
Active Rays: Polar{transformed Active Contours for Real{TimeContour TrackingJ. Denzler and H. NiemannLehrstuhl f�ur MustererkennungUniversit�at Erlangen/N�urnbergD-91058 Erlangen, GermanyAbstractIn this paper we describe a new approach to contour ex-traction and tracking, which is based on the principlesof active contour models and overcomes its shortcom-ings. We formally introduce active rays, describe thecontour extraction as an energy minimization problemand discuss what active contours and active rays havein common.The main di�erence is that for active rays a uniqueordering of the contour elements in the 2D image planeis given, which cannot be found for active contours.This is advantageous for predicting the contour ele-ments' position and prevents crossings in the contour.Furthermore, another advantage is that instead of anenergy minimization in the 2D image plane the mini-mization is reduced to a 1D search problem. The ap-proach also shows any{time behavior which is impor-tant with respect to real{time applications. Finally, themethod allows for the management of multiple hypothe-ses of the object's boundary. This is an important aspectif concave contours shall be tracked.Results on real image sequences (tracking a toy trainin a laboratory scene, tracking pedestrians in an outdoorscene) show the suitability of this approach for real{timeobject tracking in a closed loop between image acquisi-tion and camera movement. The contour tracking canbe done within the image frame rate (25 fps) on stan-dard Unix workstations (HP 735) without any special-ized hardware.1 IntroductionIn the past years real{time object tracking in a closedloop of image acquisition and camera movement hasbecome more and more important. Real{time ob-ject tracking algorithms are applied to the area of au-

tonomous mobile systems [10], service and cleaningrobots and surveillance systems [3]. The typical en-vironment of such systems consists of a dynamicallychanging world due to motion and actions of objectsin the world and due to the movement of the systemitself. Thus, no o�ine processing of the image datais possible. The results of a motion tracking modulemust be available in time, to suitably react on eventsin the world. One example are service robots, whichmust track moving people in hospitals to avoid collisionswith them. The tracking algorithm provides informa-tion about moving persons, which is used by anothermodule to decide, whether a person might be an obsta-cle or not. If the moving object is on the movement pathof the service robot, the robot must avoid the collision.Up to now, many di�erent algorithms have been de-veloped to detect and track motion in image sequences[13]. Some of the work was concentrated on o�ineprocessing of prerecorded image sequences [12]. Thismeans, that no interaction in a closed loop of image ac-quisition and camera movement is possible. Real{timeobject tracking has been the goal of several researchers.Some of them use a model based approach [8, 9] whichis dependent on a speci�c area of application, like cartracking. The other class of algorithms uses correla-tion or optical 
ow based approaches [17], which can beapplied without knowledge about the problem domain.In the past realization of such algorithms made use ofspecialized hardware, like pipelined imaging hardwareor transputer systems [8, 15]. For portability reasons itwould be advantageous, if such systems could be imple-mented on general purpose hardware. A rule of thumbsays, that the hardware performance doubles every 18months. Thus, no reimplementation on the faster hard-ware is necessary. The software only needs to be recom-piled and then runs twice as fast.Some promising results in real{time tracking with-



out specialized hardware have been presented recently[1]. One class of algorithm is the so called active con-tour model (snake) [11]. What are the reasons, for thesuitability of active contours for object tracking with-out specialized hardware? First, the image needs onlybe processed in a small area around the snake elements,which results in an enormous reduction of the processeddata. Second, active contour models need no distinc-tion between foreground and background objects. Theactive contour extracts the moving object's contour in-dependently of other moving objects in the scene |assuming that there are no occlusions. This is advan-tageous if the camera is steered to follow the movingobject and thus motion is induced to the whole scene.Finally, active contours can handle changes of the ob-ject's contour due to the inherent deformation ability.Thus, changing contours of the moving object due tomotion in the 3D world, which are based on a changingview to the object, can be handled.But active contours have also some disadvantages: Noordering of the elements in the image plane is given, it ishard to implement an any{time behavior, crossings canoccur in the contour, and the contour normally shrinksin the case of missing external energies. These disadvan-tages will be discussed in more detail in section 2. Theyhave been the motivation of our work. Starting from theadvantages of active contours, we modify the contourrepresentation. We use a reference point within the ob-ject's contour and shoot rays in di�erent directions fromthis reference point m (see Figure 1). On these rays,we look for contour point candidates. This reduces thecontour point localization from a 2D to a 1D search oneach ray. The coupling of the rays in di�erent directionis done similary to active contours. We introduce an en-ergy term, which describes the internal elasticity of therays. Now we have an active ray following the namingof active contours. The contour extraction can then bedescribed as an energy minimization problem. We showin the following, that all optimization problems are re-duced to 1D search problems, and that no crossings canoccur because a unique ordering of the contour pointsin the image plane is given. This is important, if the lo-cations of the contour points shall be estimated duringa prediction step. Finally, the contour extraction showsany{time behavior. This means, that after an initial-ization step, the iterative algorithm for extracting thecontour of the moving object provides a contour repre-sentations after each iteration step. The accuracy of thecontour representations grows with each iteration step.Thus, the iterative procedure can be stopped at anytime, depending on the available computation time or

the required accuracy of the contour extraction. This isa important aspect for a real{time system, because theso called in{time constraint can be satis�ed. The ex-perimental part will prove, that the contour extractionis robust and can be done within the image frame ratewithout any specialized hardware. The contour extrac-tion time varies between 9 msec and 38 msec dependingon the chosen accuracy. We will prove the robustnessof this new approach for laboratory scenes (tracking amoving toy train) and outdoor scenes (tracking movingpedestrians).
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Figure 1: Representation of a contour by active rays
The paper is structured as follows. Section 2 �rstsummarizes the theory of active contours. This theoryis used as a motivation to introduce the new methodof active rays. We present an energy description, for-mulate the contour extracting as a energy minimizationproblem and present an any{time realization of the con-tour extraction process. In section 3 we go into detailfor the formal description of active rays. We formallyderive an energy term, starting with the energy descrip-tion of active contours. With this, we can show, thatactive rays have the same behavior as active contours.We then simplify the energy term, to avoid the shrinkingbehavior which can be observed for active contours. Insection 4 we present results for the proposed algorithmwhich show that tracking can be done in real{time onstandard Unix workstations without specialized hard-ware. Section 5 summarizes and discusses the results ofthis paper.2



2 From Active Contours to Ac-tive Rays2.1 A Short Remark on Active Con-toursActive contours have been widely used in computer vi-sion in the past eight years, especially in contour seg-mentation and tracking [16, 2, 14, 4]. An active contouris a parametric functionc(s) = (x(s); y(s))T 2 IR2; s 2 [0; 1] (1)de�ned in the (x; y) image plane of an image f(x; y).For closed contours one gets c(0) = c(1). Each snakeelement c(s) has an energy E(c(s))E(c(s)) = Ei(c(s)) +Ee(c(s)); (2)withEi(c(s)) = 12  �(s) ���� @@sc(s)����2 + �(s) ���� @2@s2 c(s)����2! (3)being the internal energy, andEe(c(s)) = � jG�rf(c(s))j2 : (4)being the external or image energy, smoothed with aGaussian �lter G� with variance �. The active contourhas a total energy EE = 1Z0 E(c(s))ds = 1Z0 fEi(c(s)) +Ee(c(s))g ds: (5)During the contour extraction one looks for a paramet-ric function c(s) which minimizes (5). This is mostlydone in the literature by solving the Euler{Lagrangedi�erential equations [11], by the dynamic programming[16], or by the Greedy{Algorithm [18].In practical applications several problems occur.First, during the energy minimization crossings in thecontour may occur [19]. This is shown in Figure 2.These crossings are a serious problem, if features com-puted from the contour (for example, the center of grav-ity) are used to track the contour. Of course, suchcrossings can be detected, but only at the expense ofcomputation time. Second, the snake elements mightmove around the contour, because they are not �xed atgeometric features of the object (see Figure 2). This isa problem for a prediction step, which tries to estimatethe motion of the contour in the 2D image plane. Ifthe snake elements move around the contour, a wrongmotion will be estimated. Another problem which has

often been mentioned is the tendency of the contour toshrink, in the case of missing external forces [18]. Thismight happen, if parts of the object's contour are weak.As a result the object is lost. Finally, it is hard to im-plement an any time behavior which would be of greatadvantage for a real{time application.The reasons for the crossings in the contour and themovement of the elements around the contour can beunderstood by looking at the ordering of the active con-tour elements in the images plane. Due to the de�ni-tion as a parametric function in IR2, a unique orderingis only given along the contour but not in the imageplane. Thus, if we can force an ordering in the imageCrossing

Figure 2: Two main problems of active contours dur-ing tracking resulting from the missing ordering in the2D image plane: Crossings in the 2D contour may oc-cur (top). The snake elements are not �xed at logicalfeatures on the object's contour, but they may movearound the contour as they like (bottom).plane, these two problems can be �xed.2.2 Active Rays: Energy DescriptionIn the last section the missing ordering in the imageplane has been worked out as one reason for some ofthe problems with active contours. This mean, that wehave to introduce a unique ordering in the image plane.For this, we de�ne a reference point m = (xm; ym)T ,which has to lie within the image contour. An active3



ray %m(�; �) is de�ned on the image plane (x; y) as a1D function depending on those gray values f(x; y) ofthe image, which are on a straight line from the imagepoint m in direction �%m(�; �) = f(xm + � cos(�); ym + � sin(�)); (6)with 0 � � � n�; where n� is given by the image size. Inthe following we only look at convex contours. Concavecontours will be mentioned later. Now, we can identify
m
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contour CFigure 3: Representation of a contour point by activeraysa point of the contour by the parameter ��(�) � 0��(�) = argmin�  � ���� @@�%m(�; �)����2! ; (7)with 0 � � < 2�: The step, which lead to (7), is moti-vated by the assumption, that an edge in 2D can alsobe found by a gradient search in the corresponding 1Dsignal. Of course, edges which are in the direction �from the reference point cannot be found on the ray%m(�; �). The experiments in section 4 will show, thatthis case is not relevant in pratice. Having the optimalvalue for ��(�) the contour point cm(�) in the imageplane can easily be computed bycm(�) = (xm + ��(�) cos(�); ym + ��(�) sin(�)); (8)with 0 � � < 2�: What are the results of this newrepresentation up to now?1. The ordering in the image plane is given by the an-gle �, i.e. we always know where the contour pointcan be found, which corresponds to the direction�n. For this we only have to look from the refer-ence point in direction �n. Thus, no crossings canoccur in the contour.

2. Using (8) we get the same representation of thecontour as for active contour, namely the represen-tation of the contour by the border of the contour.3. The most important aspect, especially for real{time applications, is the reduction of the contourpoint search from the 2D image plane to a 1D sig-nal. This reduces the computation time, which willbe shown in the experimental part of this paper.Summarizing the approach, we shoot from one givenreference point in di�erent directions � rays, on whicha contour point candidate is searched for. In Figure 4the extracted contour of an object and in Figure 5 thefunction ��(�) are shown. One can observe, that thefunction ��(�) is smooth for the angles which corre-sponds to the correctly extracted contour (0 � 4=3�).Then, an error can be seen, both in the extracted con-tour and in the function ��(�). For � 2 [4=3�; 3=2� [the function is not smooth, because a wrong contourpart has been extracted. This is no surprise. Lookingat equation (7) one can see, that up to now, the con-tour points are calculated without taking into accountneighboring contour elements. Thus, we need to intro-duce some linkage between neighboring contour pointsto take into consideration that normally contours arecoherent in space, i.e. that contours are smooth. Ausual approach to connect neighboring contour pointstogether is to introduce an internal energy similar tothe active contour approach.

Figure 4: 2D contour extracted by active raysAn internal energy which handles the above men-tioned demands isEi(cm(�)) := �(�)j dd��(�)j2 + �(�)j d2d�2�(�)j22 : (9)In the next section we will show how this energy canbe derived. One important aspect of this internal en-ergy term is, that this energy also depends only on a4
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0Figure 5: 1D function �� of the corresponding 2D con-tour of Figure 4.1D function, in contrast to active contours, where theinternal energy depends on a 2D function. This resultsagain in a reduction of the complexity of the followingoptimization algorithms.Now we have an energy, which describes contour pointcandidates for each ray and an energy, which connectsthe rays to get a smooth contour. Similar to activecontours we de�ne a total energy EE = 2�Z0 [Ei(�(�)) +Ee(�(�))] d�: (10)The contour extraction can then be described as an en-ergy minimization problem. Using the variational ap-proach the Euler{Lagrange di�erential equation�(�) d2d�2 �(�) � �(�) d4d�4 �(�) + dd� ���� dd�%m(�; �)����2 = 0must be solved. Again, this di�erential equation de-pends on a 1D function, in contrast to the same di�er-ential equation for active contours.Before we stress the management of multiple hy-potheses of contour points on one ray, some remarksmust be done regarding the reference point m. As al-ready mentioned, this point must lie inside the objectcontour, but the position may be arbitrary. For a pre-diction step, a unique position would be of great advan-tage. Thus, we always choose the center of gravity ofthe contourm = 1=2� Z 2�0 cm(�) d� (11)for the reference point. If this equation does not holdfor an actual reference point and an extracted contour,

INIT:delta = 2�, shootRay(0), shootRay(�)ITERATE:delta = delta/2, angle = 0WHILE angle less than 2�shootRay(angle+delta/2)angle=angle+deltaFigure 6: Any{time algorithm for contour extractionwe update the reference point using equation (11), andrestart the contour extraction with the updated refer-ence point's position.2.3 Discretization: Any{Time BehaviorUp to now we have derived the theory of active raysfor the continuous case. By applying active rays forcontour extraction in images we have to go to the dis-crete case. Two approaches for the discretization arepossible: �xed sampling rate 4� for the angle � or thealready mentioned any{time behavior. The later onewill be discussed in the following.The representation of active rays allows for an dy-namically increasing representation accuracy of the con-tour. After an initialization step for each iteration wecan get a more accurate contour. But we alsomight stopbecause after the initialization step we already have arepresentation of the contour. This representation in-creases in accuracy for each iteration. If there is only asmall amount of time, for example for fast moving ob-jects or the synchronously tracking of several objects,we can stop the iterative procedure after a few itera-tion steps. If there is more time we can increase theiteration steps and get a more accurate contour rep-resentation. Finally, this procedure might be steeredby the distance of the contour elements to neighboringcontour elements. If the distance between neighboringcontour elements corresponding to �n and �n+1 is large,then is would be useful to add one extra ray betweenthe angles �n and �n+1 to get a better approximationof the contour between the angles �n and �n+1. Thealgorithm is summerized in Figure 6.In the experiments, a sampling step size4� = 2�=15and 4� = �=5 have been prooven to be the best val-ues for a wide range of di�erent objects. Increasing4�results in a less accurate contour, while decreasing 4�increases the computation time. A systematic evalua-tion of di�erent4� has been done in [5] for a laboratoryscene, based on the di�erence of the true center of grav-ity of the moving object and the center of gravity of the5
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�(�n)�(�n+2)contour partFigure 7: The principle of multiple hypotheses on onerayextracted contour as well as based on the quality of thecomplete system (see Section 4.1).2.4 Extraction of Concave ContoursFor extracting concave contours more than one contourpoint might be found on one ray. Then, multiple hy-potheses of the contour points should be handled. Thiscannot be done for active contours, but can be done foractive rays as shown in the following.We use in the following the abbreviation H forH =  � ���� @@�%m(�; �)����2! : (12)Then, instead of calculating only one contour point can-didate for each ray, we can de�ne for each ray in direc-tion � a set �(�)�(�) = (�k(�)����k(�) = argmin�;�6=�l;l<kH; 0 � k < i) (13)of i possible solutions for the contour instead of one sin-gle contour element. Now, multiple boundary elementslying on one ray can be handled. This is clari�ed inFigure 7. Now, we have to modify the internal energyof an active ray, because the energy of one ray dependson the hypotheses on this ray and the neighboring rays.What is a good, that means minimal energy, for an ac-tive rays with several hypotheses? Instead of having forone contour point a smooth curvature, each hypothesesof this rays should have a corresponding contour pointon the neighboring rays. An energy terms which takesthis into account is in the discreteEi1 (�(�n)) = X�j2�(�n) min�k2�(�n+1)(�j � �k)2 (14)

Additionally, large distances between hypotheses on onerays should be preferred. This can be handled byEi2 (�(�n)) = � X�j2�(�n) X�k2�(�n)(�j � �k)2; (15)which must me minimized to get large distances be-tween the hypotheses. Now, we get the new termEi(�(�n)) = Ei1 (�(�n)) +Ei2(�(�n)) (16)for the internal energy of an active rays with severalhypotheses on each ray. Of course, Ei1 and Ei2 can beweighted di�erently. For the external energy we de�neEe(�(�n)) = X�j2�(�n) � ���� @@�%m(�n; �j)����2! (17)It is worth noting, that the energy term (14) corre-sponds only to the �rst order internal energy of (9).As already mentioned, in the literature there existseveral solutions for the energy minimization problempresented in the previous section. Besides the solu-tion of the Euler{Lagrange di�erential equation, thedynamic programming treads the optimization as a dis-crete search problem. Because of the discrete formu-lation of the multiple hypotheses energies the dynamicprogramming is better suited for minimizing sum of (16)and (17).3 Formal DescriptionIn this section we formally derive the internal energyterm of the active rays, which has already used in thesection 2.2. We can then also explain the tendency ofthe snakes to shrink and will �x this problem by modi-fying the internal energy of active contours.It can be easily seen that the same contour can berepresented both with active contours and active rays.Without any loss of generality we assume that the ac-tive contour element c(0) corresponds to the active rayelement cm(0). Then the relationc(s) = cm(�); (18)is valid, with the variable substitution � = 2�s.In the previous section we have looked for an en-ergy term describing some kind of smoothness of a con-tour. The internal energy of an active contour has beenproven to be a good energy description. Thus, we willtake exactly this energy term, but substituting the con-tour representation of snakes by this of active rays. Wethen get for the internal energy,Ei(cm(�)) = �(�)j dd�cm(�)j2 + �(�)j d2d�2 cm(�)j22 :(19)6



Now substituting (8) in (19) we get� 12�� @@scm(2�s) = @@�cm(�) == � �0(�) cos(�) � �(�) sin(�)�0(�) sin(�) � �(�) cos(�) � (20)with �0(�) = @@��(�). Similary, we get� 12��2 @2@s2 cm(2�s) = @2@�2 cm(�)=��00(�) cos(�) � 2�0(�) sin(�)� �(�) cos(�)�00(�) sin(�)� 2�0(�) cos(�) � �(�) sin(�) � (21)with �00(�) = @2@�2 �(�). Now one can directly compute� 12��2 ���� @@�cm(�)����2 == h (�(�))2| {z }distance term+ (�0(�))2| {z }smoothing term i (22)and � 12��4 ���� @2@�2 cm(�)����2 == 4 (�0(�))2 + (�00(�))2| {z }smoothing term � 2�00(�)�(�)| {z }mixedterm + (�(�))2| {z }distanceterm (23)and we get for the internal energy Ei(cm(�)) of theactive rayEi(cm(�)) = 12 n�(�)(2�)2 h(�(�))2 + (�0(�))2i++ �(�)(2�)4 h4 (�0(�))2+ (24)+ (�00(�))2 � 2�00(�)�(�) + (�(�))2ioOne can see two distance terms in this energy term.Thus, during an energy minimization small distances tothe reference point are preferred. This is exactly thebehavior of active contours, which shrink to one pointin the case of missing external energy. This is not easyto see by the energy description for active contours. Incontrast to this, the energy description of active raysmakes this behavior obvious. Using exactly the energyterm (25) active rays will show the same abilities as ac-tive contours, with the exception, that all 2D optimiza-tion steps are reduced to 1D. We have already noted,that the shrinking behavior of active contours is not

advantageous. Thus, if we neglect the distance term inthe internal energy we �x this problem. Additionally itcan be shown, that the mixed term does not in
uencethe solution of the Euler{Lagrange di�erential equation.So, this term can also neglected. As a result one getsthe term for the internal energy, as already proposed inequation (9).4 Experiments and Results4.1 Experimental EnvironmentWe have chosen two di�erent experimental environ-ments to show the applicability of active rays: pedes-trian tracking and tracking a toy train in a laboratoryscene. For the tracking of pedestrians and the toy train,a pan/tilt camera devices looks at the scene.The system for object tracking runs in two stages: aninitialization stage, where the motion detection moduledetects motion in the scene, and a tracking stage. Mo-tion detection is done assuming a static camera andcomputing the di�erence image between consecutiveframes at a 128 � 128 image resolution. After thresh-olding and smoothing operations (morphological opera-tors \opening" and \closing") we get binary regions, inwhich changes in gray values occurred. These changesare assumed to be caused by moving objects. The centerof the largest binary region is taken as initialization ofthe reference point of the active rays. If we observe toomany small regions or one very large region, the thresh-old for computation of the binary image has been setwrong regarding the noise conditions. Thus, we rejectthe result, increase or decrease the threshold and startthe motion detection again. As a result, the thresholdis automatically adjusted to the noise conditions in thescene.After selection of one region and the correspondingcenter of gravity (taken as initial reference point m,compare Section 2.2) the contour extraction starts. Asa result we get the new reference point, which is thecenter of gravitym of the moving object's contour. Thispositional information is used by a camera control unit,to steer the camera. This is done by a proportionalcontroller to keep the center of the object's contour inthe middle of the image. This closes the loop betweenimage acquisition and camera control.During tracking an attention modules watches overthe whole process. This modules computes featuresfor the extracted contour, for example the x{ and y{moment of the contour. Based on rapid changes ofthe features errors are in the contour extraction and7



tracking are detected. In this case, the attention mod-ule stops the pan/tilt camera, and switches the systemback from the tracking stage to the initialization stage.Then, the detection of moving objects starts again.Due to lack of space, only a short overview of thesystem could be presented. A more detailed descrip-tion of this real{time system for tracking moving ob-jects | though using active contours for tracking |can be found in [6]. Experiments, where the camera ismounted on a moving car, can be found in [7].All algorithms are implemented on Unix{Worksta-tions (SGI Onyx, 2 � R10000) in an object orientedprogramming language. The frame grabbing is doneby a SIRIUS video board, which does no preprocessing.The complete system also runs on a HP (735/99) butwith reduced speed due to the moderate frame grabbingrate of an HP RasterOps frame grabber.4.2 Tracking with Active Rays: ResultsExperiments for extracting and tracking a contour withactive rays have been conducted. No prediction step hasbeen applied yet. This will be done in our future work.Some ideas together with more experiments (trackingof cars) can be found in [5].In Figure 8 { 10 three di�erent image sequences takenduring a real{time experiment can be seen. In Figure 8

Figure 8: Sequence 1: Tracking a pedestrian with activerays. (images 4, 24, 44, 64, 84, 104 of a sequence takenduring a real{time experiment). The sampling step size4� is 2�=15.a moving person is correctly tracked, although the con-trast to the background is low. A worse result can beseen in Figure 9. A person approaching the camerais correctly tracked, until the contrast is very low and

Figure 9: Sequence 2: Tracking a pedestrian approach-ing the camera (images 19, 29, 39, 49, 59, 69 of a se-quence taken during a real{time experiment). The sam-pling step size 4� is 2�=15.another minimum in the energy corresponding to thebackground object (the stick) is reached. Then, the ob-ject is lost. This is a problem of a data driven approachwithout prediction. To improve the approach we willadd a prediction step in our future work. Another goodresult can be seen in Figure 10. One can also see, thatthe extracted contour is very accurate. As soon as thepedestrians moves into the sunshine the active ray isattracted by the strong edges between sun and shadow,and the object is lost.To judge the results for pedestrians tracking underdi�erent weather conditions, we have recorded the cam-era signal during the experiments on a video tape. Thisvideo tape has been evaluated by visual inspection, tomeasure the amount of time, where tracking works wellor errors occur. Results are shortly summarized in Ta-ble 1. This shows the robustness of the contour basedapproach regarding noise. The rates for correct mo-tion detection are less accurate due to noise sensitivityof the di�erence image motion detection algorithm. Asalready mentioned the approach is sensitive to weak ob-ject contours.In Table 2 the computation time on a HP (735/99)for di�erent sampling step sizes 4� can be seen. Evenfor a very dense sampling (4� = �=180) the contourextraction can be done within the image frame rate.Finally, Figure 11 shows some results for the labo-ratory scene. During a 30 minute experiment, whichcorresponds to 45000 images, the moving toy train hasbeen tracked without any error, even during occlusions.8



Figure 10: Sequence 3: Tracking a pedestrian approach-ing the camera (images 1, 21, 41, 71, 101, 131 of asequence taken during a real{time experiment). Thesampling step size 4� is 2�=15.weather totaltime #per-sons timeoftrack-ing # trackedpersons(time)snow 120 226 21 101 (11)cloudy 90 128 14 93 (11)sunshine 90 152 13 102 (12)total 300 506 48 296 (34)Table 1: Results for pedestrian tracking under di�erentweather conditions (success rate: 70 %). The time isgiven in minutes.The train moves at a speed of 40 cm/sec at a distanceof 1.5 to 2.5 m to the camera. This corresponds to adisplacement between consecutive images of 6{8 pixelsat a resolution of 128 � 128 pixels. The same exper-imental environment has been taken for tracking withactive contours. This shows the improvements by thenew approach. Results can be seen in Figure 12. In thiscase, the maximum speed of the toy train for compara-ble tracking results has been 2.4 cm/sec, which proovesthe expected reduction of computation time for activerays.For more detailed evaluations of the real{time track-ing system, in which the approach of active rays is in-cluded, we have to refer to [5] for the laboratory sceneas well as for the natural one.

4� time/image(msec)�=180 38�=36 19�=18 12�=9 9Table 2: Computation time for one image for di�erentsampling step sizes 4�.

Figure 11: Sequence 4: Laboratory scene with partialocclusions and random changes of direction and speedof the toy train during tracking. Every 5th image of asequence taken during a real{time experiment is shown.The sampling step size 4� is �=5.9



5 Conclusion and Future WorkIn our contribution we have presented a new approachto contour tracking, called active rays. The basic ideascome from active contours, which have been proven tobe a promising approach to data driven real{time con-tour tracking.Active rays have the following advantages over activecontour models:� For active rays an ordering in the image plane isgiven by a reference pointm and an angle �. Thusno crossings occur and predicting the position ofthe contour elements is possible.� All optimization problems are reduced to 1D searchproblems.� Active rays provide a mechanism to select therequired accuracy of the contour approximation.This leads to an any{time behavior, which is animportant aspect of real{time applications.� Active rays provide a mechanism to manage mul-tiple hypotheses. An energy term has been pre-sented, which allows for the extraction of concavecontour parts within a energy minimization frame-work.

Figure 12: Sequence 5: Results for tracking the toy trainwith active contours (20 contour points). The maxi-mum speed, where robust tracking can be performed,has been 2.4 cm/sec.We have presented a formal description of active raysand an energy formulation for the contour extraction.
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