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Active Rays: A New Approach to ContourTrackingJ. Denzler, H. NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fdenzler,niemanng@informatik.uni-erlangen.deAbstractIn this paper we describe a new approach to contour extraction and tracking,which is based on the principles of active contour models and overcomes its short-comings. We formally introduce active rays, describe the contour extraction as anenergy minimization problem and discuss what active contours and active rays havein common.The main di�erence is that for active rays a unique ordering of the contourelements in the 2D image plane is given, which cannot be found for active contours.This is advantageous for predicting the contour elements' position and preventscrossings in the contour. Furthermore, another advantage of this approach is thatinstead of an energy minimization in the 2D image plane the minimization is reducedto a 1D search problem. The approach also shows any{time behavior which isimportant with respect to real{time applications. Finally, the method allows forthe management of multiple hypotheses of the object's boundary.First results on real image sequences shows the suitability of this approach forreal{time object tracking. The contour tracking can be done within the image framerate (25 fps) on standard Unix workstations (HP 735).Keywords: active contour models, tracking, real{time1 IntroductionThe �eld of real{time computer vision has become more and more important in the past10 years. Due to the increasing hardware performance and to new strategies for theprocessing of images and of image sequences (active vision, [2]), applications, which workin a closed loop between sensing and action, have been developed recently [6, 7, 11].Especially, for real{time object tracking many algorithms can be found in the literature[3, 5, 8, 13]. One class of algorithms is the so called active contour model (snake) [?],which allows for data driven contour segmentation, extraction, and tracking. They arewell suited for real{time applications due to the inherent local processing of an image1
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Figure 1: Two main problems of active contours during tracking resulting from the missingordering in the 2D image plane: Crossings in the 2D contour may occur (left). The snakeelements are not �xed at logical features on the object's contour, but they may movearound the contour as they like (right).nearby the snake elements. In front of a homogeneous background moving objects canbe robustly tracked in real{time [4, 14]. Introducing a prediction step, also some amountof inhomogeneous background can be allowed. Finally, this approach is insensitive withrespect to di�erent camera devices and changes in the camera parameters (focus, zoom,aperture); it is also robust to changing lighting conditions, even during the tracking.But this contour tracking method still has some limitations. Strong background edgesnear the object's contour are also good minima for the energy minimization of the activecontour. Thus, in natural scenes special task speci�c constraints [12, 16] are necessarywhich increase the computation time and reduce the real{time performance. Without suchtask speci�c constraints tracking may fail. Another problem is the missing order of thesnake elements in the 2D image plane. During the energy minimization crossings in thecontour might occur [17] which result in an incorrect contour extraction (see Figure 1, left).Algorithms exist [17], which can handle this case, but also increase the computation timeof the algorithm. Another problem arises from the missing order in the 2D image plane.Even if no crossing of the contour occurs, one cannot �nd any logical correspondencebetween active contour elements and points at the contour of the moving object. Thismeans, one cannot predict in principle to which point a single snake element moves. Onlythe movement and | for some amount | the distortion of the whole active contour canbe predicted (see Figure 1, right: the shape of the contour remains the same, althoughall the snake elements have moved around the contour). Finally, no work is known whichadds some any{time behavior to active contours. Of course, an iterative minimization canbe seen as an any{time algorithm. Reducing the iteration steps in one image results ina less accurate extraction of the object's contour. But within the next images the snakeelements might remove from the sphere of inuence of the object's contour and thus losethe moving object. This problem is explained in Figure 2. A 1D contour is shown atthree di�erent times (t1, t2, t3), moving along the x{axis. The snake element at time t1(black circle) is in the sphere of inuence of the 1D contour. It reaches the minimumafter some iterations by moving downhill the contour. At time t2 the contour element is



t2 t3t1Figure 2: Problem, when reducing the number of iteration steps during the energy mini-mization while tracking a 1D signal (time t1, t2, t3).again in the sphere of inuence. This allows for moving downhill to the minimum. Nowthe iteration number is reduced, which means that the energy minimization stops beforethe real minimum is reached. Then, at time t3 the snake element (gray circle) is not inthe sphere of inuence of the 1D contour and cannot reach the true minimum. Thus, thecontour is lost.In this paper we propose a new approach to contour extraction and tracking, whichwe call active rays. These active rays contain principles of active contour models (i.e.,energy minimization, local processing of the image, contour representation of the movingobject) and overcome the mentioned shortcomings. To be more precise, active rays� show any{time behavior,� reduce the 2D energy minimization of snakes to a 1D search problem,� allow for using multiple hypotheses for the object's boundary, and� have a �xed 2D order of the contour elements.In Sect. 2 we formally introduce active rays and we present an energy descriptionwhich shows the common parts of active contour models and active rays. In Sect. 3 weapply active rays to contour tracking and show the possible any{time behavior. Firstexperiments and results for real{time object tracking can be found in Sect. 4. The paperends with a summary and discussion (Sect. 5) and an outlook to future work (Sect. 6).2 Active RaysThis section is organized into three parts. First, a formal description for active rays isgiven. In the second part we formulate the contour extraction as an energy minimizationproblem and we compare active contour models and active rays. Finally, we motivate theuse of multiple hypotheses and the any{time behavior of our proposed method.
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Figure 3: Principle of one active ray. mKontur C
cm(�=2)cm(5=4�)Figure 4: Representation of a contour byactive rays.2.1 Formal DescriptionAn active ray %m(�; �) is de�ned on the image plane (x; y) as a 1D function dependingon those gray values f(x; y) of the image, which are on a straight line from the imagepoint m = (xm; ym)T in direction �%m(�; �) = f(xm + � cos(�); ym + � sin(�)); 0 � � � n�; (1)where n� is given by the image size. The principle is clari�ed in Figure 3. The angle � ismeasured counter clockwise.Now, a contour point in direction � regarding a given reference point m can be de-scribed by the parameter �(�) � 0�(�) = argmin� �� jrf(xm + � cos(�); ym + � sin(�))j2�= argmin� 0@� ����� @@�%m(�; �)�����21A ; 0 � � < 2�; (2)i.e., we are looking for points on the active ray with a maximum edge strength. Thecontour point vm(�) (see Figure 3) is thenvm(�) = (xm + �(�) cos(�); ym + �(�) sin(�)); 0 � � < 2� (3)A similar representation is used by the generalized Hough transform. In the discrete casethe whole contour can be computed by de�ning a sampling step size4� for �. This allowsfor di�erent accuracy of the contour representation. An example for a representation ofa contour is shown in Figure 4. The sampling step size 4� is �=4.Now, we have to discuss the choice of the reference point m. In principle, everypoint within the object's contour is possible. But to have a unique point, which can be



precalculated by a prediction step, the center of gravity of the contour extracted by theactive ray is used in the following, i.e., the equationm = 1=2� Z 2�0 vm(�) d� (4)should hold for the reference point m. For convex contours m will also be the center ofgravity of the object's contour. What happens, if the chosen reference point is not thecenter of gravity? Then, we can calculate a new reference point using the formula (4).After that, the new contour representation has to be calculated.2.2 De�nition of an Energy TermEquation (2) leads to single contour points without taking into account the global shapeof the underlying contour. Thus, errors might occur for real images due to noise in theimage or background edges near the object. Without coupling neighboring contour pointsthe function � normally will not correctly represent the contour. This can be seen inFigure 5, where the function � for the contour in Figure 6 (middle) is shown. For theangles � 2 [4=3�; 3=2� [ a strong edge is extracted, which does not belong to the contourwhich corresponds to �(�), � 62 [4=3�; 3=2� [ . In Figure 5 this results in four values of �(x{axis: 43� � 32�), which are outliers in this function plot.A common technique to solve this problem is de�ning an internal energy to connectthe contour elements of the active ray (see equation 3). For snakes a common de�nitionof the internal energy Ei(v(s)) of an active contour element v(s) is (cf. [?])Ei(v(s)) = �(s)jvs(s)j2 + �(s)jvss(s)j22 ; (5)with vs(s) and vss(s) being the �rst and second derivatives of v(s). This energy de�nitionweighted by �(s) and �(s) describes the membrane and thin plate behavior of a snake[?]. For an active ray the same behavior can be produced by de�ningEi(v(s)) = Ei(vm(�)) = �(�)j dd�vm(�)j2 + �(�)j d2d�2vm(�)j22 : (6)This is clari�ed in Figure 7 which shows the common ground of active contours and activerays. In the case of an active ray, a reference point is given. Thus, a better de�nition ofthe internal energy Ei(vm(�)) isEi(vm(�)) := Ei(�) = �(�)j dd��(�)j2 + �(�)j d2d�2�(�)j22 : (7)The function �(�) is given by equation (2). Now we need an external energy. Let us takethe usual image gradient, i.e.,Ee(vm(�)) = �jrf(vm(�))j2 = ������ dd�%m(�; �)�����2 (8)Equations (7) and (8) both need computations only for a 1D signal, compared tothe energy de�nitions of an active contour, which needs a 2D minimization. This isadvantageous for real{time applications.



10 43�
30

� 2�
��(�)

0Figure 5: The function � for the contour shown in Figure 6: one point of the x{axis isequal to �ve degree.
Figure 6: Example of a contour representation by active rays: The image (left), the activeray representation (middle) and the underlying external energy (right), computed by aSobel operator.2.3 Energy MinimizationAfter a formal description of an active ray and its internal and external energy, we can goon formulating the contour extraction as an energy minimization problem. For this, thesame formalisms as for active contour models can be applied (for example, the Greedyalgorithm [15], dynamic programming [1], etc.).The total energy of an active ray, which is uniquely given by the function �(�) and areference point m, can be de�ned asE = 2�Z0 [Ei(�(�)) + Ee(�(�))] d� (9)= 2�Z0 264�(�)j dd��(�)j2 + �(�)j d2d�2�(�)j22 � j dd�%m(�; �)j2375 d� (10)Now, we are looking for a function �(�), which minimizes this energy E, i.e., we have to



v(n� 1) = vm(�n�1)v(n� 2) v(n+ 1)v(n+ 2)m �n v(n) = vm(�n)�n�1Figure 7: Calculation of the internal energy of a snake and an active ray. The same energyde�nition can be used for both models.solve the Euler{Lagrange di�erential equation�(�) d2d�2�(�)� �(�) d4d�4�(�) + dd� ����� dd�%m(�; �)�����2 = 0: (11)This can be done in the discrete case by using an iterative algorithm [?].2.4 Multiple Hypotheses and Any{Time BehaviorIn the introduction we have noted that the approach of active rays allows for multiplehypotheses. For this, we have to look for the i best solutions of equation (2), which means,that for each ray in direction � we get a set �(�)�(�) = 8<:�k(�)j�k(�) = argmin�;�6=�l;l<k 0@� ����� @@�%m(�; �)�����21A ; 0 � k < i9=; (12)of possible solutions for the contour instead of one single contour element. Then, alsomultiple boundary elements, lying on one ray, can be handled, which is necessary, ifconcave contours shall be tracked.The principle of any{time behavior of active rays can be summarized as follows. If morethan one object should be tracked, or the objects are moving very fast, then increase 4�of the angle �. If you have more time or you need a more accurate contour representation,reduce4� by �lling some lost angles into the active ray. For example, start with the angles�=2, �, 3=2� and 2�. Then, if time is remaining, add the angles i=4�; i 2 f1; 3; 5; 7g, thenthe angles i=8�; i 2 f1; 3; 5; 7; 9; 11; 13; 15g, etc.
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mFigure 8: Principle of hypotheses management for contour points.3 Active Rays for Object TrackingIn the previous section an introduction and a formal de�nition of active rays, together withan energy minimization scheme has been given. For object tracking several aspects haveto be examined: The initialization of an active ray, the strategy for choosing a suitablenumber and directions of the active rays, as well as a strategy for managing multiplehypotheses. Finally to reduce the computation time certain search intervals have to beselected. Some of these points will be discussed in the following, some others will besubject to our future work.To initialize an active ray, one point within the contour of the moving object must befound. This can be done by using a static camera and computing the di�erence image.The center of gravity of the di�erence is well suited as a �rst reference pointm. Also, someinformation about the size of the moving object in di�erent directions can be computed.Shooting an active ray from this reference point may result in �nding strong edgeswithin this object which are not contour edges (step 1 in Figure 8). This is especially aproblem, if no information about the size of the object is available. Then, one possibleapproach is to let the active ray grow for each image, until a new contour point is foundwhich satis�es (2) (step 2 in Figure 8). If this new hypothesis within the next images isveri�ed, take it as the new contour element, update the reference pointm, and search forthe next hypothesis (step 3 and 4 in Figure 8). Due to the lack of space the veri�cationstep cannot be described any further in this paper.For each active ray %m(�; �) and the contour element vm(�) one can de�ne a searchinterval I(�) for � for the next image. This search interval can be computed by a predictionstep, or it may depend on �(�) of the previous image or the neighboring elements. So,only a small part of %m(�; �) must be examined to �nd the maximum, and equation (2)



Figure 9: Results for tracking a car on a highway with active rays (images 4, 24, 44, 64,84, 104 of a sequence of 123 images taken at video rate): the sampling step size 4� is�=18.gets �(�) = argmin�2I(�) 0@� ����� @@�%m(�; �)�����21A ; 0 � � < 2�: (13)In the introduction the missing ordering of snake elements in the 2D image plane hasbeen mentioned as a problem for predicting the motion of the single contour elements.Only the motion of the complete contour can be predicted. For active rays, one hasde�ned an implicit ordering in the 2D image plane, given by the angle of the rays andthe reference point. This can be used, if a 2D contour has been predicted, by estimatingthe 3D parameters of the moving object. Then, the reference point m of the predictedcontour as well as the rays in arbitrary directions can be calculated in advance and veri�edfor the real image data. The results for the real data can then be used to update thepredicted object parameters.4 Experiments and ResultsPreliminary experiments for extracting and tracking a contour with active rays have beenconducted. Neither multiple hypotheses nor a prediction step has been applied yet. Thiswill be the subject of our work in the near future. All experiments are done o�{line.In Figure 9 results for tracking a moving car on a highway are shown. The samplingstep size 4� has been �=18. The computation time for extracting the contour for all123 images of this sequence has been 1.98 sec, i.e., 16 msec/image on a HP 735/99 MHz.The reference point m has been chosen manually in the �rst image. For all other imagesthe computed center of gravity for the active ray in image t has been taken as the initialreference point for image t+1. In Figure 10 the results of the same sequence for4� = �=9can be seen. Results of the computation time for di�erent sampling rates can be foundin Figure 11.



Figure 10: Results for tracking a car on a highway with activerays (images 4, 44, 84 of a sequence of 123 images taken at videorate): the sampling step size 4� is �=9.
4� time/image(msec)�=180 38�=36 19�=18 16�=9 16Figure 11: Computa-tion time for one im-age for di�erent sam-pling step sizes 4�.5 ConclusionIn our contribution we have presented a new approach to contour tracking, called activerays. The basic ideas come from active contours, which have been proven to be a promisingapproach to data driven real{time contour tracking.Active rays have the following advantages over active contour models:� For active rays an ordering in the image plane is given by a reference point m andan angle �. Thus no crossings occur and predicting the position of the contourelements is possible.� All optimization problems are reduced to 1D search problems.� Active rays provide a mechanism, to select the required accuracy of the contourapproximation. This leads to an any{time behavior, which is an important aspectof real{time applications.� Active rays provide a mechanism to manage multiple hypotheses which is useful todetect contours which appear due to changing views of the object.We have presented a formal description of active rays and an energy formulation forthe contour extraction. In addition we have shown the common parts of active contoursand active rays. The experiments have proven that this new approach is well suited foran accurate contour extraction and tracking in real{time.6 Future ResearchIn Sect. 2 and Sect. 3 we have already mentioned the mechanism of multiple hypotheses,the possibility of an any{time realization and the advantages for the prediction of thecontour elements position. These topics are examined in our actual work. We will comparethe active ray approach against active contour models on a larger test set, also in a closed{loop real{time application [7].Finally, another important aspect of any problem in image processing or in generalpattern recognition is the ability of self{adaption, or learning. For example, learning 3Dmodels of objects from greylevel images [9], or the deformation of contours in the imageplane [10]. Today all state of the art speech recognition systems use a training set to
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