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Pitch Determination Considering
Laryngealization Effects In Spoken Dialogs

H. Niemann, J. Denzler, B. Kahles, R. Kompe, A. Kiessling, E. Noth, V. Strom

Abstract— A frequent phenomenon in spoken dialogs of the
information seeking type are short elliptic utterances whose
mood (declarative or interrogative) can only be distinguished
by intonation. The main acoustic evidence is conveyed by
the fundamental frequency or Fy—contour.

Many algorithms for F, determination have been reported
in the literature. A common problem are irregularities of
speech known as ‘laryngealizations’. This article describes
an approach based on neural network techniques for the
improved determination of fundamental frequency. First,
an improved version of our neural network algorithm for
reconstruction of the voice source signal (glottis signal) is
presented. Second, the reconstructed voice source signal
is used as input to another neural network distinguishing
the three classes ‘voiceless’, ‘voiced non—laryngealized’, and
‘voiced laryngealized’. Third, the results are used to im-
prove an existing F, algorithm.

Results of this approach are presented and discussed in
the context of the application in a spoken dialog system.

I. INTRODUCTION

Spoken dialog systems for information seeking enquiries,
e.g. train or plane connections, are a current research topic.
The importance and the use of intonation (or prosody, or
suprasegmental information) in speech recognition and un-
derstanding has been discussed, for example, in [11] [12]
[13] [14] [15]. Tt has been shown in [10] that in such dialogs
short elliptic utterances occur frequently whose mood can
only be determined by prosody. For example, an utter-
ance of an officer or an automatic system ‘the train leaves
at 16.30” might be answered by the client by ‘at 16.30 (1)’
signalling to the officer ‘ok, I got it’ or by ‘at 16.30 (?)’
signalling to the officer ‘please, confirm the time’. In both
cases the wording is identical, only the intonation is differ-
ent. The most important cue to intonation is the course
of the fundamental frequency over time, that is, the Fy—
contour. Many algorithms for determining the fundamen-
tal frequency have been reported [6]. A fairly reliable al-
gorithm using dynamic programming was presented in [9]
and employed in a prosodically controlled dialog system
[10]. Nevertheless, irregularities of speech known as la-
ryngealizations or as creaky voice often cause errors in Fjy
detection which in turn may cause erroneous reactions of
a dialog system. Hence, further improvement is desirable.

A laryngealization is usually characterized by an irreg-
ularity of the voiced excitation, manifested in the speech
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Figure 1. Top: a speech signal with laryngealization
Bottom: Voice source signal, recorded with a
laryngograph.

signal by irregular periodicity, strong variations of the am-
plitude, special form of the damped wave, or very long pitch
periods. An example is given in Figure 1. Different types
of laryngealizations are distinguished in [7] [2]. Such irreg-
ularities in the speech signal are a frequent source of errors
in Fy determination. However, they also occur frequently
at phrase boundaries, and therefore, may be a useful cue
for parsing of the utterances.

In this contribution we describe a neural network based
approach to the determination of laryngealizations which
in turn are used to improve Fy extraction. Since many er-
rors in the present version of the Fy extraction algorithm
are caused by laryngealizations, the idea is simply to detect
them and to interpolate the Fy—contour over laryngealized
portions of speech. Figure 1 indicates that laryngealiza-
tions may be detected more easily and reliably in the voice



source signal than in the speech signal. Therefore, the first
step is the reconstruction of the voice source signal (VSS)
by means of inverse filtering. This is done by a neural net-
work as described in Sect. II; a first version of this approach
was presented in [3], and here we present an improved ver-
sion of this algorithm. Once the VSS has been determined
it 1s classified by a neural network frame by frame into one
of the three classes ‘voiceless’, ‘voiced non-laryngealized’,
and ‘voiced laryngealized’; this is described in Sect. I1I. We
show in Sect. IV that these results can be used to improve
an existing algorithm for Fj extraction. A conclusion and
outlook is given in Sect. V.

II. INVERSE FILTERING OF THE SPEECH SIGNAL

A. Signal-To-Signal Mapping
Since pitch period calculation and the detection of laryn-
gealizations can be done much easier using the voice source
signal (VSS) instead of the speech signal the first step is
to reconstruct the VSS. Additionally, the voiced/unvoiced
decision is trivial on the VSS. The approach is to map the
speech signal directly to the VSS, i.e. to apply a signal-to—
signal transformation. The input and desired output values
are normalized to the range of [0, 1]. One window (contain-
ing 78 sample values corresponding to 39 ms) of the speech
signal is presented to the input layer of an artificial neural
network (ANN) which gives as output one single value of
the VSS. If we denote, in a multilayer—perceptron,
e the input layerby index ! = 0 having: = 0,1,... My—
1 input nodes ngo) for signal values z;,
e the hidden layers by indices { = 1,2, ..., M _; having
t=0,1,..., M; — 1 hidden nodes ngl),
e the output layer by index [ = L having — in our case
— one output node n¥,

then the relevant equations for computing an output value
are:

1. for each layer and each node per layer compute the
weighted sum of input values

y](l+1) _ Z wz(']l'-l—l)fi(l) _ w]('lH)
=0
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2. compute the output of a node from a nonlinearity O,
in our case the sigmoid function
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By shifting the speech signal point—-by—point through the
input layer, one gets the complete VSS reconstructed by
the ANN; the reconstructed VSS is termed here ANN-VSS.
Three types of ANN’s are investigated, the (non—recursive)
multilayer perceptron and the (recursive) Elman and Jor-
dan networks [4] [8]; for each type different configurations

Figure 2. An example of an Elman recursive network hav-
ing one hidden layer of nodes.

were evaluated. As an example we give the structure of an
Elman network in Figure 2 which has only one hidden layer
of neurons. The output of every hidden neuron is fed back
to a recursive node which in turn feeds forward to every
hidden node. Hence, the number of hidden nodes and re-
cursive nodes is the same in this network type. There may
be additional layers of hidden nodes which in fact were used
in our experiments.

We chose the sigmoid function as the activation func-
tion of all the neurons. The network is trained with the
quickpropagation algorithm [5]. For training the mean—
square—error criterion is used, for testing of the quality of
the ANN-VSS we use coarse errors in estimation of Fj.
If we denote the iteration step during training by n, the
backpropagation training adjusts weights according to
Wij n + 0Aw;j np1 + BAwW;; (3)

Wijn+1 =

where « is the learning rate and [ 1s the momentum term
. The quickpropagation algorithm replaces this by

Wijnt1 =  Wijn + Awij
de
OWij,n
Awj, = 5e o AWijn-1; (4)
OWij n—1 Wiz n

hence, no choice of & and 3 is necessary. The term ¢
in the above equation denotes the mean—square—error be-
tween input and output values. In the cases n = 0 and
Awijpo1 =0, au?; — > (0 we use equ. (3).

The speech signzﬂ 1s low—pass filtered with 1000 Hz; to
reduce high and low frequencies the VSS is band—pass fil-
tered from 20 Hz to 1000 Hz; and finally the signals are
downsampled to 2 kHz, to reduce the amount of data.
The processing simply consists of shifting the speech sig-
nal point-by-point through the input layer of the ANN,
and concatenating the sequence of single output values of
the ANN to the ANN-VSS. The output value of the net
is interpreted as the value of the ANN-VSS, measured at
the middle of the input frame. We use this input/output
relationship because the other possible form of relation-
ship, i.e. mapping one frame of the speech signal to one
frame of the ANN—-VSS/ enlarges the net and so the training
time. Furthermore, the mapping would be more complex

and cause discontinuities at output frame boundaries. The



ANN-VSS is smoothed to reduce noise. We use iteratively
5 average filters the width of which depends on the aver-
age pitch period of the ANN-VSS, so that only noisy parts
and no period in the ANN-VSS will be smoothed. The
average period is estimated by analyzing every frame of
the ANN-VSS in the frequency domain, searching for the
maximum in the spectrum. Unvoiced frames are ignored
for this estimation.

To train the network we use a database S in which speech
and voice source signals were recorded in parallel *. We got
a data set of 114 pairs of speech and voice source signals
(recorded by a laryngograph) with sampling frequency of
16 kHz. Within the data set 3 male and 5 female speak-
ers spoke German time of day expressions (for example,
“sechzehn Uhr vier”, 16.04 o’clock). The database S has
a length of 140 seconds of speech. It is divided into three
subsets, S1, 52, S3.

The subset S1 consists of 35 sentences from 8 speakers,
40 seconds of speech, 2757 frames, 68620 training patterns;
it 1s used for training the various networks. The subset
S2 has a non-laryngealized utterance from each of the 8
speakers. It consists of 1014 frames and is used to test
(during training) the ability of a network to discriminate
non-laryngealized utterances which were not in the train-
ing set. The subset S3 contains from each of the 8 speakers
one utterance having at least one laryngealization. It con-
sists of 641 frames and is used to test the ability of the net-
work to discriminate laryngealized utterances which were
not in the training set.

The mean-square—errror (MSE) is used to optimize the
weights and to judge the quality of the mapping perfor-
mance by an ANN. However, in this case the MSE is not
an useful measure of the quality of the ANN-VSS. Some vi-
sually good signals have a greater mean square error than
visually poor signals. Hence, the quality of the ANN-VSS
is measured in the following way. We first calculate the
pitch period of the VSS recorded by a laryngograph on
a frame-by—frame basis using a modification of the algo-
rithm given in [1] that searches for relevant maxima in the
VSS. The pitch period of an ANN-VSS frame (length of a
frame: 12.8 msec) is the average of the distances between
all consecutive maximain the frame. We define an errorin
one frame of the ANN-VSS if its pitch period differs from
the reference (created automatically and hand-corrected)
by more than 30 Hz. Thus the error is given frame-by—
frame not point—-by—point. This is done only for frames
of voiced speech. This measurement is also close to the
intuitive judgment of a person who visually analyzes the
ANN-VSS.

The weights are initialized by small random numbers.
The ANN is trained a fixed and relatively small number
of epochs (15 epochs) with the training set S1. Then we
test the ANN with the sets S1, S2, and S3 and record
the number of errors. If the error becomes zero or if it
increases over several (e.g. 3) iterations, the training stops
and otherwise a new cycle is entered. After training the

1This database was kindly provided by the Institute of Phonetics of
the L.M. Universitat, Munchen.

|T|I|L|H|O|Rec|W| Error |
ML | 78 | 3 80 | 1 | NIL | 19361 | 184 (3.5 %)
ML | 78 | 3 | 100 | 1 | NIL | 28201 | 159 (3.0 %)
JO |78 1 2 ]100 | 1 10 | 19131 | 189 (3.6 %)
EL | 78 | 2| 100 | 1 | 200 | 38101 | 186 (3.6 %)

Table 1. Summary of main results.

T denotes the type of ANN (ML: multilayer perceptron,
JO: Jordan recursive network, EL: Elman recursive net-
work); I, H, and O are the number of input nodes, hidden
nodes per layer, and output nodes, respectiveley; L is the
number of hidden layers; Rec is the number of recursive
nodes; W is the number of weights in the ANN; Error gives
the absolute number of errors and the percentage.

network we compute the error rate, that is the percentage
of deviations in Fjy which are larger than 30 Hz, on the full
database S.

B. Results

As mentioned above, three types of networks were in-
vestigated. Several configurations with different number of
hidden layers, different number of nodes per hidden layer,
and different number of recursive nodes (for Jordan and El-
man networks) were considered. Training times for larger
networks were about 3 days on a workstation with about
100 MIPS. The best configurations are summarized in Ta-
ble 1. This table shows that very reliable I estimation is
possible from the ANN-VSS.

An example of a reconstructed ANN-VSS is given in
Figure 3. It supports the result given in Table 1 that re-
construction is very good. The irregularites in the voice
source signal due to laryngealizations are clearly recon-
structed, see frames 32 — 38 in the lower part of Figure 3.
The results support the assumption that there are general
regularities for mapping a voice source signal to a speech
signal, that the inverse mapping exists, and that at least
a very good approximation of this inverse mapping can be
learned by an appropriate neural network.

Probably most of the remaining errors are caused by
voiced /unvoiced transitions and by laryngealizations. The
inverse filtering is robust to untrained speakers, different
recording conditions, facilities, and vocabularies. Although
a large number of network configurations was tested, it
may be expected to obtain still better results with larger
networks and more training data.

III. DETERMINATION OF LARYNGEALIZATIONS

Having reconstructed the VSS, the next step is to use
it to detect laryngealizations in the speech signal. This is
done by a second artificial neural network (ANN) which
again i1s a multilayer perceptron.

The input 1s the ANN-VSS obtained as described in Sec-
tion IT above. It has a sampling frequency of 2 kHz and
is normalized to the interval [—1,+1]. Experiments were
carried out using 3, 5, and 7 frames (corresponding to 77,
128, and 179 sample values, respectively) as input to an
ANN. Training of the ANN’s was done with 1329 sentences
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Figure 3. From top to bottom: speech signal,
laryngograph V5SS, ANN-VSS

(about 30 minutes) of speech spoken by 1 male and 3 fe-
male speakers, one third spontaneous and two thirds read
speech. Frames of 12.8 ms duration containing laryngeal-
izations were hand-labeled by phoneticians at L.M. Uni-
versity Munich. This hand—labeling is here assumed to be
correct. In a first series of experiments the output of the
ANN was one out of the three classes ‘unvoiced’, ‘voiced
non-laryngealized’, and ‘voiced laryngealized’. In a second
series unvoiced frames were excluded a priori and only the
two classes ‘voiced non-laryngealized’ and ‘voiced laryn-
gealized’” were distinguished. The experiments are summa-
rized in Figure 4.

Again, various ANN’s were tried. It was found to be use-
ful to smooth results with a median filter of width three.
The best network consisted of 128 input nodes, two hidden
layers each one with 80 nodes, and 3 output nodes (128-
80-80-3 ANN); the results are summarized in the confusion
matrix given in the upper part of Table 2. In particular,
85.6 % of laryngealized frames are classified correctly, and
the false alarm rate consists of 16.1 %. This is considered
to be a reasonable compromise between not missing laryn-
gealizations (maximizing correct recognition) and minimiz-
ing false alarm rate. Using the hand labeling the unvoiced
frames were excluded and a second series of experiments
was made. Now the best network consisted of 128 input
nodes, two hidden layers each with 100 nodes, and 2 output
nodes. The results are given in the lower part of Table 2.

initialize weights by small random numbers, iteration
step number N = 0, learning rate « = 0.01, and cor-
rect classifications p. = 0

N —N4+1

train ANN on training set having an equal number of
patterns from the three classes (= 6000) for a fixed
number of epochs (here: 25)

test on test set of 144 sentences and store p. n, that
is correct classifications at iteration step number N
I¥ Pe N S Pe

THEN | < «/10

ELSE [p. = pon

UNTIL learning rate oo < 0.000 01

determine iteration step number with maximal recogni-
tion rate p. xy and corresponding ANN

determine with this ANN the recognition rate on the full
sample of speech

Figure 4 Training and testing for the detection of laryn-
gealizations.

classified as

uv VN VL
# % # % # %
UV | 47820 80.2 6327 10.6 5456 9.2
VN 5320 6.9 | 54906 T71.5 | 16559 21.6
VL 431 7.0 456 7.4 5273 85.6

classified as

VN VL
VN 56929 74.1 | 19856 25.9
VL 424 6.9 5736 93.1

Table 2. Summary of main results for detection of laryn-
gealizations. The abbreviations are UV for ‘unvoiced’, VN
for ‘voiced non-laryngealized’, and VL for ‘voiced laryn-
gealized’. The upper part of the table shows results on
three classes, the lower part on two classes.

The recognition rate could be increased to 93.1 %, but the
false alarm rate increased to 25.9 %.

In Sect. IT we showed an approach to inverse filtering us-
ing a neural network. The “classical” approach to inverse
filtering is a linear filter and, of course, the question arises,
whether anything can be gained from using an ANN in-
stead of a linear filter. Hence, in another experiment we
computed the voice source signal from a linear inverse fil-
ter and used this VSS to train a 128-80-80-3 ANN, which
was the best network type for the ANN-VSS. The result is
that 75.9 % of laryngealized frames are correctly classified
(instead of 85.6 % for the neural network inverse filter),
that the mean recognition rate on all frames drops to 63.1
% (from 76.5 %), and that the false alarm rate is almost
the same for both approaches (about 16 %). This result
clearly demonstrates the superiority of ANN inverse filter-
ing to linear inverse filtering for the detection of laryngeal-
izations.



NO | REF | ANN
UV/VO errorin% | 3.9 | 3.9 3.8
VO/UN error in % | 6.9 | 7.3 8.3
coarse Fy error % | 10.4 | 6.5 7.2
av. error in Hz 17 11 12

Table 3 Improved computation of the fundamental fre-
quency by exclusion of laryngealized sections of speech.
The abbreviations are: NO for no consideration of laryn-
gealized sections; REF for using the hand labeled laryn-
gealizations, and ANN for using the automatically (ANN)
detected laryngealizations.

IV. IMPROVED PITCH DETERMINATION

As mentioned in the introduction (Sect. I), the final goal
is a reliable estimate of the fundamental frequency Fy. An
algorithm for Fjy computation based on dynamic program-
ming has been described elsewhere [9]. Tt first computes
several candidate values for the fundamental frequency us-
ing two independent algorithms and then computes an op-
timal Fyy contour by dynamic programming. A problem are
wrong candidate values which often are caused by irregu-
larities of speech, that is laryngealized frames. Therefore,
the idea is to detect laryngealizations, as shown above, and
then to exclude those frames from the DP—-based compu-
tation of the fundamental frequency by labeling them as
“unvoiced”. After computation of the Fjy contour this con-
tour is interpolated linearly in laryngealized frames; if the
laryngealized section is at the beginning or end of a voiced
section, the Fy value of the last voiced frame is extrapo-
lated by a constant.

The results for the database of 1329 sentences are sum-
marized in Table 3. The table shows that the coarse error
rate, that is fundamental frequency errors of more than 30
Hz, is reduced significantly (from 10.4 % to 7.2 %). Fur-
thermore, there is only a small degradation of performance
when using laryngealizations automatically detected by the
ANN instead of the hand labeled laryngealizations (from
6.5 % coarse errors to 7.2 %). This result indicates the
overall success of reconstructing the voice source signal and
detecting laryngealizations by means of neural networks.

V. CONCLUSIONS AND OUTLOOK

In this paper we showed that the voice source signal can
be reconstructed reliably from the speech signal using an
artificial neural network. With a network of type (78-100—
100-100-1) we achieved a reconstruction giving 3.0 % of
coarse errors in fundamental frequency computation. The
reconstructed VSS was used to detect laryngealized sec-
tions of speech using another neural network. With a net-
work of type (128-80-80-3) 85.6 % of laryngealizations are
classified correctly at a false alarm rate of 16.1 %. In ad-
dition it was shown that a voice source signal computed
from a linear inverse filter performs worse. Finally, it was
demonstrated that the performance of a dynamic program-
ming based algorithm for the computation of Fjy contours
was improved from 10.4 % coarse errors to 7.2 % coarse

erTors.

We expect that these results will make prosodic control
of a spoken dialog system more reliable and in turn improve
its user acceptance. However, verification of this expeca-
tion will be the subject of future work.
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