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This work describes a novel methodology to characterize voice diseases by using nonlinear dynamics, 

considering different complexity measures that are mainly based on the analysis of the time delay em- 

bedded space. The feature space is represented with a DHMM and a further transformation of the DHMM 

states to a hyperdimensional space is performed. The discrimination between healthy and pathological 

speech signals is peformed by using a RBF-SVM which is trained following a K-fold cross-validation strat- 

egy. Results of around 99% of accuracy are obtained for three different voice disorders, disphonia due to 

laryngeal pathologies, hypernasality due to cleft lip and palate, and dysarthria due to Parkinson’s disease. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Most of the methods used by the medical community to eval-

uate and diagnose speech pathologies are either invasive ones,

which require direct inspection of vocal folds (using laryngoscop-

ical techniques such as fiberscope), or subjective ones in which

voice quality is evaluated hearing the patient’s speech, i.e. GR-

BAS and RBH methods ( Hirano, 1981 ). Too, Voice Handicap Index

(VHI) is another subjective method to analysis the voice quality

( Jacobson et al., 1997 ). These techniques require trained expert

doctors. The use of voice quality measures obtained from speech

recordings allows to quantify voice quality and to follow the evo-

lution of the patient. These measures are non-invasive, quick, au-

tomatic, and can improve classical techniques used in medicine. 

In the last decades, several studies have provided objective

measures of voice quality. The measures can be obtained from

the voice signal in time, spectral or cepstral domains. There

are many different measures used to evaluate the quality of
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peech and the most common in the literature include: fun-

amental frequency ( Boyanov, Hadjitodorov, Teston, & Doskov,

997 ), temporal variation of the fundamental frequency (jitter)

 Demirhan, Unsal, Yilmaz, & Ertan, 2016; Kasuya, Endo, & Saliu,

993 ), amplitude variation of the fundamental frequency (shim-

er) ( Demirhan et al., 2016; Kasuya et al., 1993 ), harmonics to

oise ratio (HNR) ( Yumoto, Gould, & Baer, 1982 ), low to high en-

rgy ratio (LHR) ( Yunik & Boyanov, 1990 ), normalized noise energy

NNE) ( Kasuya, Ogawa, Mashima, & Ebihara, 1986 ), glottal to noise

xcitation ratio (GNE) ( Frohlich, Michaelis, & Strube, 1998 ), dy-

amic time warping and Itakura-Saito distorsion measure ( Gu, Har-

is, Shrivastav, & Sapienza, 2005 ), among others. Using combina-

ions of these measures, laryngeal pathologies detection systems

ave been developed obtaining different accuracies in the classi-

cation between healthy and pathological voices: 93.5% ( Boyanov

 Hadjitodorov, 1997 ), 85.8% ( Wallen & Hansen, 1996 ), 75.2%

 Uloza, Padervinskis, Uloziene, Saferis, & Verikas, 2015 ), 96.1%

 Hadjitodorov & Mitev, 2002 ). It is not possible to compare the

erformance of these systems since most of them have been eval-

ated using different databases, moreover as reported in Saenz-

echon, Godino-Llorente, Osma-Ruiz, and Gomez-Vilda (2006) , the

valuation of the results is far from being robust and comparable. 
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Nevertheless, most of the measures considered in the literature

o not take into account nonlinearity in speech, although there

re studies demonstrating that vocal fold vibration is highly in-

uenced by nonlinearity in tissue and air movement ( Titze, 1995 ).

ther nonlinear phenomena that explain nonlinearty in pathologi-

al speech signals include abnormal vocal fold collision, increased

ressure-flow in the glottis, and stress-strain curves of vocal fold

issue ( Herzel, Berry, Titze, & Saleh, 1994 ). More evidence of non-

inear behavior of speech production can be found in Jiang, Zhang,

nd Stern (2001), Teager and Teager (1990) and Robertson, Zañartu,

nd Cook (2016) . 

Recent works consider this approach in order to reveal mea-

ures able to discriminate between healthy and pathological voices.

xamples of this approach are based on high order statistics

HOS) ( Steinecke & Herzel, 1995 ), AM-FM modeling of speech

ignal ( Alonso, De Leon, Alonso, & Ferrer, 2001 ), and nonlinear

perators ( Wang, Yu, Yan, Wang, & Ng, 2016 .; Little, McSharry,

oberts, Costello, & Moroz, 2007; Vaiciukynas, Verikas, Gelzinis,

acauskiene, Minelga, & Hållander, 2015 ) . 

Chaos theory, an area of nonlinear dynamics systems theory,

pplied to time series has been adopted as a new nonlinear ap-

roach to speech signal processing. The application of nonlinear

echniques in speech signal processing so far are based on model-

ng or extraction of characteristics based on chaotic systems or/and

ith chaotical behaviour of dynamical systems (Lyapunov expo-

ents, correlation dimension, etc.). The main chaotic characteris-

ics studied are the Lyapunov exponents ( Cairns, Hansen, & Kaiser,

996; Chaitra, Mohan, & Dutt, 2013; Huang, Zhang, Calawerts, &

iang, 2016 ) and dimensions of attractor, especially the correla-

ion dimension. The correlation dimension has shown its capa-

ility to discriminate between healthy and pathological speech

ignals ( Cairns, Hansen, & Kaiser, 1996; Calawerts, Lin, Sprott,

 Jiang, 2016; Yu, Ouaknine, Revis, & Giovanni, 2001; Zhang &

iang, 2003 ), and even distinguishing among different types of

athologies such as ataxic dysarthia and hyperkinetic extrapyrami-

al dysarthia ( Calawerts et al., 2016 ). 

In this work, three different databases are used to evaluate the

peech of people with three different voice disorders: hypernasal-

ty due to cleft lip and palate (CLP), dysphonia due to organic dis-

ases, i.e., laryngeal pathologies (LP), and dysarthria due to Parkin-

on’s disease (PD). 

The automatic detection of hypernasality started approximately

n 1994, when Cairns, Hansen, and Riski (1994) proposed a char-

cterization technique based on the Teager Energy Operator (TEO)

nd reported accuracies of about 98.8% considering 11 healthy and

1 simulated hypernasal speech recordings. The technique was also

pplied on consonant-vowel-consonant (CVC) words (hypernasal

peech signals were also simulated) and the reported accuracy was

bout 93% ( Cairns, Hansen, & Riski, 1996 ). Later, Vijayalakshmi and

eddy (2005) used the modified group delay functions to de-

ect hypernasality in speech. The authors evaluated the speech

rom children with non-repaired CLP and reported accuracies of

00%, 88.7% and 86.66% for the Indian vowels /a/, /i/ and /u/, re-

pectively. In Orozco-Arroyave, Arias-Londono, Vargas-Bonilla, and

öth (2013) , the authors worked with the five Spanish vowels

nd with the words / coco/ and / gato/, and applied four nonlinear

ynamics features to characterize hypernasal speech signals. The

atabase used by the authors included recordings from 54 healthy

hildren and 65 with repaired cleft lip and palate whose voice was

abeled as hypernasal by a phoniatric expert. The set of nonlinear

ynamics features considered by the authors included the largest

yapunov exponent ( LLE ), Hurst exponent ( H ), Lempel-Ziv complex-

ty ( LZC ), and correlation dimension ( CD ). The reported accuracies

re around 92% for the Spanish vowels and 89% for the words. 

The automatic detection of dysphonic speech signals using

onlinear dynamics techniques has been addressed in sustained
owels and in continuous speech. In Henríquez, Alonso, Ferrer,

ravieso, Godino-Llorente, and Díaz-de-María (2009) , sustained

honations of the vowel /a/ were evaluated using six nonlinear

ynamics features including first minimum of the mutual infor-

ation (FMMI), CD , first-order Renyi block entropy, second-order

enyi block entropy and Shannon entropy. The experiments pre-

ented by the authors were carried out on the Massachusetts Eye

 Ear Infirmary (MEEI) database ( KayPENTAX, 2005 ) and the re-

orted accuracy was around 99.69%. With the same database,

aziri, Almasganj, and Behroozmand (2010) reported accuracies

f about 94.44% when both, the sustained vowel /a/ and con-

inuous speech signals were evaluated using the CD . Addition-

lly, in Arias-Londoño, Godino-Llorente, Sáenz-Lechón, Osma-Ruiz, 

nd Castellanos-Domínguez (2010) nonlinear dynamics features

nd acoustics measures were merged to characterize a subset

f the sustained phonations of the MEEI database ( Parsa and

amieson, 20 0 0 ). The reported accuracy in the automatic classi-

cation of phonations from healthy and pathologic speakers was

8.23%. Further, in Godino-Llorente, Fraile, Sáenz-Lechón, Osma-

uiz, and Gómez-Vilda (2009) the authors used the mel-frequency

epstral coefficients along with three noise measures to character-

ze continuous speech signals that are included in the same subset

f the MEEI database described in Parsa and Jamieson (20 0 0) . The

uthors reported accuracies of 96.3% using a multi-layer perceptron

eural network to decide whether a signal belongs to a healthy or

athologic speaker. Thereafter, in Orozco et al. (2012) , CD, H, LLE ,

nd LZC were considered to characterize continuous speech sig-

als of the same subset of the MEEI database. The reported accu-

acy was 98.21% in the automatic classification of pathologic and

ealthy speech signals. 

For the case of speech of people with Parkinson’s disease (PD),

onlinear characterization is an emerging topic that has captured

he attention of many researchers around the world. In Tsanas, Lit-

le, McSharry, and Ramig (2010) the authors used four nonlinear

ynamics features along with 13 acoustic measures for the auto-

atic detection of PD. The set of nonlinear features included CD ,

ecurrence period density entropy ( RPDE ), detrended fluctuation

nalysis ( DFA ) and pitch period entropy ( PPE ). The database used

n the work includes sustained phonations of the English vowel

ah/, repeated six times by 31 patients with PD and 8 healthy

ontrols (HC). The reported accuracy was 91.4%; however, it is im-

ortant to highlight that the authors were not aware of the speaker

ndependence in their experiments, thus their results are a little bit

ptimistic . When recordings of the same speaker are included in

raining and test it allows the system to “know” several charac-

eristics of the target speaker before evaluating his/her condition.

or instance, in the speaker verification field it is well known that

he mel-frequency cepstral coefficients (MFCCs) describe particular

haracteristics of the speaker, thus if those features are included

n train and in test, the decision of the system will be very bi-

sed. A similar problem with other features happens in pathologi-

al speech assessment. 

Further, the discriminant capability of different nonlinear fea-

ures to classify between speech of people with PD and HC

as studied in Orozco-Arroyave, Vargas-Bonilla et al. (2013) . The

uthors performed automatic classification of sustained phona-

ions of the five Spanish vowels uttered by 20 speakers with

D and 20 HC and reported accuracies of up to 76%. Another

tudy focused on the detection of Parkinson’s disease is pre-

ented in Orozco-Arroyave, Hönig, Arias-Londoño, Vargas-Bonilla,

nd Nöth (2015) where the authors introduce a methodology based

n the spectral and ceptral modeling of sustained vowels and

ords uttered by patients with Parkinson’s patients. The authors

eport accuracies of up to 79% when combining all the measures

nd the five Spanish vowels. For the case of isolated words, the ac-

uracies range between 74% and 87% depending on the word. The
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database used in that study is the same as the database used in

this paper; the only difference is that here we are not considering

the isolated words. 

Further to the reviewed literature, there is a recent study con-

sidering linear and nonlinear techniques to model different speech

pathologies, ( Orozco-Arroyave, Belalcázar-Bolaños et al., 2015 ). In

that study, the authors modeled sustained vowel phonations, iso-

lated words, and continuous speech signals (depending on the

database). They considered speech recordings from three different

pathologies: Parkinson’s disease, laryngeal cancer, and cleft lip and

palate. The recordings were modeled, among others, with nonlin-

ear dynamics features extracted from the time-series. The record-

ings for studying laringeal pathologies consisted of sustained vowel

phonations and when the nonlinear measures were used, the ac-

curacy is between 72% and 78% depending on the analyzed vowel.

For the case of hypernaslity detection, the authors used recordings

of the Spanish vowels and report accuracies of up to 97% also us-

ing the nonlinear features. For the automatic detection of Parkin-

son’s disease, the authors use nonlinear features and considered

also sustained phonations of the Spanish vowels and reported ac-

curacies ranging from 72% to 79% depending on the vowel. 

The reviewed literature indicates that there are two aspects that

are not covered in the literature so far: (1) the modeling of sus-

tained phonations in Parkinson’s disease using nonlinear features

needs more work because the obtained accuracies discriminating

between Parkinson’s disease vs. heatlhy controls are below 90%,

and (2) the use of nonlinear features to model pathological speech

signals is still an open problem because the obtained accuracies

are not in the same range of other state of the art methods like

those based on the stability measures or the spectral-ceptral mod-

eling. 

The advances of expert systems allow automatize many appli-

cations, and too, it has been applied to the analysis of the voice.

The sequential character of the voice has defined the type of ex-

pert systems applied and developed. Among them Dynamic Time

Warping (DTW), Hidden Markov Models (HMM), Support Vector

Machines (SVM), Gaussian Mixture Model (GMM), Artificial Neu-

ral Networks (ANN) are was and is very method, and later, Hidden

Markov Models (HMM) were applied for the decision-making task

of a human expert. Due to the a characteristic of complexity of

the voice signal, the use of expert systems facilitates the different

analysis of the voice. 

The aim of this paper is to present a new methodology, for

the automatic detection of pathological speech signals. The pro-

posed approach is based on the methods presented in Orozco-

rroyave, Belalcázar-Bolaños et al. (2015) and includes a modifi-

cation with a further transformation of the extracted features. The

method is based on three stages, the first comprises the charac-

terization of the speech recordings using a set of 10 nonlinear dy-

namics features, the second is the transformation of the feature

space using a Discrete Hidden Markov Model (DHMM), and the

third is the classification between healthy and pathological speech

signals using a support vector machine (SVM). During the second

stage of the proposed methodology, a kernel is built to improve

the accuracy of the SVM. The robustness of this method is tested

using three different databases, with different utterances and with

speech recordings of three different diseases. A direct comparison,

using the same feature sets, is performed by doing direct classi-

fication (without any further transformation of the feature space)

using a radial basis function – SVM (RBF-SVM). According to the

results, the proposed approach improves the baselines in all of the

cases, indicating that the HMM-based transformation is suitable to

perform the automatic detection of several voice diseases. 

The rest of the paper is organized as follows: Section 2 de-

scribes the nonlinear parameterization. Section 3 , includes details

of the proposed transformation and the classification process. In
ection 4 the databases and the experimental setting are described.

n Section 5 , the experiments, results, and discussions are pre-

ented. Finally, the conclusions derived from this work are pre-

ented in Section 6 . 

. Nonlinear parameterization 

The presence of nonlinearities in the vocal fold vibration was

emonstrated in Titze, Baken, and Herzel (1993) . Additionally, in

itze (1995) the authors performed a classification of voice sig-

als according to their “level of periodicity”. Depending on the

oice impairment, this characterization is directly related to dif-

erent phenomena in speech production like nonlinear pressure-

ow in the glottis, nonlinear stress-strain of vocal fold tissues, and

onlinearities associated with vocal fold collision Jiang, Zhang, and

cGilligan (2006) . For instance, laryngeal pathologies produce ab-

ormal vocal fold vibration, cleft lip and palate produces abnormal

esonances in the vocal tract and problems in the movement of

he velum, and Parkinson’s disease produces problems to control

ost of the limbs and muscles involved in the speech production

rocess, e.g., tongue, jaw, vocal folds, and velum. 

The nonlinear parameterization is based on the reconstruction

f the phase space, which describes topological features of the dy-

amics of the system that produces the speech signal, i.e., vocal

ract. It is generated following the embedding process that con-

ists of representing the solutions of the differential equations that

escribe the dynamics of the system in the phase space. The tra-

ectories of such a representation form different figures called at-

ractors . However, in real life the equations that describe real phe-

omena are unknown, thus the trajectories of the attractors have

o be reconstructed following an indirect procedure based on the

mbedding theorem proposed by Takens (1981) . It allows the recon-

truction of diffeomorphic attractors, i.e., those that hold topologi-

al properties of the dynamical system. The set of points that form

he attractor is given by S[ k ] = { x [ k ] , x [ k + τ ] , x [ k + 2 τ, . . . , x [ k +
( ϑ − 1 ) τ ] } , where k = 1 , 2 , . . . , l and l = N − ( ϑ − 1 ) τ , N is the

umber of points in the voice signal, ϑ is the dimension of the

mbedding space and τ is the time delay that guarantees the min-

mum correlation among the sate variables. The dimension ϑ is es-

imated following the false neighbors method ( Kennel, Brown, &

barbanel, 1992 ) and τ is calculated with the FMMI method de-

cribed in Fraser and Swinney (1986) . 

The set of nonlinear measures considered in this paper allow

uantifying morphological features of the reconstructed attractors,

.e., how jumbled the trajectories are. According to Titze (1995) ,

oice signals can be grouped according to their degree of impair-

ent and such a grouping can be modeled through nonlinear anal-

ses, thus the more impaired the voice, the more jumbled the tra-

ectories of its reconstructed attractor. Fig 1 illustrates this idea

howing a sustained phonation uttered by a healthy speaker and

ts corresponding attractor (left side) and a sustained phonation

ttered by a Parkinson’s patient and its corresponding attractor

right side). 

In this paper, a set of ten nonlinear dynamics measures are cal-

ulated: four nonlinear dynamics features and six entropy mea-

ures. The set of nonlinear dynamics features includes CD, LLE, H ,

nd LZC . The set of entropy measures includes approximate en-

ropy ( A E ), Gaussian kernel entropy ( GA E ), sample entropy ( S E ),

aussian kernel sample entropy ( GS E ), RPDE , and DFA . Further de-

ails of the process to calculate these features are included in the

ext subsections. 

.1. Nonlinear dynamics features 

Correlation dimension (CD): it is a measure of the space di-

ensionality occupied by the points in the reconstructed state
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Fig. 1. Time series and the estimated attractors for health speaker (HC) and for Parkinson patient (PD). 
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pace (attractor). CD is estimated according to the Takens’ method

 Takens, 1981 ). The process requires to calculate the correlation

um ( C ( r )) as in Eq. (1) . C ( r ) is the number of possible pair of points

loser than a given distance r in a particular norm, and it can be

nterpreted as the probability of having pairs of points inside a

phere of radius r that is moving along to the trajectories of the

ttractor. 

 ( r ) = 

N ∑ 

i =1 

C m 

i ( r ) (1) 

here: 

 

m 

i ( r ) = 

2 

N ( N − 1 ) 

N ∑ 

j= i +1 

�
(
r −

∥∥−→ 

x i − −→ 

x j 
∥∥)

(2) 

N is the number of points in the state space, � is the Heavi-

ide function, m is the dimension of the embedded space and ‖ ·
 illustrates the norm defined in any consistent metric space. 

CD is defined in Eq. (3) for an infinity amount of data ( N → ∞ )

nd for small values of r . 

D = lim 

r→ 0 

∂ ln C ( r ) 

∂ ln ( r ) 
(3) 

According to Abarbanel (2012) , a proper estimation of CD must

uarantee that the embedding dimension complies the expres-

ion m = 2 CD + 1 . 

Largest Lyapunov Exponent (LLE): this feature represents the av-

rage divergence rate of neighbor trajectories in the state space.

he Lyapunov spectrum reflects the sensitivity of the system to

he initial conditions. When a system has at least one positive Lya-

unov exponent the trajectories will diverge exponentially. LLE in-

icates whether the divergence exists. 

The divergence rate of neighbor trajectories in the state

pace is calculated according to the Rosenstein’s method

 Rosenstein, Collins, & De Luca, 1993 ). In this algorithm the

earest neighbors to every point in the trajectories must be

stimated. A neighbor must fulfill a temporal separation greater

han the “period” of the time series to be considered as a nearest

eighbor. It can be stated that the separation of points in a trajec-

ory can be described by the expression d(t) = C e λ1 t , where λ is
1 
he LLE, d ( t ) is the average divergence taken at the time t , and C is

 constant. 

If we assume that the j − th pair of nearest neighbors approxi-

ately diverge at a rate of λ1 , it is possible to obtain ln ( d j (i ) ) =
n ( C j ) + λ1 ( i �t ) , where λ1 is the slope of the average line that

ppears when such expression is drawn on a logarithmic plane

 Kantz & Schreiber, 2004 ). 

Hurst Exponent (H): this parameter allows the analysis of long

erm dynamics of a dynamical system, stating the possible long

erm dependencies of different elements in a given time series. 

The estimation of H from a time series x ( n ) with n =
 , 2 , ..., N, is based on the rank scaling method proposed in

urst, Black, and Simaika (1965) . The authors demonstrated that

he relation between the variation rank of the signal ( R ), evaluated

n a segment, and the standard deviation of the signal ( S ) is given

y R 
S = c T H , where c is a scaling constant, T is the duration of the

egment and H is the Hurst exponent. A value of H = 0 . 5 indicates

 completely uncorrelated series (Brownian time series), meaning

hat there is no correlation between current and future points in

he time series. A value of H in the range 0 < H < 0.5 indicates an

anti-persistent behavior”, which means that the trend of the time

eries will be the opposite of the current. 

On the other hand, a value of H in the range 0.5 < H < 1 indi-

ates positive auto-correlation, i.e. the trend of the time series will

emain. 

Lempel-Ziv Complexity (LZC): the process to calculate this feature

onsists on finding the number of different “patterns” present in a

iven sequence. The algorithm only considers binary strings, thus

or the practical case of speech signals, it is necessary to assign the

alue of 0 when the difference between two successive samples is

egative, and 1 when the difference is positive or null. The esti-

ation of LZC is based on the reconstruction of a sequence X by

eans of the copying and insertion of symbols in a new sequence.

The binary sequence X = x 1 , x 2 , . . . , x n is analyzed from left to

ight, the first bit of the string is taken by default as the initial

oint. The variable S is defined to store the bits that have been

nserted, i.e. at the beginning S only has x 1 . The variable Q is de-

ned to accumulate the bits that have been analyzed from left to

ight in the bit stream. On each iteration, the union of S and Q (de-
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noted by SQ ) is performed. When the sequence Q does not belong

to the string SQ π , which is the result of eliminating the last bit in

the stream SQ , the insertion of the bits in the subset of symbols

finishes. The value of LZC will be the number of subsets used to

represent the original signal ( Kaspar & Schuster, 1987 ). 

2.2. Entropy measures 

Approximate entropy (A E ): entropy can measure the uncertainty

of a random variable and the most common definition is the Shan-

non’s entropy, which is expressed as 

H ( X ) = −
∑ 

x ∈ χ
p ( x ) log p ( x ) (4)

Where X is a random variable with alphabet χ and its probability

mass function is p ( x ). 

One stochastic process with a set of independent, but not iden-

tically distributed variables has joint entropy with growing rate

that depends on the number of variables n and is given by: 

H ( X ) = − lim 

n →∞ 

1 

n 

n ∑ 

i =1 

H ( X i ) (5)

For state spaces (attractors), their trajectories can be partitioned

into hypercubes of volume εm (in an n-dimensional space) and ob-

served at time intervals δ, defining the Kolmogorov-Sinai entropy

( H KS ) as Costa, Goldberger, and Peng (2005) : 

H KS = − lim 

δ → 0 

ε → 0 

n → ∞ 

1 

nδ

∑ 

k 1 , ... , k n 

p ( k 1 , . . . , k n ) log p ( k 1 , . . . , k n ) (6)

Where p( k 1 , . . . , k n ) is the joint probability of the state of the sys-

tem to be in the hypercube k 1 at the time t = δ, in the hypercube

k 2 at the time t = 2 δ, etc. 

For stationary processes, it can be shown that H KS =
lim 

δ→ 0 
lim 

ε→ 0 
lim 

n →∞ 

( H n +1 − H n ) , where H n +1 = − lim 

n →∞ 

1 
n +1 

∑ n +1 
i =1 H( X i )

and H n = H(X ) . 

Note that it is not possible to compute entropy for n → ∞ ;

however, there are alternative methods to approximate H KS , one

of them is called approximate entropy ( A E ), which is conceived to

measure the average conditional information generated by diverg-

ing points on a trajectory in the state space ( Costa et al., 2005 ). For

fixed values of m and r, A E is estimated as 

A E ( m, r ) = lim 

N→∞ 

[
φm +1 ( r ) − φm ( r ) 

]
(7)

Where φm (r) = 

1 
N−m +1 

∑ N−m +1 
i =1 ln C m 

i 
(r) , and C m 

i 
(r) is defined in

Eq. (2) . 

Sample entropy (S E ): note that the estimation of A E depends on

the length of the signal because each point of the attractor is com-

pared to each other. To overcome this problem, the sample entropy

was proposed as 

S E ( m, r ) = lim 

N→∞ 

(
− ln 


m +1 ( r ) 


m ( r ) 

)
(8)

Note that the estimation of 
( r ) does not include self-

comparisons of points in the state space ( Xu, Wang, & Wang,

2005 ). 

Gaussian kernel approximate entropy (GA E ): this measure uses a

Gaussian kernel function to give greater weights to nearby points.

The process consists in replacing the Heaviside function in C m 

i 
in

A E with a Gaussian kernel to measure the distance between every

point in the attractor ( Costa et al., 2005 ). The function to calculate

such distance is 

d G 
(−→ 

x i , 
−→ 

x j 
)

= exp 

( 

−
∥∥−→ 

x i − −→ 

x j 
∥∥

10 r 2 

) 

(9)
. Kernel based on non-linear information 

In this work, two classification methods are evaluated. The first

ne is a classic Hidden Markov Model (HMM), the second one

ses a transformation based on a Discrete Hidden Markov Model

DHMM) previous to be classified with a Support Vector Machine

SVM). The details of both squemes are presented in this section,

nd Fig 2 depicts the experimental methodology. Thus, HMM have

ifferent role in each method, as classifier and as transformation

lock, respectively. Moreover, the effect of this proposal is com-

ared versus the use of an isolated HMM. 

A hidden Markov model (HMM) is a doubly stochastic pro-

ess that can only be observed through another set of stochas-

ic processes, which produce a sequence of observations. The two

tochastic process of an HMM are: one hidden process associated

ith the probability of transition between states (not directly ob-

ervable), and one observable process associated with the proba-

ility of obtaining each of the possible values at the output de-

ending on the current state. In this paper, we are using a par-

icular case of HMM which is called Discrete HMM, defined in

irk (2014) and with the following set of characteristics: 

• The number of states is N and the number of different observa-

tions is M . 
• The transition probability matrix is A . 
• The probability vector of the starting state is π . 
• The probability matrix B defines the possible states at each of

the observations. 

The model used here is called “Left to Right” or “Bakis” HMM,

hich is particularly appropriate for the evaluation of sequences.

s the voice signal can be seen as a sequence of values, it can be

odeled using an HMM with a single direction. This fact provides

he ability to keep a certain order with respect to the observations

roduced on the temporary distance among the more representa-

ive changes. 

In the DHMM approach, the conventional technique for quanti-

ying features is applied. For each input data, the quantifier takes

he decision about which was the most convenient value from the

nformation of the previous input vector. To avoid taking a software

ecision, a fixed decision on the value quantified was made. Multi-

abeling was used in order to expand the possible values that the

uantifier was going to acquire, so that the possible quantified val-

es were controlled varying this parameter. Note that the number

f labels in a DHMM is related to the number of symbols per state.

DHMM algorithms should be generalized to be adjusted to the

ulti-labeling output ({vk} k = 1,..,C), where C is the size of the

ector values codebook, in order to generate the output vector

( { w ( x t , v k ) } k = 1 , .., C ) . Therefore, for a given state j of the DHMM,

he probability that a vector xt is observed in the instant t can be

ritten as: 

 j ( x t ) = 

C ∑ 

k =1 

w ( x t , v k ) b j ( k ) (10)

here b j (k) is the output discrete probability associated with the

alue v k and the state j . 

.1. HMM transformation 

The Fisher evaluator transforms the DHMM states to a hyper-

imensional space ( Travieso, Ticay-Rivas, Briceño, del Pozo-Baños,

 Alonso, 2014 ). Only the gradients of the transmitted DHMM’s

robabilities are considered, as described in the equation: U X =
logP (X| λ) 
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Fig. 2. Proposed experimental methodology. 
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1. The probability of transmitting a residual x (from the observed

chain X = ( x 1 ,…,x n )) from the alphabet, while it is in the state s

∈ { s 1 , ..., s n }, is defined by P (x | s, θ ) = θx | s . 
a. Note that: 

θx | s = P (x | s, λ ) = b s (x ) (11)

b. With the property: 

∀ s 
∑ 

x 

θx | s = 

∑ 

x 

P (x | s, λ ) = 

∑ 

x 

b s (x ) = 1 (12)

By the implementation of the DHMM 

i. Where b s = P (x = v k | s ) 1 ≤ k ≤ L is defined with vk the

labels of the DHMM quantization. 

2. The probability of transition from the state s to the state s’ is

defined as: P (s ′ | s, τ ) = τs ′ | s . 
a. Noting that: 

τs ′ | s = P (s ′ | s ) = a s ′ s . (13)

To simplify, a unique initial state s 0 is assumed, i.e. πs 0 = 1 .

Note that, in terms of the derivation ∂X ; where x is charac-

terized by θx | s = b s (x ) (depending on the descriptors x ), πs i 

are constants ( ∗). 

3. The defined λ DHMM assigns a probability for each sequence

X = ( x 1 , x 2 , ..., x T ) given by: 

P (X | θ, τ ) = P (X | λ ) = 

∑ 

s 1 ,..., s m 

∏ 

i 

P ( x i | s i , λ ) P ( s i | s i −1 , τ ) 

= 

∑ 

s 1 ,..., s m 

∏ 

i 

θx i | s i τs i | s i −1 
. (14) 

4. And according to (1.a) and (2.a): 

P (X | θ, τ ) = P (X | λ ) = 

∑ 

s 1 ,.., s n 

∏ 

i 

b s i ( x i ) a s i , s i −1 

= 

∑ 

s 1 ,..., s n 

b s 1 ( x 1 ) a s 1 s 2 b s 2 ( x 2 ) ... a s n −1 s n b s n ( x n ) . (15) 

where the sum is applied over all possible states’ sequences. 

The interest falls in the derivatives of log P (X| θ, τ ) = log P (X| λ)

ith respect to the emission probabilities θx | s = b s (x ) as com-

ented in ( ∗), as they are the components of the evaluator vector

 X . 

By (12) , the vectors θ x | s are linked by the fact that the sum

ust be 1 for any fixed state s . In order to be able to implement

ndependent derivations, an independent description must be im-

lemented. To achieve this, the terms θ x | s must be written in terms

f a set of independent parameters: 
5. θx | s = 

θx,s ∑ 

x ′ 
θ

x ′ ,s 
, with the values θ x, s such that: 

( ∑ 

x ′ 
θx ′ ,s = 1 

) 

⇒ θx,s = θx | s . (∗) (16) 

Therefore, the HMM kernel (HMMK) can be defined as: 

δ

δP ( x, q ) 
log P ( x/q, λ) = 

ξ ( x, q ) 

b q ( x ) 
− ξ ( q ) (17) 

here ξ (x,q) represents the number of times that the model is lo-

ated in a state q during the generation of a sequence emitting

 certain symbol x , and ξ (q) represents the number of times that

he model has been in q during the process of sequence gener-

tion ( Travieso et al., 2014 ). These values were directly obtained

rom the forward backward algorithm applied to the DHMM by

 Travieso et al., 2014 ). The application of this score U X to the SVM

s given by the following expression, using the technique of the

atural gradient: 

 X = ∇ P ( x,q ) log ( P ( x/q, λ) ) (18) 

here U X defines the direction of maximum slope of the logarithm

f the probability of having a certain symbol in a given state. 

Therefore, the proposed HMM Kernel (HMMK) is defined as the

alculation of the natural distance between the scores of two se-

uences X and Y : 

 

2 ( X, Y ) = 

1 

2 

( U X − U Y ) 
T F −1 ( U X − U Y ) (19) 

here F is the HMM information matrix. Note that Eq. (19) is

quivalent to the covariance matrix of vectors U X and U Y . 

Finally, the final decision will be made by Support Vector Ma-

hine (SVM) ( Chandorkar, Mall, Lauwers, Suykens, & De Moor,

015 ). SVM is based on a bi-class system, in other words only

wo classes are considered. In particular, for this present work,

e have worked with 2 classes, pathological and control classes

 Chandorkar et al., 2015 ). A linear and RBF kernels have been used

ith SVM. 

. Experimental methodology 

.1. Datasets 

Cleft Lip and Palate (CLP) : this database contains recordings of

he five Spanish vowels uttered by 65 children with repaired CLP

nd 54 healthy controls. The age of the children ranged from 5 to

5 and the voices of the CLP speakers were labeled as hypernasal
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Table 1 

Results obtained for the three pathologies using a 

RBF-SVM classifier trained following a 5-fold cross- 

validation strategy. 

Database Corpus RBF-SVM 

LP Spontaneous speech 91.41% ± 1.01 

LP A 91.71% ± 1.65 

CLP A 90.56% ± 1.76 

CLP E 87.89% ± 3.71 

CLP I 89.86% ± 3.03 

CLP O 86.34% ± 3.45 

CLP U 83.80% ± 2.59 

PD A 72.49% ± 2.68 

PD E 71.58% ± 5.29 

PD I 76.81% ± 3.77 

PD O 70.23% ± 3.71 

PD U 73.36% ± 3.96 
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by a phoniatric expert. Two repetitions of the sustained phona-

tion of the five Spanish vowels are considered. The recordings were

captured in noise-controlled conditions, using a sound-proof booth,

with a sampling rate of 44,100 Hz and 16 bit-resolution. The ethics

committee of Universidad de Caldas in Manizales (Colombia) ap-

proved this dataset. A written informed consent was given by next

of kin/caregiver of children for their clinical records to be used in

this study. This dataset is non-public. 

Laryngeal pathologies (LP): 72 recordings of the “rainbow pas-

sage” which are part of the MEEI public database are considered.

36 speakers are patients with a variety of voice impairments such

as organic and traumatic disorders, and the other 36 speakers are

healthy. 

Besides the continuous speech signals, sustained phonations of

the vowel /a/ produced by the same group of speakers were also

considered. The age of the patients ranges from 21 to 51 years

and the age of the control group ranges from 22 to 52 years. The

speech samples were captured using a condenser microphone, in a

sound-proof booth, and the distance between the microphone and

the speakers was 15 cm. The recordings were downsampled from

44,10 0 Hz to 25,0 0 0 Hz using the CSL system model 4300 ( Yunik &

Boyanov, 1990 ), and 16 bit-resolution. Note that this database was

recorded in noise controlled conditions and using a professional

setting, i.e., professional microphone, sound-card, high quality ca-

bles, and a sound-proof booth. 

Parkinson’s disease (PD): This database contains speech record-

ings of 50 patients with PD and 50 HC sampled at 44,100 Hz with

16 bit-resolution. As in the previous databases, the recordings were

captured in a sound-proof booth using a professional microphone

and a sound card. All of the speakers are balanced by gender and

age i.e. the age of the 25 male patients ranges from 33 to 77 and

the age of the 25 female patients ranges from 44 to 75. For the

case of HC, the age of the 25 men ranges from 31 to 86 and the

age of the 25 women ranges from 43 to 76. All of the patients were

diagnosed by neurologist experts; the values of their evaluation ac-

cording to the UPDRS and Hoehn & Yahr scales are 36.7 ± 18.7 and

2.3 ± 0.8, respectively. The speakers pronounced different speech

tasks during the recording session including, sustained phonations

of the Spanish vowels, rapid repetition of the syllables /pa-ta-ka/,

i.e., Diadochokinetic evaluation, read texts, monologue, and others.

In this paper we only consider the sustained phonations in order

to study the impact of the further HMM-based transformation in-

troduced here on the classification results. 

The speech samples were recorded with the patients in ON-

state, i.e. no more than 3 h after the morning medication. The

ethics committee of Clínica Noel in Medellín (Colombia) approved

this dataset. A written informed consent was given by participants

for their clinical records to be used in this study. 

Further details of this database can be found in Orozco-

rroyave, Arias-Londoño, Vargas-Bonilla, González-Rátiva, and

Nöth (2014) . In this study only the sustained vowel phonations

are used because we wanted to analyze the specific effect of

the DHMM transformation that is applied before the classification

stage. This dataset is distributed only for research purposes and

upon request. 1 

NOTE: in all of the databases considered here, only one phona-

tion per speaker is considered, thus they are not mixed between

the train and test subsets. 

4.2. Experimental settings 

Preprocessing: the speech recordings are divided into frames

of 55 ms with an overlap of 50%. The length of these frames is
1 The interested researcher may write an email to rafael.orozco@udea.edu.co . 

e  

h  

t  
hosen to guarantee that the number of points of each frame is

round 1500. The analysis of the number of points was introduced

n Arias-Londoño, Godino-Llorente, Sáenz-Lechón, Osma-Ruiz, and

astellanos-Domínguez (2011) to assure an appropriate number of

cycles” for the embedding process. Besides, with this windows

ize and from “real condition versus the noise” point of view, some

eatures as Entropy and Hurst parameters model that noise, which

s intrinsic to laryngeal pathologies; and finally, to use this number

f data sequence is adequate. 

Experiments: the samples are divided into training and test sets

pplying the K−Folds and Hold-Out cross-validation techniques

 Shao, Er, & Wang, 2015 ). The system is trained and tested with

otally different samples. In particular, the experiments are per-

ormed with K = { 2 , 3 , 4 , 5 , 10 } . For instance, when a Hold-Out

ross-validation strategy is addressed, 50% of the data is considered

or training and the remaining 50% for testing ( K = 2 ). The compo-

ition of the data per each folder is proporcional to the number of

ealthy and pathological subjects. It is worth to mention that the

raining and testing sets were computed individually for each class.

he experiments were repeated 10 times. 

Three different classification approaches are tested here. The

rst one is based on direct classification, i.e., without any fur-

her transformation, using RBF-SVM, the second one consists on

sing a HMM-based model directly applied upon the feature vec-

ors, and the third one comprises the proposed approach, which

onsits on the DHMM states to a hyperdimensional space by using

he Fisher evaluator. The first experiment is peformed following a

-fold cross-validation strategy, while the other two experiments

onsidered 5 folds in the beginning while varying the number of

tates, and finally, when the best accuracy was found, the number

f HMM states was fixed and the number of folds was varied. 

. Experimental results 

The three databases considered in this study: CLP, LP, and PD,

re tested on similar conditions and using different classification

pproaches. The baseline is stated by a direct classification, i.e.,

ithout any further transformation, using a RBF-SVM. The re-

ults are displayed in Table 1 . The accuracy of classifying speak-

rs with laryngeal pathologies is around 90%, while the accura-

ies for CLP and PD are around 85% and 70%, respectively. These

esults suggest that a feature set based only on nonlinear mea-

ures is, to some extent, able to model nonlinearities in speech

roduction like abnormal vocal fold vibration, nonlinear preassure-

ow in the glottis, stress-strain in the vocal fold tissues, and oth-

rs; however, it is not suitable to accurately discriminate between

ealthy and pathological speech signals. There are two approaches

hat can be addressed here: to include more features to model

http://www.rafael.orozco@udea.edu.co
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Table 2 

Results obtained for the three pathologies using 5-fold cross-validation. 

Database Corpus # states HMM Linear SVM Kernel RBF SVM Kernel ϒ

LP Spontaneous speech 5 92.45% ± 2.59 98.41% ± 1.24 99.91% ± 0.26 2 ×10 −5 

LP Spontaneous speech 10 93.55% ± 3.24 96.87% ± 3.14 99.95% ± 0.26 2 ×10 −5 

LP Spontaneous speech 15 93.24% ± 3.21 96.65% ± 3.77 99.87% ± 0.39 4 ×10 −5 

LP Spontaneous speech 20 93.21% ± 2.56 96.73% ± 3.42 99.74% ± 0.46 4 ×10 −5 

LP A 5 80.69% ± 5.25 97.91% ± 2.99 97.04% ± 5.89 2 ×10 −7 

LP A 10 81.35% ± 5.46 99.12% ± 0.86 98.76% ± 2.69 2 ×10 −7 

LP A 15 83.07% ± 3.75 99.37% ± 0.71 99.68% ± 0.41 2 ×10 −7 

LP A 20 83.60% ± 2.51 99.41% ± 0.75 99.68% ± 0.41 2 ×10 −7 

CLP A 5 86.82% ± 3.39 98.83% ± 2.01 99.74% ± 0.42 4 ×10 −5 

CLP A 10 88.95% ± 1.64 99.55% ± 0.48 99.80% ± 0.41 8 ×10 −5 

CLP A 15 87.85% ± 2.20 99.48% ± 0.19 99.67% ± 0.30 4 ×10 −5 

CLP A 20 87.73% ± 2.30 99.48% ± 0.54 99.80% ± 2.29 4 ×10 −5 

CLP E 5 87.66% ± 1.83 99.35% ± 0.67 99.61% ± 0.87 6 ×10 −5 

CLP E 10 87.66% ± 1.79 99.55% ± 0.63 99.93% ± 0.19 8 ×10 −5 

CLP E 15 87.66% ± 2.05 99.48% ± 0.61 99.80% ± 0.29 6 ×10 −5 

CLP E 20 87.92% ± 0.70 99.42% ± 0.41 99.54% ± 0.56 6 ×10 −5 

CLP I 5 88.89% ± 1.83 99.03% ± 1.30 99.80% ± 0.40 2 ×10 −5 

CLP I 10 88.63% ± 1.20 99.81% ± 0.29 99.94% ± 0.19 2 ×10 −5 

CLP I 15 87.40% ± 2.58 99.94% ± 0.19 100% ± 0 2 ×10 −5 

CLP I 20 89.15% ± 2.34 99.68% ± 0.31 100% ± 0 2 ×10 −5 

CLP O 5 83.12% ± 1.79 99.35% ± 0.87 99.67% ± 0.42 6 ×10 −5 

CLP O 10 82.04% ± 3.07 99.41% ± 0.45 99.80% ± 0.25 6 ×10 −5 

CLP O 15 83.27% ± 3.01 99.74% ± 0.31 99.87% ± 0.26 6 ×10 −5 

CLP O 20 82.56% ± 4.09 99.42% ± 0.41 99.55% ± 0.48 6 ×10 −5 

CLP U 5 81.13% ± 4.28 98.90% ± 0.79 98.97% ± 0.76 2 ×10 −5 

CLP U 10 81.21% ± 1.88 99.35% ± 0.45 99.35% ± 0.45 2 ×10 −5 

CLP U 15 81.65% ± 3.29 99.35% ± 0.45 99.42% ± 0.45 2 ×10 −5 

CLP U 20 81.97% ± 2.18 99.48% ± 0.19 99.48% ± 0.19 2 ×10 −5 

CLP U 25 80.68% ± 6.24 99.68% ± 0.31 99.68% ± 0.31 2 ×10 −5 

CLP U 30 84.88% ± 1.35 99.48% ± 0.35 99.48% ± 0.35 2 ×10 −5 

PD A 5 61.53% ± 6.33 99.39% ± 0.40 98.24% ± 1.24 1 ×10 −7 

PD A 10 62.73% ± 4.89 98.43% ± 1.83 97.40% ± 1.35 8 ×10 −8 

PD A 15 62.41% ± 5.69 99.40% ± 0.59 99.12% ± 0.94 6 ×10 −8 

PD A 20 66.62% ± 2.79 98.84% ± 1.14 98.70% ± 1.05 1 ×10 −7 

PD E 5 58.84% ± 4.49 99.16% ± 0.77 98.01% ± 1.66 3 ×10 −7 

PD E 10 60.18% ± 2.89 99.39% ± 0.55 98.88% ± 0.65 3 ×10 −7 

PD E 15 60.74% ± 3.61 98.84% ± 1.53 97.59% ± 2.11 3 ×10 −7 

PD E 20 60.83% ± 3.17 98.98% ± 1.36 98.05% ± 2.38 3 ×10 −7 

PD E 25 61.99% ± 3.59 99.67% ± 0.54 99.30% ± 0.55 3 ×10 −7 

PD E 30 59.67% ± 3.84 99.63% ± 0.32 98.93% ± 1.65 3 ×10 −7 

PD I 5 57.54% ± 4.28 98.70% ± 0.67 98.51% ± 0.77 3 ×10 −7 

PD I 10 57.26% ± 3.71 99.44% ± 0.51 99.40% ± 0.36 1 ×10 −7 

PD I 15 55.93% ± 3.10 99.44% ± 0.46 99.68% ± 0.34 1 ×10 −7 

PD I 20 55.51% ± 2.83 99.31% ± 0.62 99.35% ± 0.55 1 ×10 −7 

PD O 5 61.25% ± 2.52 98.05% ± 1.35 98.51% ± 1.20 3 ×10 −7 

PD O 10 61.12% ± 4.75 98.37% ± 0.96 98.88% ± 0.81 3 ×10 −7 

PD O 15 62.73% ± 6.22 98.28% ± 1.30 98.70% ± 0.99 3 ×10 −7 

PD O 20 62.17% ± 2.06 99.16% ± 0.72 99.30% ± 0.69 3 ×10 −7 

PD O 25 60.83% ± 2.92 98.61% ± 0.83 99.12% ± 0.67 3 ×10 −7 

PD U 5 60.60% ± 6.16 98.75% ± 1.18 94.25% ± 2.21 2 ×10 −2 

PD U 10 60.18% ± 3.05 99.33% ± 0.61 98.47% ± 1.38 2 ×10 −7 

PD U 15 61.81% ± 2.84 99.44% ± 0.42 99.03% ± 1.41 1 ×10 −7 

PD U 20 62.45% ± 2.58 99.40% ± 0.98 99.03% ± 1.41 8 ×10 −8 

PD U 25 63.28% ± 2.77 98.89% ± 1.42 98.56% ± 1.50 4 ×10 −8 
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Fig. 3. Accuracy obtained with HMM classifier for three datasets for different k-folds cross-validation and number of states with optimal performance. 
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Table 3 

Results obtained for the three datasets varing the number of folds in the validation. 

Database Corpus k-fold # states HMM linear SVM Kernel RBF SVM Kernel Gamma 

LP Spont. Speech 10 10 91.96% ± 2.92 94.54% ± 4.11 99.76% ± 0.52 2 ×10 −5 

LP Spont. Speech 5 10 93.55% ± 3.24 96.87% ± 3.14 99.95% ± 0.26 2 ×10 −5 

LP Spont. Speech 4 10 93.34% ± 1.93 98.90% ± 1.67 99.95% ± 0.19 2 ×10 −5 

LP Spont. Speech 3 10 93.86% ± 2.65 99.46% ± 1.26 99.95% ± 0.15 2 ×10 −5 

LP Spont. Speech 2 10 95.08% ± 3.07 99.57% ± 0.99 99.97% ± 0.08 2 ×10 −5 

LP A 10 15 77.07% ± 5.15 99.11% ± 0.92 99.48% ± 0.71 2 ×10 −7 

LP A 5 15 83.07% ± 3.75 99.37% ± 0.71 99.68% ± 0.41 2 ×10 −7 

LP A 4 15 85.61% ± 4.14 99.22% ± 0.70 99.59% ± 0.50 2 ×10 −7 

LP A 3 15 85.24% ± 4.26 99.37% ± 0.71 99.62% ± 0.46 2 ×10 −7 

LP A 2 15 89.47% ± 3.47 99.45% ± 0.64 99.68% ± 0.41 2 ×10 −7 

CLP A 10 10 86.14% ± 2.92 97.65% ± 1.59 99.26% ± 1.52 2 ×10 −5 

CLP A 5 10 88.95% ± 1.64 99.55% ± 0.48 99.80% ± 0.41 4 ×10 −5 

CLP A 4 10 88.00% ± 1.49 99.77% ± 0.47 99.85% ± 0.29 4 ×10 −5 

CLP A 3 10 87.24% ± 2.71 99.48% ± 0.78 99.65% ± 0.41 4 ×10 −5 

CLP A 2 10 88.89% ± 2.07 99.59% ± 0.59 99.80% ± 0.40 4 ×10 −5 

CLP E 10 10 86.65% ± 0.79 98.85% ± 0.76 99.25% ± 0.78 2 ×10 −5 

CLP E 5 10 87.66% ± 1.83 99.35% ± 0.67 99.61% ± 0.87 2 ×10 −5 

CLP E 4 10 86.29% ± 1.77 99.33% ± 0.58 99.70% ± 0.35 2 ×10 −5 

CLP E 3 10 87.76% ± 2.27 99.65% ± 0.69 99.91% ± 0.26 2 ×10 −5 

CLP E 2 10 87.55% ± 1.68 99.90% ± 0.31 100% ± 0 6 ×10 −5 

CLP I 10 10 87.62% ± 2.17 99.59% ± 0.22 99.71% ± 0.27 2 ×10 −5 

CLP I 5 10 88.63% ± 1.20 99.81% ± 0.29 99.94% ± 0.19 2 ×10 −5 

CLP I 4 10 89.93% ± 2.07 99.78% ± 0.33 100% ± 0 6 ×10 −5 

CLP I 3 10 89.24% ± 2.21 99.65% ± 0.41 100% ± 0 2 ×10 −5 

CLP I 2 10 88.58% ± 3.56 99.58% ± 0.49 100% ± 0 2 ×10 −5 

CLP O 10 15 81.50% ± 1.35 99.37% ± 0.62 99.54% ± 0.60 6 ×10 −5 

CLP O 5 15 83.27% ± 3.01 99.75% ± 0.35 99.79% ± 0.40 6 ×10 −5 

CLP O 4 15 84.07% ± 2.79 99.74% ± 0.31 99.87% ± 0.26 6 ×10 −5 

CLP O 3 15 84.59% ± 3.57 99.79% ± 0.40 99.92% ± 0.22 6 ×10 −5 

CLP O 2 15 84.01% ± 2.82 99.83% ± 0.32 100% ± 0 6 ×10 −5 

CLP U 10 25 81.16% ± 3.27 99.65% ± 0.25 99.65% ± 0.25 2 ×10 −5 

CLP U 5 25 80.68% ± 6.24 99.68% ± 0.31 99.68% ± 0.31 2 ×10 −5 

CLP U 4 25 80.67% ± 2.97 99.63% ± 0.35 99.63% ± 0.35 2 ×10 −5 

CLP U 3 25 84.20% ± 4.07 99.48% ± 0.39 99.48% ± 0.39 2 ×10 −5 

CLP U 2 25 84.26% ± 2.96 99.59% ± 0.59 99.59% ± 0.59 2 ×10 −5 

PD A 10 15 59.51% ± 7.56 98.14% ± 2.25 97.86% ± 1.48 3 ×10 −7 

PD A 5 15 62.41% ± 5.69 99.40% ± 0.59 99.12% ± 0.94 3 ×10 −7 

PD A 4 15 64.02% ± 2.87 99.47% ± 0.60 99.42% ± 0.71 3 ×10 −7 

PD A 3 15 64.57% ± 4.28 99.57% ± 0.46 99.44% ± 0.73 3 ×10 −7 

PD A 2 15 64.52% ± 6.05 99.48% ± 0.87 99.26% ± 0.84 3 ×10 −7 

PD E 10 25 59.91% ± 4.33 99.13% ± 0.99 98.47% ± 1.22 3 ×10 −7 

PD E 5 25 61.99% ± 3.59 99.67% ± 0.54 99.30% ± 0.55 3 ×10 −7 

PD E 4 25 58.57% ± 3.49 99.68% ± 0.63 98.67% ± 1.36 3 ×10 −7 

PD E 3 25 62.09% ± 3.28 99.87% ± 0.25 99.51% ± 0.70 3 ×10 −7 

PD E 2 25 61.70% ± 2.16 99.63% ± 0.48 99.26% ± 0.22 1 ×10 −7 

PD I 10 15 54.67% ± 2.88 99.05% ± 0.87 99.18% ± 0.43 1 ×10 −7 

PD I 5 15 55.93% ± 3.10 99.44% ± 0.51 99.68% ± 0.34 1 ×10 −7 

PD I 4 15 58.15% ± 3.89 99.52% ± 0.48 99.42% ± 0.42 1 ×10 −7 

PD I 3 15 56.23% ± 3.24 99.81% ± 0.28 99.81% ± 0.28 1 ×10 −7 

PD I 2 15 60.00% ± 4.48 99.70% ± 0.35 99.70% ± 0.35 1 ×10 −7 

PD O 10 20 60.28% ± 2.61 98.14% ± 1.56 98.68% ± 1.05 3 ×10 −7 

PD O 5 20 62.17% ± 2.06 99.16% ± 0.72 99.30% ± 0.69 3 ×10 −7 

PD O 4 20 61.95% ± 5.03 99.36% ± 0.71 99.68% ± 0.41 2 ×10 −7 

PD O 3 20 61.85% ± 6.60 99.44% ± 0.73 99.69% ± 0.56 2 ×10 −7 

PD O 2 20 60.81% ± 5.49 99.63% ± 0.35 99.77% ± 0.33 2 ×10 −7 

PD U 10 15 61.60% ± 4.18 97.50% ± 1.62 98.06% ± 1.39 3 ×10 −7 

PD U 5 15 61.81% ± 2.84 99.44% ± 0.42 99.03% ± 1.41 1 ×10 −7 

PD U 4 15 62.40% ± 4.84 99.64% ± 0.49 98.94% ± 1.73 1 ×10 −7 

PD U 3 15 63.34% ± 4.15 99.72% ± 0.59 99.38% ± 1.09 1 ×10 −7 

PD U 2 15 65.37% ± 3.93 99.78% ± 0.33 98.59% ± 1.26 1 ×10 −7 

 

 

 

A  

 

 

 

 

 

M  

i  

H  

9  

t  

r  

t  

H

 

s  
other phenomena, e.g., spectral wealth and stability/periodicity, or

to perform an additional transformation prior to the classifica-

tion stage. The first approach was already addressed in Orozco-

rroyave, Hönig et al. (2015) , thus we decided to address the secon

approach by transforming the DHMM states to a hyperdimensional

space. 

The experiments considering the basic HMM approach and the

further transformation are performed into two stages. The first

one consisted on training the models following a 5-fold cross-

validation strategy while varying the number of states of the
arkov models. The results obtained in this stage are displayed

n the fourth column of Table 2 . Note that when using the basic

MM approach for CLP and LP diseases, the accuracies are around

0% while for PD are around 60%, which is in the same range of

he baseline introduced in Table 1 . The results obtained with CLP

ecordings are similar when vowels or words are tested. Note also

hat the highest accuracies are obtained when the number of the

MM states in the range of 10 to 20. 

In order to improve the accuracy of the system, an additional

tep between the characterization and the classification stages is
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Fig 4. Accuracy obtained with the DHMM transformation and linear SVM for three datasets, different k-fold cross-validation and number of states with optimal performance. 
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Fig 5. Accuracy obtained with the DHMM transformation and RBF SVM for three datasets, different k-fold cross-validation and number of states with optimal performance. 
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ntroduced. The experimental conditions are the same as in the

revious experiments, i.e., same number and distribution of folds.

he accuracies obtained when the DHMM-based transformation is

pplied are shown in the last three columns of Table 2 . Note that

wo different kernels are used for the SVM, linear and RBF, ϒ is

he bandwith of the RBF kernel. The results show that the further

ransformation of the feature space improve the accuracies in all

f the cases; however, the stability and generalization capability of

he method need to be evaluated by varying the distribution of the

olds, i.e., the number of speakers in the train and test sets. 

Table 3 shows the results obtained when the number of states

s kept constant accoding to the highest accuarcy per speech task

btained in the previous experiments. The diference in the accu-

acy between K = 2 and K = 10 folds is very small (aproximately one

ercentage point), thus the results are stable when the number of

raining samples is varied. This result indicates that the nonlinear

arameters are invariant and have a robust behaviour when the

umber of training samples is changed. 

In general, the results of the direct classification based on the

BF-SMV and the HMM are relatively good for CLP and LP; how-

ver, for PD the results are not satisfactory. In order to improve the

eults, it was necessary to perform additional transformations to

he representation space. When the DHMM-based transformation

s used the results improve not only in accuracy but in robustness

nd consistency, i.e., similar results are obtained along the three

oice diseases considered here. 

Fig 3 depicts the evolution of the recognition rate for the

HMM and number of states with maximum performance. Figs 4

nd 5 show the accuracy of the classifier based on DHMM trans-

ormation with a linear and RBF SVM, respectively. 

In general, the number of training samples of each fold is in-

ependent on the results, indicating that the nonlinear parameters

p  
ith the further DHMM-based transformation are robust and sta-

le detecting voice diseases. The prosposed approach is tested by

sing two different classifiers (linear SVM and RBF-SVM) and the

esults are similar. 

The use of DHMM + SVM improves the accuracy compared to

he direct use of a RBF-SVM and the HMM-based classifiers. This

mprovement can be explained due to the expansion of the dimen-

ionality of the feature space. This increase in the dimension is im-

roving the discriminant capability of the features. The results in-

icate that the combination of nonlinear parameters and the classi-

er applied to voice pathology detection is a good alternative. Our

pproach improves the results obtained in the state-of-the-art and

eems to be the best option to detect different the voice diseases

ike hypernasality due to cleft lip and palate, dysphonia due to la-

yngeal pathologies and dysarthria due to Parkinson’s disease. 

This work has been developed on Matlab r2012a, using a per-

onal computer with a Core i5 processor, 4 GB of RAM Memory,

nd 500GB HDD. Under these conditions, a recording with a du-

ation of 3 s takes 122 s to be modeled with the no-linear param-

ters. The transformation performed upon the parameters spends

94 s per utterance and its classification with an RBF-SVM classifier

akes 9.3 s. The timing is similar among the corpuses considered in

his study. 

. Conclusions 

In this work we propose a novel methodology for an automatic

etection of voice diseases. The method consits on the transfor-

ation of DHMM states to a hyperdimensional space by using the

isher evaluator. Afther such a transformation, the classification is

eformed by using a RBF-SVM which is trained following a K-fold
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cross-validation strategy. Results of around 99% of accuracy are ob-

tained for three different voice disease datasets. 

Linear methods or the combination of linear and nonlinear

methods have been used in the state-of-the-art to detect voice

pathologies in sustained phonations or in continous speech sig-

nals. For this approach, three datasets with different diseases were

used: clef lip and palate which produces hypernasality in speech,

Parkinson’s disease which produces dysarthric speech, and laryn-

geal pathologies which produce disphonia. The results indicate that

the proposed approach seems to be suitable and robust to detect

all of these pathologies. 

The proposed approach is compared with respect to other clas-

sification methods typically used in the state of the art. Particu-

larly, a direct classification, i.e., without any further transformation,

is peformed with an RBF-SVM and also with an HMM-based class-

fier. Both approaches showed reduced accuracies compare to those

obtained with the DHMM-based transformation. 

The main drawback of the methodology introduced here is

the acoustic conditions of the speech recordings. The experiments

presented here are based on speech samples captured in noise-

controlled conditions, and according to our preliminary experi-

ments with recordings captured in non-controlled conditions, the

accuracy decreases. It is necessary to address further research on

this topic in order to state which are the optimal recording condi-

tions such that allow the application of the proposed methodology

on different noise environments. 
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