR PART (MFCCs), TEP, PronFexP 49.9 % 98.7 %
DecisionStump PART (MFCCs), TEP, PronFexP 55.0 % 73.6 %
NaiveBayes PART (MFCCs), TEP, PronFexP 54.3 % 74.4 %
J48 PART (MFCCs), TEP, PronFexP 63.8 % 82.7 %
PART PART (MFCCs), TEP, PronFexP 60.8 % 82.4 %
SVM PART (MFCCs), TEP, PronFexP 56.2 % 75.9 %
J48 PART (MFCCs), TEP, PronFexP 64.8 % 83.0 %

Table 6.36: Recognition rates on phoneme level for nasalization on the CLP-Phone-
Eval2 dataset
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classifier feature sets CL RR
OneR OneR (OneR (MFCCs)) 49.7 % 94.0 %
NaiveBayes NaiveBayes (NaiveBayes

(MFCCs))
62.1 % 75.8 %

PART PART (PART (MFCCs)) 54.7 % 65.6 %
SVM SVM (SVM (MFCCs)) 49.6 % 56.7 %
LDA-Classifier LDA-Classifier (LDA-

Classifier (MFCCs))
52.7 % 71.8 %

NaiveBayes NaiveBayes (NaiveBayes
(MFCCs), TEP)

60.2 % 81.8 %

SVM SVM (PART (MFCCs), TEP,
PronFexP)

57.7 % 67.2 %

SVM SVM (PART (MFCCs), TEP,
PronFexP), PronFexW

59.1 % 68.0 %

DecisionStump Maximum R(AdaBoost (Deci-
sionStump (Maximum R (PART
(MFCCs), TEP))))

58.4 % 68.6 %

NaiveBayes Maximum R(AdaBoost (Naive-
Bayes (Maximum R (PART
(MFCCs), TEP))))

61.4 % 56.1 %

SVM Maximum R(AdaBoost (SVM
(Maximum R (PART (MFCCs),
TEP, PronFexP))))

59.7 % 68.6 %

Table 6.37: Recognition rates on word level for nasalization on the CLP-Phone-
Eval2 dataset
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Figure 6.6: The ROC evaluation shows the strong and weak points of the NaiveBayes
classifier: The CL of the classifier was 62.1 %. If the true positive rate and the false
positive rate of the classifier are compared, it can be seen that the classifier works
optimally at a true positive rate of about 30 %. Then, the false negative rate is less
than 10%. If more than 60% true positive rate are required, the classifier converges
to the random classifier, i.e., an increase in true positive rate brings the same increase
of the false positive rate.
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feature sets R
SVM (SVM (PART (MFCCs), TEP, Pron-
FexP), PronFexW)

0.35 (*)

NaiveBayes (Maximum R(AdaBoost (Naive-
Bayes (Maximum R (PART (MFCCs),
TEP)))))

0.43 (**)

SVM (Maximum R(AdaBoost (SVM (Max-
imum R (PART (MFCCs), TEP, Pron-
FexP)))))

0.45 (**)

SVM (SVM (PART (MFCCs), TEP, Pron-
FexP), PronFexW)

0.49 (**)

SVM (SVM (PART (MFCCs), TEP, Pron-
FexP), PronFexW), 2-D Sammon Coordi-
nates

0.61 (**)

SVM (SVM (PART (MFCCs), TEP, Pron-
FexP), PronFexW), 3-D Sammon Coordi-
nates

0.63 (*)

SVM (SVM (PART (MFCCs), TEP,
PronFexP), PronFexW), SVM (Max-
imum R(AdaBoost (SVM (Maxi-
mum R (PART (MFCCs), TEP, Pron-
FexP))))), SVM (SVM (PART (MFCCs),
TEP, PronFexP), PronFexW), RecAcc,
2-D Sammon Coordinates, 3-D Sammon
Coordinates

0.81 (**)

Table 6.38: Correlations on speaker level between the percentage of detected words
and the annotated percentage for nasality on the CLP-Phone-Eval2 dataset. (*)
marks significant correlations with p < 0.05 and (**) correlations with p < 0.01
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tion of multiple information sources such as multiple classifiers on word level, features
obtained from a Sammon map, and the RecAcc features yields a regression of up to
0.81. This result is significant at p < 0.01.

Evaluation on word and speaker level showed that the current system is able to
judge the patients reliably on speaker level. The results on word level, however,
still need a lot of improvement. Especially, the high false negative rates which are
connected to high true positive rates are a problem. If the current classifier would be
used to build an automatic therapy system, the acceptance would be low due to the
high number of false alarms.

6.3.3 Discussion of the Results

In this section many results for the semi-automatic and automatic assessment of
articulation disorders were presented. Some observations were consistent and some
were not.

In general, RandomForests and OneR classifiers rather learn the original distri-
bution of the data than the adjusted distributions. This results in high RRs because
the majority class is recognized well. The recognition of the more rare class, however,
is only weak.

The SVMs and tree-based classifiers yielded the best performance. Combination
of classifiers with AdaBoost can improve these results in some but not in all cases.

Surprisingly, MFCCs alone yield high recognition rates. In most cases, MFCCs
only already yield high recognition rates. We relate this to the fact that MFCCs
model human perception of speech well in general. Hence, the effect of articulation
disorders can also be seen in the MFCCs.

The use of functionals to raise the classification output from one level to the next
higher level is very useful. From frame to phoneme level, the recognition virtually
always increased. On word level, the phoneme level functionals also contributed to
the recognition.

Combination of multiple features is beneficial on all evaluation levels. Especially,
the pronunciation features in all articulation disorders and the TEP in the disor-
ders concerning nasality. Hence, the pronunciation features can not only model the
pronunciation errors by non-natives, but also articulation disorders in children. The
TEP which was previously only used in vowels and consonant-vowel combinations
showed to be applicable to connected speech as well. On speaker level, RecAcc and
Sammon coordinates increased the correlation to the perceptive evaluation. This is
in agreement with the factor analysis of the perceptual evaluation which showed that
all articulation disorders are related to the speech intelligibility and hence also to
RecAcc features.

Prosodic features performed weak in general. In most cases they did not contribute
to any improvement. Reasons for this were already presented in Chapter 6.2.2.

Feature selection is beneficial in some cases, especially if many features are in-
volved. It cannot be guaranteed that feature selection will improve the recognition.

The performance on frame, phoneme, and word level was rather weak in all ex-
periments. Comparison of the automatic classification on word level with the human
raters for the criterion “nasality” using a ROC evaluation showed that the automatic
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evaluation system is already close to one of the two raters. The other rater, however,
performs much better than the automatic evaluation system. Hence, evaluation on
word level is not as reliable as human raters yet.

Since only one rater was available for the semi-automatic assessment, no inter-
rater correlations can be provided for this evaluation. For the fully automatic evalu-
ation, however, an inter-rater correlation of 0.80 could be observed. The correlation
between both raters and the automatic system was 0.81. Hence, the inter-rater cor-
relation and the evaluation of the automatic system lie in the same range, i.e., both
are equally reliable.

6.4 Visualization of the Data
Visualization of speakers and speaker dependencies can provide a better understand-
ing of the speech disorders. However, the visualization or map of the speakers has to
be meaningful, i.e., the quality has to be measured. In our case we decided to use
three measurements for the evaluation:

• Sammon Error εS: The remaining error computed by the Sammon error func-
tion according to Eq. 4.73. This error is used to describe the loss of the mapping
from the high-dimensional space to the low-dimensional space. In the litera-
ture, this term was shown to be a crucial factor to describe the quality of a
representation [Shoza 04, Nagin 05, Hader 06b]. Since the scaling of the maps
influences the Sammon error a lot, all maps were scaled in order to match their
average Euclidean distances with the average distances of the high-dimensional
data.

• Grouping Error eGrp: The average distance between stars belonging to the same
group (on a map with normalized coordinates in an interval between 0 and 1),
i.e., the average distance between a speaker and his representation recorded
with a different microphone.

εGrp =
1

N

N−1∑
i=1

N∑
j=i+1

θij gij (6.1)

Note that the normalization is just performed with 1
N due to the sparsity of

G. A grouping error of 0.25 corresponds to an average distance of 25 % of the
maximum distance in the map between the representations of the same speaker.

• Regression: The regression between the coordinates of a map and a given cri-
terion also provides information on the quality of the map. The regression is
computed as described in Chapter 4.2.1.

In the following only maps computed with the Sammon mapping or the extended
Sammon mapping are presented since both methods are superior to other dimension-
ality reduction methods like PCA or LDA [Exner 07].

As already shown in the previous section, the information of a visualization is
also beneficial for the prediction of certain speaker properties (cf. Chapter 6.3).
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Figure 6.7: Visualization of the CLP-Phone-Eval data: The Intelligibility is coded in
color; the brighter the color the more intelligible is the speaker. Regression between
the coordinates and the different perceptively rated criteria are listed in Table 6.39
as “single”.

Figure 6.7 shows the speakers of the CLP-Phone-Eval database computed with the
Sammon mapping as described in Chapter 4.2.3. The intelligibility (human ratings) is
color-coded in the figure. The brighter the color the more intelligible is the speaker.
The regression of the coordinates of the map to the intelligibility is 0.52 which is
significant with p < 0.05. The coordinates also represent other criteria well (cf.
Table 6.39, column “single”).

A visualization makes only sense if it is also robust to different recording condi-
tions, especially in a client-server environment. As already described in Chapter 5,
much of the data of this work was collected at different locations using different mi-
crophones. Most of the control data was recorded with a Plantronics Audio USB
510 headset while virtually all of the patient data was collected with a dnt Call 4U
Comfort microphone.

In order to test whether our visualization method is independent of the micro-
phone, we played the data of the CLP-Intel database back and recorded them with
the Plantronics Audio USB 510 headset a second time. Furthermore, the data of the
Michael-Poeschke-07 database was also re-recorded with the dnt Call 4U Comfort
microphone, i.e., both databases were re-recorded with the respective other micro-
phone. For the playback the same Quadral SAM38A loud speaker was used as for the
experiments in [Riedh 06]. In a robust visualization, the speakers should be projected
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onto the same or at least a close position in the map although two different micro-
phones were used. Figure 6.8 (a) shows that this is not true for the usual Sammon
mapping. While the patient group at the bottom of the map is projected to the
same area of the map, the control group is split into two clusters which represent
the two microphones. The acoustical mismatch between both versions of the control
group is greater than the speaker characteristics, so the microphones dominate the
distances and therefore also the clusters. In the patient group, the speaker character-
istics are stronger than the acoustical mismatch caused by the microphone. Hence,
both versions of the patient group from only one cluster.

In order to force the same speakers to be projected to the same location, the
Sammon mapping is extended as described in Chapter 4.2.3. With the weight wS, a
trade-off between grouping and normal Sammon mapping is created. As Figure 6.8
shows, the points representing the same speaker move together with growing wS.

Figure 6.9 shows the development of the grouping and the Sammon error in de-
pendency of wS. The higher wS, the lower is the group error. The Sammon error
increases with growing wS. At wS = 0.9 a configuration is found where the sum of
Sammon and grouping error is minimal as displayed in Figure 6.8 (c). wS = 0.9 seems
to put most of the weight on the grouping error. However, if we recall the definition
of εSE from Eq. 4.79 and the definition of G from Eq. 4.78, one can easily see that
most of the error sum is caused by the Sammon error and not by the grouping error
since G contains only N times an entry with gi ,j = 1 and (N 2−N ) times gi ,j = 0. So
if the average error would be equal, i.e.,

N−1∑
p=1

N∑
q=p+1

(δpq − θpq)
2

δpq
≈

N−1∑
p=1

N∑
q=p+1

θpq (6.2)

the break-even point between both errors with N ≈ 200 would be at about wS = 0.99.
Hence, with wS = 0.9, the influence of the Sammon information is still very high.

In Table 6.39 correlations obtained with just a single microphone (“single”) at
wS = 0 and wS = 0.9 for the CLP-Phone-Eval subset of the visualization are reported.
On the map which was created using just a single microphone, most correlations are
significant or highly significant. However, if data using a different microphone is
added, the correlations decrease a lot. The non-rigid registration helps to increase
correlations again. Most of the correlations are in the same range as on the map
created using only a single microphone. Hence, one can conclude that the registration
of the different recording conditions yields robust and meaningful maps.

6.5 Summary

In this chapter the experiments and the results of this work were described. First
the results of the perceptive evaluation of the speech intelligibility were presented.
On the manually transliterated data (CLP-Intel), the inter-rater correlations were
very consistent. The correlations were in the range from 0.92 to 0.96 (cf. Table 6.1).
The raters of the automatically segmented data (CLP-Intel2) were also in very good
agreement (cf. Table 6.3). The minimal inter-rater correlation was 0.87 while the
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(a) wS = 0

(b) wS = 0.8

(c) wS = 0.9

Figure 6.8: Extended Sammon mapping on data played back with two different mi-
crophones: On the left side, the same microphone is marked with the same symbol
(“X” for the Plantronics Audio USB 510 and “+” for the dnt Call 4U Comfort micro-
phone). Each microphone forms a cluster although exactly the same speech data is
represented. On the right side, each speaker is denoted with a unique symbol. The
points which represent the same speaker are connected with a line: The shorter the
lines, the fewer the grouping error. With growing wS the grouping error is reduced.
With wS = 0.9 almost no lines are visible, i.e., the grouping error is close to zero.
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Figure 6.9: Development of the Sammon and the grouping error in dependency of
wS: While the Sammon error increases steadily with growing wS, the grouping error
decreases. With a too high weight of the grouping error, the coordinates become
mere random numbers due to the random initialization.

criterion single wS = 0 wS = 0.9
nasalized consonants (NC) 0.31 0.10 0.42 (*)
laryngeal replacement (LR) 0.54 (*) 0.41 (*) 0.43 (*)
pharyngeal backing (PB) 0.61 (**) 0.39 (*) 0.43 (*)
weakened plosives (WP) 0.21 0.39 (*) 0.44 (*)
intelligibility 0.52 (*) 0.12 0.55 (**)
marked words 0.28 0.25 0.60 (**)
age 0.32 0.44 (*) 0.39 (*)

Table 6.39: Correlations on a Sammon map with only the patient group (“single”), in
non-registered (wS = 0), and registered (wS = 0.9) conditions with multiple micro-
phones. All measures are computed on the CLP-Phone-Eval subset of the visualiza-
tion. (*) marks significant correlations at p < 0.05 while (**) marks highly significant
correlations at p < 0.01.
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semi-automatic evaluation
frame phoneme word speaker

criterion CL RR CL RR CL RR r
HN 56.8% 99.0 % 62.9 % 99.0 % 60.6 % 96.9 % 0.89
NC 62.0% 94.2 % 68.5 % 95.6 % 63.6 % 82.5 % 0.85
LR 59.8% 99.6 % 69.5 % 99.6 % 63.8 % 98.2 % 0.81
PB 66.0% 99.1 % 76.9 % 99.6 % 67.9 % 98.2 % 0.70
WP 71.1% 97.8 % 71.1 % 97.8 % 75.8 % 97.8 % 0.82

fully automatic evaluation
frame phoneme word speaker

criterion CL RR CL RR CL RR r
nasalization 52.6% 98.8 % 64.8 % 98.8 % 62.1 % 94.0 % 0.81

Table 6.40: Overview on the results of the pronunciation assessment

maximal was 0.95. On a subset of the CLP-Intel data (CLP-Phone-Eval), the pronun-
ciation was assessed by an experienced speech therapist. With factor analysis, three
components — a “nasalization”, a “backing”, and a “lisp” component — were identi-
fied. Furthermore, only the aspects with correlated highly with the “nasalization” and
the “backing” components were significantly correlated with the intelligibility (HN,
NC, LR, PB, and WP). The CLP-Phone-Eval2 data were perceptively scored by two
speech therapists according to the criterion “nasalization”. The inter-rater correlation
was 0.80.

With the semi-automatic evaluation procedure, a correlation of up to -0.89 be-
tween the recognition result and the perceptive evaluation was obtained. With the
fully automatic evaluation, a correlation between the experts and the automatic sys-
tem of -0.93 was found. Further addition of prosody could improve only the semi-
automatic system. Furthermore, the system showed significant differences between
normal children and children with CLP. Normative values for control groups which
were gathered in five cities in Germany were also provided. Application of speech
quality measures, like 3SQM, were not able to distinguish normal from pathologic
children.

The pronunciation assessment was performed with the CLP-Phone-Eval data for
the criteria which were in significant correlation to the intelligibility. Moreover, the
CLP-Phone-Eval2 data were fully automatically evaluated for the criterion “nasaliza-
tion”. Table 6.40 lists the best results which were found on the respective level.

The visualizations created with the Sammon mapping showed significant correla-
tions to most of the perceptively rated criteria on the CLP-Phone-Eval data. Addition
of further patient data recorded with a different microphone reduced these correla-
tions a lot. An extension of the Sammon mapping, however, was able to restore the
good correlations again.
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Chapter 7

Outlook

Soon after the first version of PEAKS was finished, it became clear how powerful
and handy the recording of speech data over the Internet is. While in the first few
weeks only data of children with CLP were collected, the medical staff more and
more realized how easy the use of the software is. More studies collecting data in
different parts of the University Hospital of Erlangen were planned and carried out.
The software ran on most PCs without any modifications. Sometimes, Java had to
be installed or updated. The feedback of the medical personal is very positive. In the
opinion of the doctors, PEAKS and other speech recognition techniques will simplify
speech evaluation for clinical and scientific purposes.

By now, PEAKS is being used by four clinics in Erlangen, one in Herzogenaurach,
and three clinics in Japan. The number of medical studies investigating the intelli-
gibility of patients pro- and retrospectively is growing every month. At present, the
complete database of the PEAKS server contains already approximately 5000 patient
and control persons. Future extensions will concern refinement of the analyses, de-
velopment of therapy tools, screening of speech, the investigation of more disorders,
the integration of additional modalities and the internationalization of PEAKS.

Since PEAKS allows for an automatic evaluation of speech, it has a great ad-
vantage compared to the usual perceptive evaluations since they are not as reliable.
Especially in outcome studies — in relation to evidence-based medicine — PEAKS
shows great advantages because it can evaluate the global speech outcome parameter
for all language, voice, and articulation disorders — the speech intelligibility. Cur-
rently, only the intelligibility of patients is assessed, using PEAKS in a large scale.
In the future, the pronunciation evaluation as presented in this work will be used to
investigate patients’ speech in more detail. At speaker level, the evaluation is already
so reliable that it can be applied in medical studies although the recognition on lower
levels still contained errors. The errors, however, were consistent. Hence, they could
be evened out on speaker level which is another advantage compared to perceptive
evaluations. For the reliable evaluation on word and phoneme level, however, more
research is required. In this work a lot of features which were already applied to
second language learning were used. The results on word and phoneme level were in
the same range as the results in the literature concerning pronunciation training. If
further improvement is achieved, the software can also be applied for speech tutor
systems.

155
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Therapy sessions are expensive due to the fact that speech experts are rare and
expensive. Hence, therapy could be enhanced by automatic sessions led by an au-
tomatic dialogue system. The dialogue can present explanations and exercises via
speech synthesis and a graphical front-end. All input which is relevant to control the
dialogue, however, must be performed using interactive input methods such as but-
tons and input dialogues since speech recognition accuracy is reduced in the patients.
Such a kind of system could be administered by the speech therapist to a patient in
order to ensure regular exercises. The exercises can then be performed independently
of the therapist. After one or two weeks, the therapist can check whether the patient
did the exercises regularly, and automatic summarization will give him an idea of the
improvement the patient made within the training sessions.

Since PEAKS is also available as an offline version, it is ideal for the screening
of speech. PEAKSlocal allows for the screening in kindergartens, schools, and at
compulsory examinations of children. In this work, mean and standard deviations
for children in school age all over Germany are given. However, for preschool screening
more data of children in kindergarten age are required. Therefore, more data will be
collected in the future. After recording of a whole kindergarten, parents and children
with significantly low recognition rates could be invited to a speech therapist for
further investigations.

Automatic evaluation of speech intelligibility is also interesting for all surgeons
who perform changes to any part of the vocal tract. Currently, the German Cancer
Aid is funding a project to investigate the speech of patient with partial removal of
the larynx. PEAKS is also used in this project. Moreover, the Otolaryngology De-
partment of the University Hospital of Erlangen researches the influence of structural
changes of the nose and the nasal cavity on the intelligibility.

In the Pediatric Psychology Department of the University Hospital Erlangen, a
group of scientists is also working on future applications of medical speech processing.
In one project the reading ability of children is automatically determined. Again, the
automatic speech processing should not replace any therapist but provide a reliable
means of diagnosis. First results indicate that this is also possible. We investigated
a group of children with reading disorders and one without reading disorders and
annotated the number of reading errors manually. Significant correlations of up to
0.8 could be identified.

Investigation of other disorders, like language development disorders, is also in-
teresting. While the feature sets and tests of the current version of PEAKS focus
very much on the pronunciation evaluation, further modifications should allow the
assessment of such language disorders. We suspect that the use of text mining tech-
niques are promising for the analysis of language disorders. Bag-of-words features
and language modeling techniques could be useful in such an automatic analysis.

Children with cochlea implants are able to gain a normal speech development
today. The children understand as much as normal children. However, the implant
reduces the number of tones which can be perceived. Hence, the children often have
problems with the correct use of prosody. Even more difficult is the language ac-
quisition in tonal languages, e.g. Chinese. A mispronunciation of the right tone
might change the meaning of a word or sentence. Application of automatic evalu-
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ation techniques will provide feedback to the patients in order to learn the correct
intonation.

Dementia is a disease which is related to a decline in neural processing ability.
If the brain is not trained regularly, the risk of dementia is even higher. Therefore,
automatic speech processing techniques will be useful to create a training system for
the elderly. Such a system can be integrated into games or puzzles in order to increase
the brain activity and to decrease the risk of dementia. However, the design must be
matched to the user group since too complex systems might reduce the user comfort.
Again, the therapist is not replaced. Instead, such puzzles and games should be
regarded as new tools which are offered to the therapist. These tools might be able
to extend and improve therapy because they offer exercises which can be performed
additionally independent of the therapist.

As additional modalities, several new acquisition devices will be integrated into
PEAKS. Using eye tracking technologies, for example, the visual scope of a patient
can be acquired in a non-invasive manner. Modern eye tracking systems are integrated
into normal LCD displays. Hence, the patient doesn’t even realize that his visual focus
of attention is being recorded. Eye tracking information can support the decoding of
a speech recognizer since the visual focus should preceed the words which are said in
tests like the PLAKSS test. Furthermore, the visual processing is related to reading
disorders. Hence, certain visual perception patterns can be identified in children
whose reading ability is delayed.

Even more challenging will be the automatic evaluation in children with fear
disorders. Presentation of objects the child is afraid of should result in an avoidance
reflex in the visual perception of the child while the speech of the child should express
disgust. Multi-modal analysis of these patterns will bring further insight on this kind
of disorder.

In several projects the use of tele-medical methods for speech therapy is inves-
tigated. First results indicate that such tele-medical therapy is also successful to
extend the normal therapy because the patients can perform additional exercises at
home. In current state-of-the-art systems, the exercises of a patient are recorded and
transmitted to a speech expert. Due to bandwidth reasons, just random segments
of the exercises are transmitted and evaluated perceptively by a speech therapist.
Additional modules of PEAKS, which are still to be implemented, will allow for such
exercises. The therapist could then check whether all administered exercises were per-
formed, and an automatic, statistical summary of the exercises could be presented to
him.

Even the perceptively evaluated tele-medical systems still have a lot of disad-
vantages. Since the camera angle is fixed, the therapist may not move around the
patient in order to investigate breathing and body pose of the patient. Problems in
breathing and a slack body pose might indicate the causes of certain speech disor-
ders. Modern 3-D camera systems will be applied to improve the therapy because
they allow a real-time acquisition of 3-D surface data using time-of-flight technology.
With a color image mapped onto the surface data, the speech therapist can move
around the patient virtually and investigate body pose or breathing of the patient.
Speech therapy can be even more refined if a 3-D display is connected to the system.
Then the therapist has a 3-D impression of the patient which is even more realistic.
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Using the 3-D information and the color image, the movements of the patient will be
automatically analyzed to create a statistical summary of the therapy session. The
geometry of the face, for example, will reveal and measure metrically the type and
extent of a facial paresis which is also important information to the therapist.

All methods presented here are mostly independent of the language. Only a speech
recognition engine of the respective language is required. Therefore, the translation of
PEAKS into different languages is also possible. A Japanese version has already been
created, and versions in English, Portuguese, Dutch, Italian, Czech, and Swedish are
already work in progress. In the future this list will be expanded to more languages.

The application of automatic speech recognition techniques to medical problems is
still a very young field of research. In fact, the first system which was able to assess
the speech intelligibility was designed and developed at the University Erlangen-
Nuremberg in 2006. The chances which lie in this field are overwhelming. And so is
the number of applications and challenges that will be explored in the future.



Chapter 8

Summary

In this work the automatic evaluation of speech of children with cleft lip and palate
was investigated. In the introduction a general definition of language, voice, and
speech disorders was given. Language disorders have their origin right at the begin-
ning of the speech production chain: the brain. Voice disorders appear in the excita-
tion of the voice, i.e., at the vocal folds. Speech of children with CLP often contains
articulation disorders. The disorders are caused by either anatomical changes in the
structure of the vocal tract or — even after adequate treatment — misarticulations
due to changed anatomy during the acquisition of speech.

Chapter 2 described cleft lip and palate in detail. First, the epidemiology, the
embryology, and the functional consequences were reported. 80 % of all orofacial clefts
include CLP. Its prevalence ranges from 1 in 400 to 500 newborns in Asians, 1 in 750 to
900 newborns in Caucasians, and 1 in 1500 to 2000 newborns in African Americans.
The cleftings develop in the human embryo from week 7 to week 10. Functional
consequences concern nutrition, swallowing, breathing, speech disorders, and hearing
loss. The state-of-the-art treatment already begins in the first few hours after the
birth of the child. A palatal obturator is placed in the mouth to close the clefting of
the palate until the child is old enough for primary surgery. The first surgeries take
place between the sixth and 15th month. Speech therapy begins according to the
individual needs of the child. If required, further surgeries are performed between
the 12th and 18th year of the child.

The state-of-the art evaluation of disordered speech was discussed in Chapter 3.
Most evaluation methods rely on the perceptive evaluation of speech. However, all
perceptive evaluation methods lack objectivity. A commonly used method to reduce
subjectivity is the use of a panel of experts. This allows for a inter-rater-confirmed-
subjective-mean-score which is often referred to as “objective”. Next, the state-of-
the-art automatic evaluation methods were described. In the scope of this work,
these methods were referred to as objective. Methods for the objective evaluation
of nasality exist, but they are either invasive, like the Nasometer, or analyze only
sustained vowels or consonant-vowel combinations but not connected speech. The
only non-invasive method to assess speech intelligibility in connected speech was
developed in Erlangen and is based on the evaluation of the speech data using a
speech recognition system.
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In Chapter 4 the system which was developed during this work was described.
The overview on PEAKS stated the fundamental requirements which have to be
fulfilled in order to be applicable in a medical environment. The two use cases
for the system portrayed the tasks which are to be performed by the user and the
administrator of the system. Functional requirements of the system were the eval-
uation of the speech intelligibility of patients, the automatic assessment of certain
aspects of speech, and the visualization of speakers in order to allow their compar-
ison. Non-functional requirements were multi-user support, platform-independency,
security concepts, collaboration concepts, and user comfort.

PEAKS is built as a pattern recognition system. However, it is divided into a
client and a server part. Only recording and presentation of the results is done at the
client. All analyses are performed on the server side. These methods were described
in Chapter 4.2. In order to evaluate the performance of the system and the human
raters, measurements of agreement had to be discussed. The most common measures
for the agreement of two raters are correlation coefficients. Therefore, Pearson’s
correlation, Spearman’s rank correlation, and the Multiple Regression / Correlation
Analysis were described. For correlation coefficients, significance tests are available.
The measurement of agreement for more than two raters is commonly performed
with Kappa and Alpha. Both, however, proved to be inappropriate if the evaluations
result on different scales, e.g. comparisons between human evaluators and a speech
recognition engine.

A major part of this work relied on regression and classification. However, not
all used classifiers could be described in detail. Therefore, Support Vector Machines
and Regression were chosen to be analyzed in detail. Both methods are based on
the use of Support Vectors to model either the hyperplanes which separate the cases
optimally or the regression function, i.e., the model is not determined explicitly. The
model consists of a subset of the training data which is best suited to represent the
model.

Another important point of this work is the reduction of dimensionality. It is on
the one hand important for the reduction of feature spaces before classification and
on the other hand necessary for the visualization in a low-dimensional space. First,
linear methods for the dimensionality reduction were introduced. All linear methods
are based on a matrix multiplication to achieve the reduced dimensionality. The
Principal Components Analysis finds the transformation matrix which projects the
data onto the dimension with the highest variance. The Linear Discriminant Analysis
emphasizes the components which separate the data best. Feature selection can also
be interpreted as a linear dimensionality reduction. Here, the dimensions are kept
unchanged. However, one has to choose a selection criterion. A new method for the
efficient calculation of the Multiple Regression / Correlation was presented. As a
popular method for the non-linear dimension reduction, the Sammon mapping was
explained. Furthermore, an extension of the Sammon mapping to create microphone-
independent maps was introduced.

Speech processing and speech recognition are very important parts in order to
understand PEAKS. Speech recognition was explained from the basics starting from
the common Mel Frequency Cepstrum Coefficients which were used as features in the
PEAKS speech recognition system. Another important method for speaker identifi-
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cation and speech recognition are Gaussian Mixture Models (GMMs). Classification
and training were described in detail. GMMs are also used in the acoustic model-
ing of the speech recognizer. The acoustic models consist of Hidden Markov Models
(HMMs) which are able to model the dynamic properties of speech. In our case the
HMM states are tied with individual weights to a single GMM with 500 output den-
sities. The acoustic model is combined with a statistical language model. During the
recognition procedure, both are used to decode the best, i.e., the most likely, word
chain.

Based on this word chain, more features can be computed from the speech data.
Prosodic features extract pitch and speaking manner from the signal using fundamen-
tal frequency, energy, and duration features. Pronunciation features are computed
from the phone confusion probabilities between the recognized word chain and the
reference word chain. Furthermore, output probability features, as the “Goodness Of
Pronunciation”, and recognition accuracy features are part of the pronunciation fea-
ture set. Moreover, a special feature to detect hypernasality in vowels — the Teager
Energy feature — was described.

In order to compensate the effects of age on speech, adaptation techniques as
Maximum Likelihood Linear Regression, and feature normalization techniques, as
Vocal Tract Length Normalization, were explained.

The Architecture of PEAKS is divided into three blocks. The classes of the client
are used to form the graphical user interface, the perceptive evaluation forms, and
the recording environment. The transport classes handle the secure transmission of
the data and state the transfer objects which hold all relevant information in the
system. The server block offers a gateway to the SQL database to store transfer
objects. Furthermore, the server classes wrap the speech recognition engine and
provide wrapper functions for the decoding of the speech data and feature extraction.

Chapter 5 describes the speech data which were collected during this work. All
children were recorded with the PLAKSS test. The test consists of 99 pictograms
which are shown on 33 slides. Each of the slides tests a specific consonant at the
beginning, in the center, and at the end. The test contains all German phonemes.
A total of 1088 children were recorded during this work. 857 children form a control
group which was recorded in five major cities in Germany.

Already starting from 2002, children with CLP were recorded in the Oral and
Maxillofacial Clinic of the University Hospital Erlangen. Until 2006, 123 children
were recorded. These data had to be transliterated in order to be able to perform
automatic processing. Speech intelligibility was annotated by five speech experts for
31 children of these recordings. A full speech examination by an experienced speech
therapist was done for 26 of these children. Furthermore, 50 data sets of children
from a preschool study were transliterated. Using PEAKS, 189 CLP children were
recorded between early 2006 and 2008. A subset of 35 children was scored with
respect to the intelligibility. Moreover, the nasality of 32 children was evaluated by
two speech therapists.

In Chapter 6 the results obtained with PEAKS were reported. The perceptive
evaluation of the transliterated and non-transliterated data showed good consistency
with correlations between 0.87 and 0.96. Factor analysis of the detailed speech ex-
amination showed three main factors. Two components — the “nasality” and the
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“backing” component — were in high correlation with the perceptual speech intelli-
gibility while the third component — a “lisp” component — was uncorrelated to the
intelligibility. Hence, the automatic evaluation was only performed for the criteria
which were related to the speech intelligibility.

Automatic evaluation of speech intelligibility was first performed with the speech
recognizer only. A correlation between the perceptive evaluation and the recognition
accuracy of up to -0.89 was found on the transliterated data while a correlation of up
to -0.93 was obtained with the fully automatic system. In case of the transliterated
data, further addition of prosodic features could refine the prediction of the experts’
scores. In both cases the evaluations of the automatic systems were in the same range
as the human experts.

The automatic evaluation of the criteria concerning speech intelligibility on frame,
phone, word, and speaker level was also investigated. In order to obtain an optimal
automatic processing, the results of each level were combined using functionals to
form features which are then added to the next level of the assessment procedure.
Due to the sparsity of the misarticulated events, a high recognition rate was found
for all criteria on all levels. The class-wise averaged recognition rate (CL), however,
showed, that the recognition of most criteria was only moderate on frame, phone,
and word level. But these moderate results were combined with more features on
speaker level to yield a robust prediction at an average correlation of 0.82± 0.06.

The fully automatic evaluation of nasality was also performed on frame, phone,
word, and speaker level. Again, the results on frame, phone, and word level were
moderate. The combination on speaker level, however, proved to be as reliable as in
the semi-automatic case. The quality of the automatic system on speaker level was
in the same range as the speech experts with a correlation of 0.81 of the automatic
system and an inter-rater correlation of 0.80 of the human raters.

Visualization of the speech data was also successfully performed. The coordinates
of the projected speakers showed moderate to high correlations with the different
perceptively evaluated criteria. However, the use of more than one microphone for
the projection reduced this dependency. The meaning of the coordinates was re-
stored mostly by the application of the extended Sammon mapping for multiple
microphones.

PEAKS features the first fully automatic system in the world to assess speech
intelligibility and articulation disorders in connected children’s speech as reliable as
human experts. In the future further extensions of PEAKS are planned. These will
concern the refinement of the analyses, the investigation of additional disorders, the
integration of further modalities, and the internationalization of PEAKS.
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Details of the PLAKSS Test

On the following pages, further details on the PLAKSS test [Fox 02] are presented.
The first two sections list the original test design and the target words (cf. Ap-
pendix A.1.1). Since some of the words are ambiguous, the vocabulary was extended
by frequent word alternatives in order to enable their recognition. These are pre-
sented in Appendix A.1.2. Harcourt Test Services approved the use of the PLAKSS
test for the scientific experiments in this work.

Subsequently the forms are presented which were used for the subjective eval-
uation (cf. Appendix A.2). The forms list all target words of the PLAKSS test.
The target phones are underlined. For each word, scores can be given according to
different criteria, like hypernasality, nasal air emission, and laryngealizations. More-
over, the forms for the parental approval of the recording are presented. Details on
the pronunciation scores given by the speech expert on the databases are listed in
Appendix A.4

In the last section of the chapter, some documentary images of the different record-
ing setups are shown.
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A.1 Vocabulary of the PLAKSS Test

A.1.1 Original Vocabulary

Slide 1: Mond Eimer Baum
Slide 2: Ball Gabel Blume
Slide 3: Brief Brille Zebra
Slide 4: Pilz Wippe Korb
Slide 5: Pferd Apfel Topf
Slide 6: Vogel Marienkäfer Schiff
Slide 7: Pflaster Flasche Frosch, Quak
Slide 8: Wurst Löwe Lampe
Slide 9: Teller Ball Nuss
Slide 10: Kanne Telefon Dusche
Slide 11: Feder Rad Drachen
Slide 12: Tasse Auto Bett
Slide 13: Trecker Zitrone Jäger
Slide 14: Milch Eichhörnchen Taucher
Slide 15: Buch Roller Schere
Slide 16: Gießkanne Nagel Berg
Slide 17: Glas Gras, grün Schlange
Slide 18: Kuh Jacke Sack
Slide 19: Kleid Krokodil Knöpfe
Slide 20: Sonne Hase Haus
Slide 21: Zange Katze Pilz
Slide 22: Zwerg Hexe
Slide 23: Schuh Tasche Fisch
Slide 24: Schlüssel Schmetterling Schnecke
Slide 25: Spinne Schrank Schwein
Slide 26: Stuhl Kiste Nest
Slide 27: Spritze Strumpf Rutsche
Slide 28: Anker Bank Punkt
Slide 29: Arzt Bild Hund
Slide 30: Fenster Gespenst Schornstein
Slide 31: Erdbeere Heizung Elefant
Slide 32: springt kaputt Unfall
Slide 33: Tiger Gitarre

Table A.1: Original target words of the PLAKSS test [Fox 02, Bockl 07a]
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A.1.2 Extended Vocabulary

Anker Angel, Haken
Apfel Äpfel
Arzt Ärztin, Doktor, Mann
Auto Auto
Ball Ball, Baum, Rad, Wasserball, Zwiebel
Bank Stuhl
Baum Tannenbaum
Berg Berg, Berge, Burg, Gebirge, Gipfel, Wiese, Zelt
Bett Wiege
Bild Berg, Bilderrahmen
Blume Blumen, Sonnenblume
Brief Bild, Brief, Briefmarke, Briefumschlag, Karte, Post, Postkarte,

Schein
Brille Sonnenbrille
Buch Heft
Drachen Drache, Drachensteigen
Dusche Badewanne, Duschen
Eichhörnchen Einhörnchen, Hörnchen
Erdbeere Beere, Erdbeer, Erdbeeren
Feder Vogel
Fenster Gardinen, Vorhang
Flasche Flaschen, Flaschenpost, Medizin, Saft, Wein
Gabel Rechen
Gespenst Geist, Geister, Gespenster, Mumie
Gießkanne Gießer, Kanne
Glas Glas, Tasse, Weinglas
Gras Wies, Wiese, Rasen
grün grünes
Hase Hasen, Osterhase
Heizung Heizer, Heizkörper
Hexe Hexe, Zauberer
Hund Wauwau
Jacke Anorak, Anzug, Hemd, Mantel, Pulli, Pullover, Rock, T-Shirt
Jäger Hund, Mann
Kanne Flasche, Gießkanne, Kaffee, Kaffeekanne, Tasse, Teekanne, Vase,

Wasser
kaputt Auto, Autos, kaputte, kaputtes, Schrott, Tut
Katze Kater, Katz, Mietzekatze, Tatze
Kiste Karton, Kasten, Kissen, Koffer, Schachtel, Schubfach, Schublade
Kleid Anziehen, Anzug, Hemd, Jacke, Kleidung, Mantel, Pullover, Rock,

T-Shirt

Table A.2: Common word alternatives of the PLAKSS target words (A–Kl)
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Knöpfe Knopf, Knöpf, Knöpfe, Knöpfen
Korb Eimer, Körbchen, Tor
Kuh Ziege
Lampe Glühbirne, Licht, Lichter
Löwe Löwen, Tiger
Marienkäfer Ameise, Junikäfer, Käfer, Maikäfer
Milch Kuh, Melken, Milchkanne, Trinken
Mond Halbmond
Nagel Nadel, Nagen, Nager, Schraube
Nest Eier, Netz, Taube, Vogel, Vogelnest
Nuss Eichel, Haselnuss, Kastanie, Kokosnuss, Nüsse
Pferd Pferdchen, Pony
Pflaster Heftpflaster
Pilz Fliegenpilz, Giftpilz, Pilze
Punkt Ball, Fleck, Kugel, Murmel, Punkt, Stein
Quak quaken
Rad Fahrrad, Reifen
Roller Fahrrad, Karren, Rad, Roller
Rutsche Rumpf, Rutschbahn, Rutschen
Sack Beutel, Jacke, Müll, Rucksack, Sand
Schiff Boot, Pirat, Segelboot
Schlüssel Schlüssel, Schüssel
Schmetterling Marienkäfer, Schmetterling
Schnecke Schneck, Schnelle, Versteck
Schornstein Brief, Dach, Haus, Kamin, Ofen, Rauch, Schlot, Stein
Schrank Kleiderschrank
Schuh Schuhe, Stiefel
Schwein Schein, Schweinchen, Wildschwein
Sonne Sonnen
Spinne Spinnen, Spinnennetz
springt hüpfen, Hüpfseil, hüpft, Kind, Mensch, Seil, Seilhüpfen, Seilsprin-

gen, Seilspringer, seilspringt, spielt, Springe, springen, Springseil,
Springseile, Sprung

Spritze Spitze, Spitzer
Strumpf Schuh, Socke, Socken, Stoff, Strümpfe, Strumpfhose

Table A.3: Common word alternatives of the PLAKSS target words (Kn–S)
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Tasche Geldbeutel, Handtasche
Tasse Becher, Glas, Kaffeetasse, Kanne, Tee
Taucher Mann, Mensch, Schwimmen, Schwimmer, tauchen, taucht, Wasser,

Wassermann
Teller Besteck, Gedeck, Messer
Tiger Leopard, Löwe, Tier, Tiger
Topf Kochtopf, Pfanne
Trecker Bagger, Bulldock, Bulldog, Laster, Motor, Traktor
Unfall Auto, Autos, Autounfall, Autozusammenstoss, Crash, Notfall,

Strasse, überfahren, Verkehr, Zusammengestossen, Zusammenstoss
Vogel Rabe, Vogel, Vögel
Wippe Schaukel, Wippen
Wurst Fleisch, Fleischwurst, Salami, Würstchen
Zange Gabel, Kanne, Knacker, Nagel
Zebra Esel, Zebras
Zitrone Zitronen
Zwerg Baby, Kasper, Kind, kleines Männchen, Männchen, Männlein,

Sandmann, Wichtel, Zauberer

Table A.4: Common word alternatives of the PLAKSS target words (T-Z)
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A.2 Forms for the Subjective Assessment of the PLAKSS
Test

Auswertungsbogen für den PLAKSS-Test 1

Datum: Patienten-ID:

Nr. Wörter Hyper- nasale Rückverlagerung Palata- abgesch. Latera- Inter- Kommentar
nasalität Durchschl. laryng. Ers. pharyngeal lisierung Tension lität dentalität

1 Mond
2 Eimer
3 Baum
4 Ball
5 Gabel
6 Blume
7 Brief
8 Brille
9 Zebra

10 Pilz
11 Wippe
12 Korb
13 Pferd
14 Apfel
15 Topf
16 Vogel
17 Marienkäfer
18 Schiff
19 Pflaster
20 Flasche
21 Frosch
22 Quak
23 Wurst
24 Löwe
25 Lampe
26 Teller
27 Ball
28 Nuss

Figure A.1: Form used for the assessment of the PLAKSS test (page 1)
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2 Auswertungsbogen für den PLAKSS-Test

Nr. Wörter Hyper- nasale Rückverlagerung Palata- abgesch. Latera- Inter- Kommentar
nasalität Durchschl. laryng. Ers. pharyngeal lisierung Tension lität dentalität

29 Kanne
30 Telephon
31 Dusche
32 Feder
33 Rad
34 Drachen
35 Tasse
36 Auto
37 Bett
38 Trecker
39 Zitrone
40 Jäger
41 Milch
42 Eichhörnchen
43 Taucher
44 Buch
45 Roller
46 Schere
47 Gießkanne
48 Nagel
49 Berg
50 Glas
51 Gras
52 Grün
53 Schlange
55 Kuh
56 Jacke
57 Sack
58 Kleid
59 Krokodil
60 Knöpfe

Figure A.2: Form used for the assessment of the PLAKSS test (page 2)

Auswertungsbogen für den PLAKSS-Test 3

Nr. Wörter Hyper- nasale Rückverlagerung Palata- abgesch. Latera- Inter- Kommentar
nasalität Durchschl. laryng. Ers. pharyngeal lisierung Tension lität dentalität

61 Sonne
62 Hase
63 Haus
64 Zange
65 Katze
66 Pilz
67 Zwerg
68 Hexe
69 Schuh
70 Tasche
71 Fisch
72 Schlüssel
73 Schmetterling
74 Schnecke
75 Spinne
76 Schrank
77 Schwein
78 Stuhl
79 Kiste
80 Nest
81 Spritze
82 Strumpf
83 Rutsche
84 Anker
85 Bank
86 Punkt
87 Arzt
88 Bild
89 Hund
90 Fenster
91 Gespenst

Figure A.3: Form used for the assessment of the PLAKSS test (page 3)
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4 Auswertungsbogen für den PLAKSS-Test

Nr. Wörter Hyper- nasale Rückverlagerung Palata- abgesch. Latera- Inter- Kommentar
nasalität Durchschl. laryng. Ers. pharyngeal lisierung Tension lität dentalität

92 Schornstein
93 Erdbeere
94 Heizung
95 Elefant
96 Springt
97 Kaputt
98 Unfall
99 Tiger

100 Gitarre

Gesamtbewertung
Hyper- nasale Rückverlagerung Palata- abgesch. Latera- Inter-

nasalität Durchschl. laryng. Ers. pharyngeal lisierung Tension lität dentalität
Note

Figure A.4: Form used for the assessment of the PLAKSS test (page 4)

Figure A.5: Form for the parental approval to the recording (cf. Chapter 5.2)
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A.3 Screenshots of the Subjective Evaluation Soft-
ware

Figure A.6: Panel used for the subjective assessment of speech intelligibility (cf.
Chapter 6.2)
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Figure A.7: Panel used for the subjective assessment of individual phones (cf. Chap-
ter 6.2). Phones are denoted in SAMPA annotation while additional sounds which
appear only in speech of children with CLP are denoted with diacritics. “~” denotes
a realization with enhanced nasal air emission while “?” marks a glottal realization.
“|?|” is a complete laryngeal realization similar to a glottal stop.
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A.4 Subjective Annotation of the Data

A.4.1 Intelligibility Scores

patient ID rater B rater K rater L rater S rater W
w010000s01 2.83 2.69 2.69 1.62 3.41
w010001f01 4.59 4.68 4.68 4.33 4.90
w010004f01 1.38 2.00 2.00 1.16 1.72
w010005f01 1.70 1.82 1.82 1.32 1.90
w010007f01 3.07 3.22 3.22 2.25 3.32
w010009f01 2.55 3.18 3.18 2.12 3.08
w010014f01 2.59 2.16 2.16 1.90 1.92
w010022f01 4.30 3.93 3.93 3.82 4.61
w010024f01 2.60 2.99 2.99 2.42 3.04
m010002f01 3.07 3.54 3.54 2.28 2.57
m010003f01 3.52 3.21 3.21 1.92 3.12
m010006f01 3.70 3.46 3.46 2.86 3.97
m010008f01 1.66 1.88 1.88 1.29 1.66
m010010f01 3.36 3.64 3.64 2.83 3.52
m010011f01 2.30 3.15 3.15 1.71 2.85
m010012f01 4.71 4.92 4.92 4.73 4.87
m010013f01 3.29 3.55 3.55 2.32 3.24
m010015f01 4.58 4.89 4.89 4.45 4.88
m010016f01 2.41 2.98 2.98 1.24 2.76
m010017f01 4.37 3.55 3.55 3.08 4.27
m010018f01 2.67 2.39 2.39 1.28 2.33
m010019f01 2.82 2.79 2.79 1.62 2.56
m010020f01 2.88 2.80 2.80 1.74 2.64
m010021f01 2.41 2.84 2.84 1.87 2.60
m010023f01 1.53 2.47 2.47 1.62 1.68
m010025f01 2.93 3.14 3.14 2.21 2.90
m010027f01 2.36 2.00 2.00 1.50 2.27
m010028f01 1.80 1.43 1.43 1.42 2.12
m010029f01 1.84 1.96 1.96 1.14 2.62
m010030f01 1.45 1.49 1.49 1.16 2.04
m010031f01 1.61 1.60 1.60 1.19 1.67

Table A.5: Experts’ scores of the patients in the CLP-Intel database
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patient ID rater M rater L rater S rater W
20000 2.23 2.23 2.00 2.87
20001 1.93 2.40 2.25 3.64
20002 1.00 1.33 1.55 2.30
20003 4.50 4.92 4.64 4.89
20004 2.30 2.80 2.30 2.61
20005 1.67 2.15 2.33 2.39
20006 4.86 4.67 4.56 4.95
20007 3.33 3.80 4.12 4.12
20008 3.00 3.46 3.17 2.94
20009 1.50 2.46 2.11 1.42
20010 1.00 1.31 1.83 1.00
20011 1.15 1.08 1.88 1.07
20012 2.00 2.42 2.32 1.83
20013 1.43 1.00 1.28 1.55
20014 2.09 2.42 2.55 2.76
20015 1.38 1.42 1.72 1.55
20016 1.44 1.33 1.45 1.61
20017 4.12 3.27 2.72 3.18
20018 1.54 1.50 2.06 1.88
20019 1.25 1.17 1.48 1.34
20020 1.47 1.08 1.54 1.19
20021 2.47 2.15 2.65 2.86
20022 1.07 1.00 1.64 1.12
20023 2.30 2.33 2.58 2.64
20025 3.26 2.85 3.52 3.94
20026 1.36 1.17 1.55 1.24
20027 3.38 3.36 3.22 4.06
20028 1.93 1.50 1.78 2.13
20029 3.06 1.33 2.37 2.36
20030 1.40 1.25 2.12 3.24
20031 4.56 4.91 4.84 5.00
20032 3.00 2.64 2.48 3.58
20033 1.39 1.68 1.83 2.30
20034 2.46 3.09 2.70 3.23
20035 2.39 1.19 2.14 2.55

Table A.6: Experts’ scores of the patients in the CLP-Intel2 database
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A.4.2 Pronunciation Assessment

patient ID HN NC LR PB WP IN LA
∑

w010000s01 0 0 0 0 0 0 0 0
w010001f01 0 56 20 12 14 1 1 104
w010004f01 0 19 0 1 0 16 12 48
w010005f01 0 0 0 0 0 0 0 0
w010007f01 0 9 0 0 3 1 6 19
m010002f01 0 0 0 0 0 15 6 21
m010003f01 0 28 0 0 0 0 0 28
m010006f01 0 0 0 0 0 0 24 24
m010008f01 0 0 0 0 0 0 0 0
m010010f01 1 32 0 0 0 12 0 45
m010011f01 0 0 0 6 0 0 0 6
m010012f01 0 30 9 6 9 0 8 62
m010013f01 15 44 0 0 3 0 14 76
m010015f01 25 37 0 0 26 1 1 90
m010016f01 0 0 0 0 0 0 0 0
m010017f01 9 23 2 4 8 0 36 82
m010018f01 0 0 0 0 3 0 0 3
m010019f01 0 41 0 0 4 0 3 48
m010020f01 0 8 0 0 12 35 0 55
m010021f01 0 0 0 1 4 1 39 45
m010023f01 0 5 0 0 0 20 1 26
m010025f01 0 0 0 2 3 0 22 27
m010028f01 0 0 0 1 0 0 19 20
m010029f01 0 0 0 0 17 0 0 17
m010030f01 0 0 0 0 0 0 0 0
m010031f01 0 0 0 0 0 4 0 4∑

50 332 31 50 106 106 192 867

Table A.7: Pronunciation assessment on the CLP-Intel database
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Figure A.8: Scree plot of the eigenvalues obtained by factor analysis on CLP-Intel
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A.5 Documentary Images of the Recording Environ-
ment

Figure A.9: Original recording environment used in 2006 for the recording of the first
control group in a school in Erlangen
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Figure A.10: Original recording environment used in 2006 (detail view)
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Figure A.11: Simplified recording environment used in 2007
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