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Abstract model the whole object. Such an approach ne-
glects the fact that sometimes a couple of impor-

In this paper an approach on tracking objectsant and significant parts of the object could be
consisting of multiple parts is presented. Insteadnore easily detected than the whole object itself
of tracking each part independently, all featuresn one step. Thus, for a multi—-part approach it
are tracked simultaneously. Therefore, the spais more natural to define specialized feature de-
tial dependencies of the object’s parts are detectors that can better localize a certain part of
scribed by a probabilistic model that is calledthe object than a general feature detector is able
“coupled structure”. The tracking process is per4o localize the whole object. This strategy alone
formed using an algorithm for propagating con-will of course not yield an improved result. In
ditional probability density function over time, addition, the different parts must be coupled us-
called ®NDENSATION algorithm. The mainad- ing a priori information about their spatial rela-
vantage of our approach is, that object modelingionships. One example to support this statement
and object tracking are embedded into a comis, to find a face in an image. This can be done
pletely probabilistic framework, so uncertainty by looking for the two eyes and the mouth whose
can be handled very powerful and elegant. positions are not independent from each other.

Finally, we demonstrate the applicability of The problem that needs to be solved now in such
our approach by tracking a moving human facea multi—part approach is how to make use of the
in a difficult environment and give some experi-a priori known spatial relationships between the
mental results. different parts.

In this contribution we show that the localiza-
tion and tracking of an object consisting of mul-
tiple parts that have known spatial interpart rela-
tionships, can be solved completely in a proba-
bilistic framework. The main point is proba-
bilistic modelthat represents the spatial depen-
denC|es For finding the locations of the features,
one has to determine those parameters of the
model that maximize the a posteriori probabil-
(MAP) of the model conditioned by the cur-
rent data. To track the features, not only a single
state, but the whole probability density over the
object’s state conditioned on the measurements
‘obtained while processing the image sequence is
propagated over time. Compared with the well

“This work was supported by the DFG under grantknown Kalman filter, this has the advantage, that
SFB603 also multimodal densities can be used, i.e. mul-

1 Motivation

Localization and tracking of objects is one ma-
jor problem in computer vision. Examples are
video surveillance, multi media application, au

tonomous driving and robots and augmented re

ality. Most objects consist of different parts, for
which specialized feature detectors exist belng?t
able to optimally localize those part. Dispite that
fact, object localization and tracking is mostly
done in a holistic manner. This means that prim-
itives are extracted in the image (for example,
edges, corners, or regions) which are used tQ




tiple hypotheses of the object’s state are treatetllly used for contour based object tracking [4].
inherently. There, a 2—-D contour is represented by differ-
For the coupling of multiple features, the mostent 1-D rays, which originate from one reference
related work is the one on feature networks inpoint that lies inside the contour. Now, instead
[6]. There, the coupling of certain features asof interpreting a point on a ray as a candidate for
well as the composition of higher level geomet-a contour point, it can be generally seen as the
ric constraints is used to improve the accuracy ofocation of any given feature. The concept of a
tracking. But in contrast to [6], we use a con-contour in the image plane, which is represented
crete model that is completely embedded into &y a given set of rays, is therefore replaced by a
probabilistic framework. general concept that we calbupled structure
Our work reduces the whole MAP estimation  The position of a certain feature is given by a
process to an energy minimization problem. ltcoupling raye, = (\;, ¢;)7 with length \; and
can also be compared with active, elastic conangle¢;. The pose of the ray is determined by
tours, if the contour points are substituted bythe angleg; measured with respect to a given
higher level features; to localize faces, these feareference line in the image (usually the horizon-
tures may represent the two eyes and the moutfal line). All coupled rays originate in a common
(cf. Section 4). The values of the model param-point called theoupling centeim = (m,, m,)T
eters, representing the spatial dependencies, ca¥ith its image coordinates:, andm, (s. Fig-
be estimated in a training step. In our currenture 1). So the model, i.e. the coupled structure
work, this is done by using a labeled training set.s is defined by the: coupling rays and the cou-
For this, the probabilistic framework is advan- pling center
tageous because of the rich theory already avail-
able for parameter estimation, and the possibility s=(oy,...,0,m)".
of handling uncertainty, caused by noisy data.

This paper Is organized as follows: first_, the Because of the fact that the locations of the
probabilistic model, calledoupled Structurgis o a1 res of the objects under consideration often
introduced in Section 2. It is shown how the change slightly (think of a non-rigid motion of
m_odel can be build up from smgl_e SO Ca”@“' a face) and that the detection of features is dis-
pling rays Then, for the dynamic case, I.e. theeq by noise, it is reasonable to regard the im-

tracking of such a coupled structure, theiG a0t quantities of the model in a probabilistic
DENSATION algorithm for propagating the densi- way. This can be done by modeling the varia-

ties is summarized in Section 3. By applying OUltions in the concrete values of the lengthsand

approach to track faces in an image sequence, tr}fﬁgles@ of a ray e, by an appropriate probabil-
complete framework is illustrated in Section 4'ity density functiorll

There, the probabilistic models — for the object,
for the object’s motion, and for the measurement
process — are presented, and brought together to
track a face by coupling the facial features eyes . L _
and mouth. Finally, we present experimental re- This representation is intended to show explic-

sults on a sequence of face images in Section 51 the generality of the approach. For example,
The results show the feasibility and the robustdt ¢an be thought of features that have more than

ness of our probabilistic feature coupling in case’n®€ pla_u5|ble Iocgtlon along a c_ertaln ray. So the
of difficult environments. necessity may arise to use multi-modal probabil-

ity density functions. It is worth noting that
may have more than one coupling centerand
2 Coupled Structures that the description can be extended to the 3-D
case by using 3-D rays. Here, the description is
In this section we introduce our model based omnrestricted to the case of only one coupling center
the active rays approach that has been succesznd to features lying in one plane.

Pgi()\z' =1,¢0; = ¢lo,).



unknown state. In most cases, due to sensor
noise and uncertainty in the measurements more
than one observation can be made that could
be caused by the system whose state should be
estimated. This is called the association prob-
lem. Thus, an unimodal density over the state is
not appropriate. In [7] a new approach is pre-
sented, called conditional density propagation
Figure 1: The coupled structure with three cou{CONDENSATION). A complete mathematical
pling rays is shown as it was used for modelingframework is provided which allows the propa-
the spatial relations between facial features. Th@ation of a density with more than one mode over
right side shows a magnification of one ray totime. Each mode corresponds to one hypothesis
explain the quantities. for the unknown state. The main principl®g-
DENSATION is based on ifactored samplingb],
which allows the computation of a densjiyr)

that can be factored into two parts

3 Density Propagation

Duri.ng t.racking of amoving object a Iqt of infor- p(x) = pi(x)ps(x).
mation is collected about the a priori unknown _ _ _ _
trajectory of the object in 2-D or 3-D. This in- If the densityp(x) cannot be given in analyti-

formation should be used to the increase qualityg@! form, but there is the possibility to simulate
of the object localization at each time step. Usu?1(2), thenp(zx) can be estimated by drawing

ally, the position of the object in the next frame S@mples randomly with probability

is predicted and this position is used as an initial po ()
starting point for object localization. In our case, Pi= v .
Zj:l p2(z;)

the predicted position can be used as the initial
parameters of an local optimization step duringfrom a sample set oV samplesr; which were
energy minimization. generated by, (x). For N — oo the resulting
For prediction, especially when dealing with density converges weakly igx) [5].
moving objects, the Kalman filter is awellunder-  The correctness of the factored sampling theo-
stood framework [1, 8]. It has been widely usedrem has also been proven for the dynamic case in
in computer vision with focus on motion detec- [7]. The factorp,(x) corresponds to the obser-
tion, motion computation and tracking [10, 3, 9]. vation densityp(f|q), andp,(x) to the a priori
To use the Kalman filter one needs a state trandensity of the unknown stateq). Each sam-
sition model, describing the dynamics of a stateple, drawn from the sample set is first determin-
q, over time, and an observation model. Bothistically propagated over time by means of the
are described as a deterministic linear or nonlinstate transition model. Then, the resulting state
ear function distorted by Gaussian noise. Thes stochastically diffused by the state transition
Kalman filter is a linear predictor, which linearly noise and evaluated in the imageiyf|q). For
combines at time step the estimated stat§, = more details we refer to [7].
with the error between the estimated observation As a result, one gets a multi modal probability
ft and the true ong,, weighted by the Kalman distribution over the state space, i.e. a so called
gain matrix. This linear prediction leads to anbelief state Note, the true state must not nec-
unimodal density(q,|f,, ..., f,) over the state essarily be the best rated state at time gtdp
spaceg conditioned on the observation made upterms ofp(f|q) (for example, due to occlusion),
to the actual time stefy the mean of this density but it does not disappear. At future time steps
corresponds to the estimated state. t; > t; the likelihood may increase and so the
In computer vision, there is often the needtrue state will be the best, i.e. it will be found
of handling more than one hypothesis for anagain.



4 FaceTrackingwith Coupled 4.2 Tracking

Structures For tracking of a coupled structure one is es-

_ . pecially interested in the timely development
In this section we show how to apply the con-qf the a posterior probability density function
cepts described in the previous sectlonstoapragﬁ(st‘ft’ ..., fo). Assuming that the object dy-

tical problem, the tracking of a human face, i.e.namics can be described as a temporal Markov
its facial features in an image sequence. Th@nain ie.

first thing we need to accomplish this task is a

concrete model of the spatial relationships of the p(8e]Si—1, ..., 80) = p(se|si_1).

facial features represented in form of a coupled

structure. With the coupled structure specifiedand assuming the image dafato be indepen-

we can apply the GNDENSATION algorithm to  dent, both mutually and with respect to the ob-
track the face over time. During the algorithmject’'s dynamics, i.e.

hypothetical instances of coupled structures are

generatgd that need to be rate_d agalnst_the modelp(ﬁil, i B 8ilSict, e 80) =

and against the image data. Itis shown in the last P

part of this section, how the application specific — pisls s,
parts needed for the propagation algorithm can plsilsis) Hp(ﬁl 2
be modeled by appropriate energy terms.

=0
the a posteriori probability density function can
41 TheModd be written as

It is intuitive to model the spatial dependencies p(s,|f..... £) = ~p(£|s)p(silfrs- - £)
of the eyes and the mouth of a face by a cou- 2t

pled structures consisting othreecoupling rays
(cf. Figure 1). The three rays originate from a
coupling center that is associated with the tip of

where

the nose. There is one coupling ray for each eye p(silficrs - fy) =
and one for the mouth. The lengths and the an- — /p(3t|3t1)p(3t1|.ft1; L) @
gles of each ray can be modeled by Gaussian dis-

. . .. S;_
tributed random variables. This is a reasonable ot

choice, because there is only one possible posiyith a normalizing constant,.

tion for each feature on its coupling ray, i.e. Because we model a face by three coplanar
po.(\ =1) ~ N (i, o?) coupling rays and assume that the plane spanned
by the three coupling rays moves only parallel
and to the image plane, the estimation of the prior
at time indext (Eg. 1) can be split into two
P, (91 = ©) ~ N (i, *?). (Fd. 1) P

parts. The main advantage arises from the fact,
To characterize a certain face model completelghat in our case, the coupled structwrean be

it is sufficient to specify the two means,; and  subdivided into a part that varies with time and
the two variances?o? of the distributions for into a part that is independent from time. The
each rayp,. They may be set manually, or bet- dependent part is the coordinate vector of the
ter, obtained by evaluating a sample set of frontatoupling centerm;. Because of the restricted
face images, or from physiological considera-motion, the model parameters that represent the
tion. For the experiments described later theycoupling rays stay equal when time progresses.
were chosen by hand, by taking a typical im-Especially, the parameters are also invariant un-
age from the sequence and determining the coder translation, i.e. they are independent on the
responding properties of the face in image. position of the coupling centemn, (cf. Eq. 4).



So the prior can be rewritten as 4.3 Measurements

3 During the propagation of the probability den-
p(silfieys-- s o) = Hp(gi) : sity functions with the ©NDENSATION algo-
i=1 rithm, three application dependent parts are used.

_ These parts are given by the probability density
/p(mtm“)p(stlft‘l’ o) functionsp(m,|m,_,) (the object’s dynamics),
St p(f|s) (the sensor model), ands) (the object

Wher‘eby:’rnti1 is the Coup”ng center from the mOdel). Here, the dynamic model is not consid-
coupled structure, ;. ered further, because standard techniques can be

With this splitting we can write the a posterior @pplied. In the following we describe how the
p(si|f,.... f,) as two remaining parts can modeled by mapping

them onto equivalent energy terms.
3

plsifeood) = —olfls) [[ e

paley External Energy To model the measurement

proces(f|s) we use a common method. The
‘ /p(mt|mt—1>p(st—1|ft—1a ... fy). (2)  correspondence of the modelwith the image

Si 1 dataf is expressed by a Gibbs distribution
Now, we are able to apply the dBIDENSA- 1
TION algorithm to track the development of the a p(fls) = ot P [~ Eex(f,s)]
posteriorp(s|f;, ..., fy) from Eq. 2. In contrast

to the original work in [7] we modify the fac- With zex; being a normalizing constant. The term
tored sampling process to take into account thé’exi(f, s) should return high positive values if
splitting of a coupled structure into time depen-the image data does not correspond well to the
dent and independent parts. Instead of samplingata which is expected, given the coupled struc-
from the posterior of the previous time step, predure s, and it should return low positive values
dicting by the dynamic model, and evaluating thefor good matches. Therefore, this term can be
predicted state by the data, we sample first thénterpreted as a kind @xternal energy

time dependent part, i.e. the coupling centey For the experiments described later a some-
from the posterior of the previous time step andwhat simple approach is used. One method that
predict it by the dynamical model. This leadsdirectly supports the requirements above is that
to an incomplete coupled structusg Then for of template matching [11], i.e. compute the error
each suchs;, we samplel/ times from each of € between a templat& of sizem x n with an

the time independent priors of the coupling raysmage aregf at position(k, j) of equal size by

and evaluate now th&\/ feature positions from

p(f,l0;, m;) (cf. Eq. 3). Note, that it i3\ o

and notM?, because of the mutually indepen- ki = Z Z erngrr = Tl

dence of the rays. The parameters of3Aé ray

samples that maximize the fitness of their corthe smallest possible value ofs zero in case of
responding ray to the data, are taken as the pg; perfect match betweehandT.
rameters of the rays to complede to become 1 |eads to the external energy for the whole

a fully specifieds;. This way, the parameters g njed structure, that consists of the sum of the

for the rayso; are chosen so that(o;)p(f|0:)  external energies of each of the three coupling

evaluates to the maximal value. Although the de'rays

scribed technique for sampling and evaluating is

intuitive and straight forward, unfortunately we 3 3

cannot yet give a formal proof for its correctness, Eext(f,s) = Z Eext(f, 0,,m) = Z o, (3)
i=1

as itis given for the unsplit case in [7]. i=1

p=0 v=0



with ¢, being the value o€, ;, with image co- with zj,; being a normalizing constant and the
ordinatest; andj; obtained by the parameters of term
the rayp;. ,
In our work, we defined the templates for the i — N)? Opi — i)
P Bg(s) = 30 Lo A G 07
i— )

both eyes and the mouth by cutting off appro- ¢g?

priate image areas from a typical face in the im-

age sequence. It should be noticed, that it waslere, Ei(s) can be interpreted as anternal
not an aim of our work to develop new featuresenergythat has low positive value in case of little
for detecting eyes and mouths. Therefore, theleviation of the ray parameters from their mean
quality of the chosen external energy may not besalues, and that is zero in case of a good match.
very sophisticated, but it was very fast to real- Using these two energy terms, a total energy
ize. The external energy based on vertical eneffor a coupled structure can be defined simply
gies provided by the DCT coefficients (cf. [12]) as the sum of both. i.e.

was found to be not specific enough for track-

ing facial features in an cluttered environment, Fiotal(8) = Eint(8) + Eext(s)-

although it was successfully used for localization

in the static case.

i=1

5 Experimental Results

Internal Energy As we are working in an

probabilistic context, the coupled structure
model is described by a probability density func-
tion p(s). This density function can be calcu-
lated in a given reference coordinate system by

The feasibility of the approach that was de-
scribed in the previous sections was tested using
an image sequence from a moving head in front
of heterogeneous background. The sequence
consists of 92 color frames of size #6876 that

p(s) =p(o,) - p(oy) -+ p(o,) -p(m), (4) wererecorded at a frame rate of 12.5 frames per
_ second. The person in front of the camera was
where in general only told to face the camera while moving.

_ T . The u; and o; of the model ray parameters
p(ei) = p(Xilg:)p(d:). were determined from evaluating the whole im-

Note that the independence assumption betweetg€ sequence. The values of the model parame-

the rays is reasonable, because the dependenci€ss are given in Table 1.

are implicitly given by the coupling centen.

Especially, it was verified by a statistical | |l & [ o | o |
test, that the joint probability density function A || 45.79| 41.74| 33.76
p(\;, ¢;) can be written as ro; || 4.30 | 3.46 | 3.67

%n; || 2.48 | 0.83 | 4.71
p(0;) = p(Ai)p(o:), %5, || 0.12 | 0.18 | 0.07

assuming independence of the length and the an-
gle of a coupling ray. Therefore, the priop(s) ~ Table 1: The parameter values of the three rays
in (Eq. 4) is of the coupled structure. The lengths are given

3 in pixels and the angles in radians.

s) =p(m A ).
p(s) = p(m) Hp( (i) To predict the coordinates of the coupling cen-
ter from a time step to the next, a model of the
'object’s dynamics is needed. In our case, we
used a simple two dimensional linear second or-

der dynamical model that is distorted by Gaus-

1
p(s) = P exp [~ Eint(s)], sian noise.
Int

Using the approach with the Gibbs distribution
the prior can be written as



The templates that are needed for the compu
tation of the external energy of a given coupled &=
structure are obtained from a typical frame of the g
image sequence (cf. Figure 2).

Figure 3: Every 18th image (from left to right)

Figure 2: The templates of the facial featuresfrom the test sequence. with the found locations
used for evaluating the external energy. qu » W . !

marked by black boxes.

To evaluate the accuracy of the tracking pro-

cess, the true positions of the facial features inhe highest value ob(s;|f, ..., f,) in the sam-
the image sequence were manually labeled, sple set. This may sometimes lead to misdetec-

they can be compared to the positions providedion, because of outliers in the sample set.
by the tracking process. The results for each fa-

cial feature are listed in Table 2. The mean error
for the combined features is therefore about 2
pixels. For the tracking experiments, we use
500 samples for the coupling centers and then 20 .
samples for each ray. Therefore, a total numbeWe presented an approach for modeling of

of 30,000 samples were evaluated at each tim uIti—part_objects in a pro_b a_bilistic framework,
step. One iteration of the @VDENSATION algo- or extracting such objects inimages by means of

rithm took about 50's on a Pentium Il with 300 Maximum a posteriori estimation, and for track-

MHz running Linux. In Figure 3 some example |ng objects OVer time by.pro’pagating the con-
images from the sequence with the found posifjltlonal de.nS|ty of the object's state.ovgr. time.
tions of the facial features are depicted. The experiment have proven the suitability _and
advantages of the proposed method. For highly
distorted images as well as for cluttered back-
ground during tracking the probabilistic frame-
work is the most appropriate one to handle un-
certainty. This includes both the measurements
in the image, and the models for motion and the
object itself.
Table 2: Euclidean error for each feature over In this contribution no special effort has been
the whole sequence. For each feature, the measpent on choosing the right or most appropriate
standard deviation, minimal and maximal errormotion model for the object’s trajectory. Such
in pixel is given. an approach has been presented in [2]. As it was
already stated in the text, the feature detectors
An important role in the tracking process playsthemselves should be replaced by some more so-
the technique with which the obtained multi- phisticated and faster computable ones. In our
modal a posteriori probability density function future work, we will also concentrate on learn-
p(si|f;, ..., fy) is evaluated at each time step.ing typical motion trajectories for a certain class
Taking the mean structure of the sample set, asf objects. Also, the approach will be applied
it was proposed in [7], is not feasible becausdao a different application, and an extension of
of the many occurring modes. So we decided tdhe coupled structures to the 3-D case using 3-D
take that structure as the best one that providesys is planned.

Conclusion

‘ ‘ e ‘ O ‘ min, ‘ max, ‘
Lefteye | 22.6| 18.8| 2.0 | 78.2
Righteye| 20.2| 19.6| 1.0 | 85.0
Mouth 209/ 19.0] 0.0 | 714
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