
From Proc. ICNN'94, Orlando, Vol. 7, pp. 4457{4461Pitch Determination ConsideringLaryngealization E�ects In Spoken DialogsH. Niemann, J. Denzler, B. Kahles, R. Kompe, A. Kiessling, E. N�oth, V. StromAbstract|A frequent phenomenon in spoken dialogs of theinformation seeking type are short elliptic utterances whosemood (declarative or interrogative) can only be distinguishedby intonation. The main acoustic evidence is conveyed bythe fundamental frequency or F0{contour.Many algorithms for F0 determination have been reportedin the literature. A common problem are irregularities ofspeech known as `laryngealizations'. This article describesan approach based on neural network techniques for theimproved determination of fundamental frequency. First,an improved version of our neural network algorithm forreconstruction of the voice source signal (glottis signal) ispresented. Second, the reconstructed voice source signalis used as input to another neural network distinguishingthe three classes `voiceless', `voiced non{laryngealized', and`voiced laryngealized'. Third, the results are used to im-prove an existing F0 algorithm.Results of this approach are presented and discussed inthe context of the application in a spoken dialog system.I. IntroductionSpoken dialog systems for information seeking enquiries,e.g. train or plane connections, are a current research topic.The importance and the use of intonation (or prosody, orsuprasegmental information) in speech recognition and un-derstanding has been discussed, for example, in [11] [12][13] [14] [15]. It has been shown in [10] that in such dialogsshort elliptic utterances occur frequently whose mood canonly be determined by prosody. For example, an utter-ance of an o�cer or an automatic system `the train leavesat 16.30' might be answered by the client by `at 16.30 (!)'signalling to the o�cer `ok, I got it' or by `at 16.30 (?)'signalling to the o�cer `please, con�rm the time'. In bothcases the wording is identical, only the intonation is di�er-ent. The most important cue to intonation is the courseof the fundamental frequency over time, that is, the F0{contour. Many algorithms for determining the fundamen-tal frequency have been reported [6]. A fairly reliable al-gorithm using dynamic programming was presented in [9]and employed in a prosodically controlled dialog system[10]. Nevertheless, irregularities of speech known as la-ryngealizations or as creaky voice often cause errors in F0detection which in turn may cause erroneous reactions ofa dialog system. Hence, further improvement is desirable.A laryngealization is usually characterized by an irreg-ularity of the voiced excitation, manifested in the speechThis research was supported by the German Ministry of Research andTechnology (BMFT) in the project VERBMOBIL. Only the authors areresponsible for this article.The authors are with Lehrstuhl f�ur Mustererkennung (Informatik5), Universit�at Erlangen{N�urnberg, 91058 Erlangen, Germany, except forV. Strom who is now with Institut f�ur Kommunikationsforschung undPhonetik, Universit�at Bonn, 53115 Bonn, Germany
Figure 1. Top: a speech signal with laryngealizationBottom: Voice source signal, recorded with alaryngograph.signal by irregular periodicity, strong variations of the am-plitude, special form of the damped wave, or very long pitchperiods. An example is given in Figure 1. Di�erent typesof laryngealizations are distinguished in [7] [2]. Such irreg-ularities in the speech signal are a frequent source of errorsin F0 determination. However, they also occur frequentlyat phrase boundaries, and therefore, may be a useful cuefor parsing of the utterances.In this contribution we describe a neural network basedapproach to the determination of laryngealizations whichin turn are used to improve F0 extraction. Since many er-rors in the present version of the F0 extraction algorithmare caused by laryngealizations, the idea is simply to detectthem and to interpolate the F0{contour over laryngealizedportions of speech. Figure 1 indicates that laryngealiza-tions may be detected more easily and reliably in the voice1



source signal than in the speech signal. Therefore, the �rststep is the reconstruction of the voice source signal (VSS)by means of inverse �ltering. This is done by a neural net-work as described in Sect. II; a �rst version of this approachwas presented in [3], and here we present an improved ver-sion of this algorithm. Once the VSS has been determinedit is classi�ed by a neural network frame by frame into oneof the three classes `voiceless', `voiced non{laryngealized',and `voiced laryngealized'; this is described in Sect. III. Weshow in Sect. IV that these results can be used to improvean existing algorithm for F0 extraction. A conclusion andoutlook is given in Sect. V.II. Inverse Filtering of the Speech SignalA. Signal{To{Signal MappingSince pitch period calculation and the detection of laryn-gealizations can be done much easier using the voice sourcesignal (VSS) instead of the speech signal the �rst step isto reconstruct the VSS. Additionally, the voiced/unvoiceddecision is trivial on the VSS. The approach is to map thespeech signal directly to the VSS, i.e. to apply a signal{to{signal transformation. The input and desired output valuesare normalized to the range of [0; 1]. One window (contain-ing 78 sample values corresponding to 39 ms) of the speechsignal is presented to the input layer of an arti�cial neuralnetwork (ANN) which gives as output one single value ofthe VSS. If we denote, in a multilayer{perceptron,� the input layer by index l = 0 having i = 0; 1; : : : ;M0�1 input nodes n(0)i for signal values xi,� the hidden layers by indices l = 1; 2; : : : ;ML�1 havingi = 0; 1; : : : ;Ml � 1 hidden nodes n(l)i ,� the output layer by index l = L having | in our case| one output node nL0 ,then the relevant equations for computing an output valueare:1. for each layer and each node per layer compute theweighted sum of input valuesy(l+1)j = Ml�1Xi=0 w(l+1)ij f (l)i �w(l+1)j0 � j �Ml+1 � 1 ; l = 0; 1; 2 ; (1)2. compute the output of a node from a nonlinearity �,in our case the sigmoid functionf (l+1)j = � hy(l+1)j i= 11 + exp(�y(l+1)j ) (2)By shifting the speech signal point{by{point through theinput layer, one gets the complete VSS reconstructed bythe ANN; the reconstructed VSS is termed here ANN{VSS.Three types of ANN's are investigated, the (non{recursive)multilayer perceptron and the (recursive) Elman and Jor-dan networks [4] [8]; for each type di�erent con�gurations
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ANN{VSS is smoothed to reduce noise. We use iteratively5 average �lters the width of which depends on the aver-age pitch period of the ANN-VSS, so that only noisy partsand no period in the ANN-VSS will be smoothed. Theaverage period is estimated by analyzing every frame ofthe ANN-VSS in the frequency domain, searching for themaximum in the spectrum. Unvoiced frames are ignoredfor this estimation.To train the network we use a database S in which speechand voice source signals were recorded in parallel 1. We gota data set of 114 pairs of speech and voice source signals(recorded by a laryngograph) with sampling frequency of16 kHz. Within the data set 3 male and 5 female speak-ers spoke German time of day expressions (for example,\sechzehn Uhr vier", 16.04 o'clock). The database S hasa length of 140 seconds of speech. It is divided into threesubsets, S1, S2, S3.The subset S1 consists of 35 sentences from 8 speakers,40 seconds of speech, 2757 frames, 68620 training patterns;it is used for training the various networks. The subsetS2 has a non{laryngealized utterance from each of the 8speakers. It consists of 1014 frames and is used to test(during training) the ability of a network to discriminatenon{laryngealized utterances which were not in the train-ing set. The subset S3 contains from each of the 8 speakersone utterance having at least one laryngealization. It con-sists of 641 frames and is used to test the ability of the net-work to discriminate laryngealized utterances which werenot in the training set.The mean{square{errror (MSE) is used to optimize theweights and to judge the quality of the mapping perfor-mance by an ANN. However, in this case the MSE is notan useful measure of the quality of the ANN-VSS. Some vi-sually good signals have a greater mean square error thanvisually poor signals. Hence, the quality of the ANN{VSSis measured in the following way. We �rst calculate thepitch period of the VSS recorded by a laryngograph ona frame{by{frame basis using a modi�cation of the algo-rithm given in [1] that searches for relevant maxima in theVSS. The pitch period of an ANN{VSS frame (length of aframe: 12.8 msec) is the average of the distances betweenall consecutive maxima in the frame. We de�ne an error inone frame of the ANN{VSS if its pitch period di�ers fromthe reference (created automatically and hand-corrected)by more than 30 Hz. Thus the error is given frame{by{frame not point{by{point. This is done only for framesof voiced speech. This measurement is also close to theintuitive judgment of a person who visually analyzes theANN{VSS.The weights are initialized by small random numbers.The ANN is trained a �xed and relatively small numberof epochs (15 epochs) with the training set S1. Then wetest the ANN with the sets S1, S2, and S3 and recordthe number of errors. If the error becomes zero or if itincreases over several (e.g. 3) iterations, the training stopsand otherwise a new cycle is entered. After training the1This database was kindly provided by the Institute of Phonetics ofthe L.M. Universit�at, M�unchen.

T I L H O Rec W ErrorML 78 3 80 1 NIL 19361 184 (3.5 %)ML 78 3 100 1 NIL 28201 159 (3.0 %)JO 78 2 100 1 10 19131 189 (3.6 %)EL 78 2 100 1 200 38101 186 (3.6 %)Table 1. Summary of main results.T denotes the type of ANN (ML: multilayer perceptron,JO: Jordan recursive network, EL: Elman recursive net-work); I, H, and O are the number of input nodes, hiddennodes per layer, and output nodes, respectiveley; L is thenumber of hidden layers; Rec is the number of recursivenodes; W is the number of weights in the ANN; Error givesthe absolute number of errors and the percentage.network we compute the error rate, that is the percentageof deviations in F0 which are larger than 30 Hz, on the fulldatabase S.B. ResultsAs mentioned above, three types of networks were in-vestigated. Several con�gurations with di�erent number ofhidden layers, di�erent number of nodes per hidden layer,and di�erent number of recursive nodes (for Jordan and El-man networks) were considered. Training times for largernetworks were about 3 days on a workstation with about100 MIPS. The best con�gurations are summarized in Ta-ble 1. This table shows that very reliable F0 estimation ispossible from the ANN{VSS.An example of a reconstructed ANN{VSS is given inFigure 3. It supports the result given in Table 1 that re-construction is very good. The irregularites in the voicesource signal due to laryngealizations are clearly recon-structed, see frames 32 { 38 in the lower part of Figure 3.The results support the assumption that there are generalregularities for mapping a voice source signal to a speechsignal, that the inverse mapping exists, and that at leasta very good approximation of this inverse mapping can belearned by an appropriate neural network.Probably most of the remaining errors are caused byvoiced/unvoiced transitions and by laryngealizations. Theinverse �ltering is robust to untrained speakers, di�erentrecording conditions, facilities, and vocabularies. Althougha large number of network con�gurations was tested, itmay be expected to obtain still better results with largernetworks and more training data.III. Determination of LaryngealizationsHaving reconstructed the VSS, the next step is to useit to detect laryngealizations in the speech signal. This isdone by a second arti�cial neural network (ANN) whichagain is a multilayer perceptron.The input is the ANN{VSS obtained as described in Sec-tion II above. It has a sampling frequency of 2 kHz andis normalized to the interval [�1;+1]. Experiments werecarried out using 3, 5, and 7 frames (corresponding to 77,128, and 179 sample values, respectively) as input to anANN. Training of the ANN's was done with 1329 sentences3



Figure 3. From top to bottom: speech signal,laryngograph VSS, ANN{VSS(about 30 minutes) of speech spoken by 1 male and 3 fe-male speakers, one third spontaneous and two thirds readspeech. Frames of 12.8 ms duration containing laryngeal-izations were hand{labeled by phoneticians at L.M. Uni-versity Munich. This hand{labeling is here assumed to becorrect. In a �rst series of experiments the output of theANN was one out of the three classes `unvoiced', `voicednon{laryngealized', and `voiced laryngealized'. In a secondseries unvoiced frames were excluded a priori and only thetwo classes `voiced non{laryngealized' and `voiced laryn-gealized' were distinguished. The experiments are summa-rized in Figure 4.Again, various ANN's were tried. It was found to be use-ful to smooth results with a median �lter of width three.The best network consisted of 128 input nodes, two hiddenlayers each one with 80 nodes, and 3 output nodes (128{80{80{3 ANN); the results are summarized in the confusionmatrix given in the upper part of Table 2. In particular,85.6 % of laryngealized frames are classi�ed correctly, andthe false alarm rate consists of 16.1 %. This is consideredto be a reasonable compromise between not missing laryn-gealizations (maximizing correct recognition) and minimiz-ing false alarm rate. Using the hand labeling the unvoicedframes were excluded and a second series of experimentswas made. Now the best network consisted of 128 inputnodes, two hidden layers each with 100 nodes, and 2 outputnodes. The results are given in the lower part of Table 2.

initialize weights by small random numbers, iterationstep number N = 0, learning rate � = 0:01, and cor-rect classi�cations pc = 0N  N + 1train ANN on training set having an equal number ofpatterns from the three classes (� 6000) for a �xednumber of epochs (here: 25)test on test set of 144 sentences and store pc;N , thatis correct classi�cations at iteration step number NIF pc;N � pcTHEN � �=10ELSE pc = pc;NUNTIL learning rate � � 0:000 01determine iteration step number with maximal recogni-tion rate pc;N and corresponding ANNdetermine with this ANN the recognition rate on the fullsample of speechFigure 4 Training and testing for the detection of laryn-gealizations. classi�ed asUV VN VL# % # % # %UV 47820 80.2 6327 10.6 5456 9.2VN 5320 6.9 54906 71.5 16559 21.6VL 431 7.0 456 7.4 5273 85.6classi�ed asVN VLVN 56929 74.1 19856 25.9VL 424 6.9 5736 93.1Table 2. Summary of main results for detection of laryn-gealizations. The abbreviations are UV for `unvoiced', VNfor `voiced non{laryngealized', and VL for `voiced laryn-gealized'. The upper part of the table shows results onthree classes, the lower part on two classes.The recognition rate could be increased to 93.1 %, but thefalse alarm rate increased to 25.9 %.In Sect. II we showed an approach to inverse �ltering us-ing a neural network. The \classical" approach to inverse�ltering is a linear �lter and, of course, the question arises,whether anything can be gained from using an ANN in-stead of a linear �lter. Hence, in another experiment wecomputed the voice source signal from a linear inverse �l-ter and used this VSS to train a 128{80{80{3 ANN, whichwas the best network type for the ANN{VSS. The result isthat 75.9 % of laryngealized frames are correctly classi�ed(instead of 85.6 % for the neural network inverse �lter),that the mean recognition rate on all frames drops to 63.1% (from 76.5 %), and that the false alarm rate is almostthe same for both approaches (about 16 %). This resultclearly demonstrates the superiority of ANN inverse �lter-ing to linear inverse �ltering for the detection of laryngeal-izations.4



NO REF ANNUV/VO error in % 3.9 3.9 3.8VO/UN error in % 6.9 7.3 8.3coarse F0 error % 10.4 6.5 7.2av. error in Hz 17 11 12Table 3 Improved computation of the fundamental fre-quency by exclusion of laryngealized sections of speech.The abbreviations are: NO for no consideration of laryn-gealized sections, REF for using the hand labeled laryn-gealizations, and ANN for using the automatically (ANN)detected laryngealizations.IV. Improved Pitch DeterminationAs mentioned in the introduction (Sect. I), the �nal goalis a reliable estimate of the fundamental frequency F0. Analgorithm for F0 computation based on dynamic program-ming has been described elsewhere [9]. It �rst computesseveral candidate values for the fundamental frequency us-ing two independent algorithms and then computes an op-timalF0 contour by dynamic programming. A problem arewrong candidate values which often are caused by irregu-larities of speech, that is laryngealized frames. Therefore,the idea is to detect laryngealizations, as shown above, andthen to exclude those frames from the DP{based compu-tation of the fundamental frequency by labeling them as\unvoiced". After computation of the F0 contour this con-tour is interpolated linearly in laryngealized frames; if thelaryngealized section is at the beginning or end of a voicedsection, the F0 value of the last voiced frame is extrapo-lated by a constant.The results for the database of 1329 sentences are sum-marized in Table 3. The table shows that the coarse errorrate, that is fundamental frequency errors of more than 30Hz, is reduced signi�cantly (from 10.4 % to 7.2 %). Fur-thermore, there is only a small degradation of performancewhen using laryngealizations automatically detected by theANN instead of the hand labeled laryngealizations (from6.5 % coarse errors to 7.2 %). This result indicates theoverall success of reconstructing the voice source signal anddetecting laryngealizations by means of neural networks.V. Conclusions and OutlookIn this paper we showed that the voice source signal canbe reconstructed reliably from the speech signal using anarti�cial neural network. With a network of type (78{100{100{100{1) we achieved a reconstruction giving 3.0 % ofcoarse errors in fundamental frequency computation. Thereconstructed VSS was used to detect laryngealized sec-tions of speech using another neural network. With a net-work of type (128{80{80{3) 85.6 % of laryngealizations areclassi�ed correctly at a false alarm rate of 16.1 %. In ad-dition it was shown that a voice source signal computedfrom a linear inverse �lter performs worse. Finally, it wasdemonstrated that the performance of a dynamic program-ming based algorithm for the computation of F0 contourswas improved from 10.4 % coarse errors to 7.2 % coarse
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