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Automatic Tooth Restoration via Image WarpingSebastian Meller, Matthias Wolf, Peter Weiericha and Matthias Pelkab and DietrichPaulusc and Heinrich Niemanna;ca Bavarian Research Center for Knowledge Based Systems (FORWISS)Research Group Knowledge ProcessingAm Weichselgarten 7, D-91058 Erlangen, GermanybPoliclinic for Restorative Dentistry and PeriodontologyGl�uckstr. 11, D-91054 Erlangen, GermanycChair for Pattern Recognition (Computer Science 5)Martensstr. 3, D-91058 Erlangen, GermanyAutomatic tooth restoration systems produce dental restorations for individual given teethwith a prepared cavity. Whereas the shape of the inlay inside the tooth is determined bythe shape of the cavity the chewing surface yet has to be de�ned. We present RecOS, amethod that makes use of an intact chewing surface of a model tooth to determine thechewing surface of an inlay, onlay or crown to be ground by an NC{machine e.g. fromceramics. The method uses the technique of image deformation to provide a congruencebetween range images of the model tooth and the prepared tooth such that the missingpart is determined by the deformed model tooth. The image deformation is de�ned by anumber of pairs of mutually corresponding feature points in both range images. Featureextraction techniques including active contours [4] are used to detect these points. A newapproach for contour{matching is proposed to match corresponding feature points of thetwo di�erent teeth. Our implementation was tested on a number of range images withmanually marked cavities. The mean height di�erence between the restored surface andthe original surface was between 0:2mm and 1:0mm. This is only half of the di�erencemeasured on machine{made inlays of a commercial system. The method can be extendedto consider the chewing surface of antagonistic teeth as well.1. IntroductionToothaches are an unwelcome reason to see your dentist. After removing the sourceof pain, usually caries, the remaining gap has to be �lled again. Amalgam { thoughstill favored by a lot of dentists as an excellent �lling material { has recently lost itspopularity due to its still discussed toxicity. Following the demand for tooth{coloredrestorations, the market for ceramics as a �lling material is currently growing. However,the traditional way of manufacturing inlays from ceramics requires imprints of both jawswhich are unpleasant to be taken, at least two visits at the dentist's and the participationof a dental technician to manufacture the inlay in a complicated process involving severalsteps.



In order to reduce this e�ort, CIM{systems like the CerecR system [7] have been de-veloped which allow a computerized interactive construction of ceramic inlays in oneappointment. An optical imprint of the prepared tooth is taken intraorally with a spe-cialized camera that produces range images of the tooth surface. Whereas the shape ofthe inlay inside the cavity can be calculated directly from the range data, the chewingsurface is shaped manually in a CAD system on the screen. The inlay can then be groundby an NC{machine from a raw block of ceramics. Usually the produced inlay needs somecorrections with a diamond drill to achieve a smooth continuation of the original toothsurface and to ful�ll the requirements of the chewing process, which takes precious timeand unavoidingly removes healthy substance from the tooth.Our system aims for the reduction of the required manual contributions in the shapingprocess. After a survey of the state of the art in this area in Section 2 and a descriptionof the images we use in Section 3 the steps of our method are described. The idea ofthe RecOS method (Reconstruction of Occlusal Surfaces1)[6] is to make use of the intactocclusal surface of the model tooth to determine the occlusal surface of an inlay, onlayor crown to be ground by an NC{machine for the given tooth to be restored. In orderto do this range images of both teeth are made congruent by an image deformation ofthe model tooth that is based on extracted feature points as control points. Section 4describes the detection of these points, Section 5 the matching of corresponding pointsin both images as a prerequisite of the image deformation in Section 6. After copyingthe range data into the cavity, a �nal height adjustment (Section 6) of the inlay surfaceensures a smooth transition between inserted and original tooth surface. Some results arediscussed in Section 7 and a summary and outlook follow in Section 8.2. State of the artOnly very few publications deal with the �eld of automatic tooth restorations. Fordental range images, interactive approaches for feature detection are described in [9,11],whereas the automatic method in [15] is only applicable for intact chewing surfaces.Concerning complete systems besides the mentioned CerecR system [7,8], two patentdescriptions [12,1] are available. Both use a�ne transformations of a 3D model tooth toadapt it to the given tooth and they mainly consider the production of crowns insteadof inlays and onlays for a given incomplete tooth surface. In [3] a deformable 3D toothmodel is adapted to intact model teeth in an energy minimizing process. It is plannedto use this model to restore missing surface parts in the future. The issue of surfacerepresentations for tooth models and the conversion into a program for an NC{machineis addressed in [5].3. ImagesThe range images we use were taken with a camera from the CerecR system based onphase{measuring triangulation [2]. A typical example is given in Figure 1a and 1b whererange values are coded as gray values. The sensor provides range images with a resolutionof 700� 480 pixels and 256 possible range values covering 7:3mm of height with a pixelcorresponding to a 30� 30�m square on the tooth surface.1patent pending



Figure 1. A range image of a model tooth (a), a prepared tooth (b) and its 3D{visualization (c). The cavity was simulated by blacking out an area in the range imagein order to enable an evaluation of our reconstruction method.4. Feature detectionThe detection of the outer contour lines of both teeth as one part of the required controlpoints for the image deformation step is performed in two steps. The �rst step is a roughestimation of the centers and outlines of all teeth in each range image. A ring{shapedmask with diameters to cover the tooth outlines of di�erently sized teeth is moved acrossthe gradient image of the range image. The sum of the gradient values within the maskis associated with the center pixel. Local maxima in the resulting image of gradientsums represent possible tooth centers. The local maxima are detected with an algorithmsimilar to the watershed transformation [14]. The method allows to detect even the partlyvisible neighboring teeth and prepared teeth with a sometimes incomplete outline. Themaximum gradient values within the ring mask on rays starting at the detected toothcenter points give a rough estimation of the tooth outlines to be re�ned in the secondstep. Figure 2a shows the ring mask at the three detected tooth centers with the contourestimation.The second step uses the active contour or snake approach [4]. In our application wehave chosen a number of N=200 control points, also called snaxels, to describe the shapeof the outer contour line. Initial snaxel positions are de�ned by the contour estimationfrom the �rst step. During the iterative energy minimization process the snaxel positionsare changed until the sum of the gradients along the contour is maximized and the localcurvature is minimized. Thus it is possible to approximate the tooth outline and to spangaps in the outline of the prepared tooth caused by a cavity. If necessary, larger gapscan be spanned with user support semi{interactively. An example of a detected outlineis given in Figure 2b where adjacent snaxels are connected with lines.After extracting the tooth from the background, characteristic feature points in theocclusal surfaces are detected. Typical features of molars are the number and the positionsof the cusp tips as well as the shape of the �ssures. Cusp tips are detected as local maximawith the same algorithm described above. Points of the �ssure which lie on the intersectionof the �ssure and a straight connection between two adjacent cusp tips are detected bysearching for local minima on these lines. The positions of the inner feature points for aprepared chewing surface are shown in Figure 2c.5. Feature MatchingThe image warping technique we use (see Section 6) is based on pairs of control points,in our case contour and characteristic feature points of the model tooth and their cor-
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Figure 2. Rough estimation of tooth centers and outlines (a) in the gradient image, there�ned contour (b) and characteristic feature points inside the chewing surface (c).responding points in the prepared tooth. The problem of correspondence is well{knownfrom stereo{vision or detection of motion [10]. Our solution reduces the two{dimensionalproblem to a one{dimensional matching of the sequences of snaxels obtained from thesnake approach of Section 4. The contours of two teeth of the same type (e.g. molars) aresimilar. This similarity can be described by four criteria which are invariant with respectto scale, translation and rotation. These criteria are determined for each snaxel yieldingfour sequences of measured data per tooth (Figure 3):1. The distance ri from each snaxel to the tooth center M2. The local curvature �i at each snaxel P i = (xi; yi), approximated by�i = i � i+1 with i = arctan yi�yi�1xi�xi�13. The distance ci of each snaxel to the nearest cusp tip4. The distance fi of each snaxel to the nearest detected �ssure pointP i�1
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Figure 3. Each snaxel of both teeth is associated with a four{dimensional vector ofnormalized values. These vectors of both contours are mapped to each other using cross{correlation and \Dynamic Time Warping".The aim of the matching process is to determine a mapping of the snaxels maximizinga suited measure of similarity for the sequences of measured data for the two teeth. Thematching process itself is subdivided into two steps. In the �rst step, the displacementthat maximizes the similarity of the two contour lines is computed by searching for adisplacement jmax = argmaxj rab(j), where a and b denote the sequences of measurementvectors ai; bi; i = 1 : : :N of the prepared tooth and the model tooth contour, respectively.The similarity criterion tab(j) = PNi=1 aib(i+j) mod N can be interpreted as a vectorialversion of the cross{correlation coe�cient known from statistics.



In the second step, we apply a method originating from speech recognition, \DynamicTime Warping" [10], to determine a nonlinear mapping of the contour points. Thismethod minimizes the summed up euclidian distances between measurement vectors ofsnaxels that are mapped to each other. Minimization over a restricted range of possiblemappings is achieved by dynamic programming. A result can be seen in Figure 4 wherethe model tooth is visualized inside the prepared tooth and corresponding feature pointsare connected with lines.Afterwards, the characteristic feature points inside the occlusal surfaces are assigned toeach other according to the mapping of the contour points next to them. In case of featurepoints hidden in the cavity area of the prepared tooth, the assignments are omitted (seealso Section 8).
Figure 4. The result of the feature matching process. The inner smaller contour showsthe feature points of the model tooth, the outer one belongs to the visible range image ofthe prepared tooth. Corresponding feature points are connected with lines.6. Image Warping and Height AdjustmentThe pairs of control points can now be used to deform the range image of the modeltooth to achieve a congruence of both teeth. A coordinate transformation g : g(x; y) =(g1(x; y); g2(x; y)) is performed where g1 and g2 are calculated as scattered data inter-polation functions based on the control points. We use radial base functions known asHardy's multiquadrics that have proved to be successful for image warping [13]. A resam-pling of the range image follows. An example of a range image of the deformed modeltooth of Figure 1a is shown in Figure 5a. The area in the model tooth corresponding tothe cavity can now be copied into the prepared tooth. As positions of cusps and �ssureshave been made equal in both images by the image deformation, the surface relief of themodel tooth is very close to the unknown original one of the prepared tooth. However, anadditional height adjustment step is needed, because the image warping did not changethe height values of the model tooth. The height di�erence of the deformed model toothand the prepared tooth at the cavity edge can be taken as a set of control points foranother two{dimensional interpolation. The resulting surface is an estimation of the dif-ference between the surfaces of the deformed model tooth and the unknown original one.Thus the cavity is �lled with height values copied from the model tooth added to this es-timated di�erence value at each point. The result is a fully restored occlusal surface witha smooth transition between the restored part and the tooth and a natural continuationof the occlusal relief (Figure 5b). Other methods beyond the focus of this paper can usethe calculated surface data to prepare the grinding of the inlay (Figure 5c) or onlay byan NC{machine.



Figure 5. The deformed model tooth (a) (originally Figure 1a), the restored tooth surface(b) and the inlay (c).7. ResultsOur method was implemented in several modules of the Khoros image processing sys-tem. In order to evaluate the quality of the achieved results, we have tested our approachwith the following experiment: In ten range images a dentist manually blackened appro-priate areas in the range images to simulate cavities of three di�erent sizes (see Figure 6).Then a data base of intact model teeth [15], not including the prepared test teeth, wasused to reconstruct the destroyed area of the teeth automatically. The data base currentlyconsists of 60 range images of �rst upper molars of adults. Afterwards the results werecompared with the original chewing surface. Depending on the size of the cavity the meanheight di�erence between the reconstructed and the original chewing surface was withina range from 0:2mm to 1:0mm. In comparison with the mean height di�erence measuredon CerecR{inlays [8] the error could be halved.
Figure 6. Range images manually marked with di�erently sized cavities8. Summary and OutlookWe have presented a new method to determine the shape of a dental restoration for agiven prepared posterior tooth. It was tested on a set of range images and showed a highsimilarity of the restored surface parts with the original tooth surfaces. It also ful�lls thedentists' demand for a smooth transition between restoration and tooth and a naturalcontinuation of the occlusal relief.Until the result of the image deformation highly depends on the number of cusps de-tected in the chewing surface of the prepared tooth. In case of big cavities some cusps willnot be detected and therefore the deformed model tooth may not have the same occlusalrelief as the prepared tooth. In these cases optical imprints of the antagonistic teeth ofthe opposite jaw can provide clues for the missing cusp positions and introduce controlpoints for the height adjustment (Section 6) in order to optimize the role of the restored
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