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Abstract

In this paper an approach on tracking objects
consisting of multiple parts is presented. Instead
of tracking each part independently, all features
are tracked simultaneously. Therefore, the spa-
tial dependencies of the object’s parts are de-
scribed by a probabilistic model that is called
“coupled structure”. The tracking process is per-
formed using an algorithm for propagating con-
ditional probability density function over time,
called CONDENSATION algorithm. The main ad-
vantage of our approach is, that object modeling
and object tracking are embedded into a com-
pletely probabilistic framework, so uncertainty
can be handled very powerful and elegant.

Finally, we demonstrate the applicability of
our approach by tracking a moving human face
in a difficult environment and give some experi-
mental results.

1 Motivation

Localization and tracking of objects is one ma-
jor problem in computer vision. Examples are
video surveillance, multi media application, au-
tonomous driving and robots and augmented re-
ality. Most objects consist of different parts, for
which specialized feature detectors exist being
able to optimally localize those part. Dispite that
fact, object localization and tracking is mostly
done in a holistic manner. This means that prim-
itives are extracted in the image (for example,
edges, corners, or regions) which are used to�This work was supported by the DFG under grant
SFB603

model the whole object. Such an approach ne-
glects the fact that sometimes a couple of impor-
tant and significant parts of the object could be
more easily detected than the whole object itself
in one step. Thus, for a multi–part approach it
is more natural to define specialized feature de-
tectors that can better localize a certain part of
the object than a general feature detector is able
to localize the whole object. This strategy alone
will of course not yield an improved result. In
addition, the different parts must be coupled us-
ing a priori information about their spatial rela-
tionships. One example to support this statement
is, to find a face in an image. This can be done
by looking for the two eyes and the mouth whose
positions are not independent from each other.
The problem that needs to be solved now in such
a multi–part approach is how to make use of the
a priori known spatial relationships between the
different parts.

In this contribution we show that the localiza-
tion and tracking of an object consisting of mul-
tiple parts that have known spatial interpart rela-
tionships, can be solved completely in a proba-
bilistic framework. The main point is aproba-
bilistic modelthat represents the spatial depen-
dencies. For finding the locations of the features,
one has to determine those parameters of the
model that maximize the a posteriori probabil-
ity (MAP) of the model conditioned by the cur-
rent data. To track the features, not only a single
state, but the whole probability density over the
object’s state conditioned on the measurements
obtained while processing the image sequence is
propagated over time. Compared with the well
known Kalman filter, this has the advantage, that
also multimodal densities can be used, i.e. mul-



tiple hypotheses of the object’s state are treated
inherently.

For the coupling of multiple features, the most
related work is the one on feature networks in
[6]. There, the coupling of certain features as
well as the composition of higher level geomet-
ric constraints is used to improve the accuracy of
tracking. But in contrast to [6], we use a con-
crete model that is completely embedded into a
probabilistic framework.

Our work reduces the whole MAP estimation
process to an energy minimization problem. It
can also be compared with active, elastic con-
tours, if the contour points are substituted by
higher level features; to localize faces, these fea-
tures may represent the two eyes and the mouth
(cf. Section 4). The values of the model param-
eters, representing the spatial dependencies, can
be estimated in a training step. In our current
work, this is done by using a labeled training set.
For this, the probabilistic framework is advan-
tageous because of the rich theory already avail-
able for parameter estimation, and the possibility
of handling uncertainty, caused by noisy data.

This paper is organized as follows: first, the
probabilistic model, calledcoupled structure, is
introduced in Section 2. It is shown how the
model can be build up from single so calledcou-
pling rays. Then, for the dynamic case, i.e. the
tracking of such a coupled structure, the CON-
DENSATION algorithm for propagating the densi-
ties is summarized in Section 3. By applying our
approach to track faces in an image sequence, the
complete framework is illustrated in Section 4.
There, the probabilistic models — for the object,
for the object’s motion, and for the measurement
process — are presented, and brought together to
track a face by coupling the facial features eyes
and mouth. Finally, we present experimental re-
sults on a sequence of face images in Section 5.
The results show the feasibility and the robust-
ness of our probabilistic feature coupling in case
of difficult environments.

2 Coupled Structures

In this section we introduce our model based on
the active rays approach that has been success-

fully used for contour based object tracking [4].
There, a 2–D contour is represented by differ-
ent 1–D rays, which originate from one reference
point that lies inside the contour. Now, instead
of interpreting a point on a ray as a candidate for
a contour point, it can be generally seen as the
location of any given feature. The concept of a
contour in the image plane, which is represented
by a given set of rays, is therefore replaced by a
general concept that we callcoupled structure.

The position of a certain feature is given by a
coupling ray%i = (�i; �i)T with length�i and
angle�i. The pose of the ray is determined by
the angle�i measured with respect to a given
reference line in the image (usually the horizon-
tal line). All coupled rays originate in a common
point called thecoupling centerm = (mx; my)T
with its image coordinatesmx andmy (s. Fig-
ure 1). So the model, i.e. the coupled structures is defined by then coupling rays and the cou-
pling centers = (%1; : : : ;%n;m)T :

Because of the fact that the locations of the
features of the objects under consideration often
change slightly (think of a non-rigid motion of
a face) and that the detection of features is dis-
torted by noise, it is reasonable to regard the im-
portant quantities of the model in a probabilistic
way. This can be done by modeling the varia-
tions in the concrete values of the lengths�i and
angles�i of a ray%i by an appropriate probabil-
ity density functionp%i(�i = l; �i = 'j%i):

This representation is intended to show explic-
itly the generality of the approach. For example,
it can be thought of features that have more than
one plausible location along a certain ray. So the
necessity may arise to use multi-modal probabil-
ity density functions. It is worth noting thats
may have more than one coupling centerm and
that the description can be extended to the 3–D
case by using 3–D rays. Here, the description is
restricted to the case of only one coupling center
and to features lying in one plane.
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Figure 1: The coupled structure with three cou-
pling rays is shown as it was used for modeling
the spatial relations between facial features. The
right side shows a magnification of one ray to
explain the quantities.

3 Density Propagation

During tracking of a moving object a lot of infor-
mation is collected about the a priori unknown
trajectory of the object in 2–D or 3–D. This in-
formation should be used to the increase quality
of the object localization at each time step. Usu-
ally, the position of the object in the next frame
is predicted and this position is used as an initial
starting point for object localization. In our case,
the predicted position can be used as the initial
parameters of an local optimization step during
energy minimization.

For prediction, especially when dealing with
moving objects, the Kalman filter is a well under-
stood framework [1, 8]. It has been widely used
in computer vision with focus on motion detec-
tion, motion computation and tracking [10, 3, 9].
To use the Kalman filter one needs a state tran-
sition model, describing the dynamics of a stateqt over time, and an observation model. Both
are described as a deterministic linear or nonlin-
ear function distorted by Gaussian noise. The
Kalman filter is a linear predictor, which linearly
combines at time stept the estimated statêqt
with the error between the estimated observationf̂ t and the true onef t, weighted by the Kalman
gain matrix. This linear prediction leads to an
unimodal densityp(qtjf t; : : : ;f0) over the state
spaceq conditioned on the observation made up
to the actual time stept; the mean of this density
corresponds to the estimated state.

In computer vision, there is often the need
of handling more than one hypothesis for an

unknown state. In most cases, due to sensor
noise and uncertainty in the measurements more
than one observation can be made that could
be caused by the system whose state should be
estimated. This is called the association prob-
lem. Thus, an unimodal density over the state is
not appropriate. In [7] a new approach is pre-
sented, called conditional density propagation
(CONDENSATION). A complete mathematical
framework is provided which allows the propa-
gation of a density with more than one mode over
time. Each mode corresponds to one hypothesis
for the unknown state. The main principle CON-
DENSATION is based on isfactored sampling[5],
which allows the computation of a densityp(x)
that can be factored into two partsp(x) = p1(x)p2(x):
If the densityp(x) cannot be given in analyti-
cal form, but there is the possibility to simulatep1(x), thenp(x) can be estimated by drawingN
samples randomly with probabilitypi = p2(xi)PNj=1 p2(xj)
from a sample set ofN samplesxi which were
generated byp1(x). ForN ! 1 the resulting
density converges weakly top(x) [5].

The correctness of the factored sampling theo-
rem has also been proven for the dynamic case in
[7]. The factorp2(x) corresponds to the obser-
vation densityp(f jq), andp1(x) to the a priori
density of the unknown statep(q). Each sam-
ple, drawn from the sample set is first determin-
istically propagated over time by means of the
state transition model. Then, the resulting state
is stochastically diffused by the state transition
noise and evaluated in the image byp(f jq). For
more details we refer to [7].

As a result, one gets a multi modal probability
distribution over the state space, i.e. a so called
belief state. Note, the true state must not nec-
essarily be the best rated state at time stepti in
terms ofp(f jq) (for example, due to occlusion),
but it does not disappear. At future time stepstj > ti the likelihood may increase and so the
true state will be the best, i.e. it will be found
again.



4 Face Tracking with Coupled
Structures

In this section we show how to apply the con-
cepts described in the previous sections to a prac-
tical problem, the tracking of a human face, i.e.
its facial features in an image sequence. The
first thing we need to accomplish this task is a
concrete model of the spatial relationships of the
facial features represented in form of a coupled
structure. With the coupled structure specified,
we can apply the CONDENSATION algorithm to
track the face over time. During the algorithm
hypothetical instances of coupled structures are
generated that need to be rated against the model
and against the image data. It is shown in the last
part of this section, how the application specific
parts needed for the propagation algorithm can
be modeled by appropriate energy terms.

4.1 The Model

It is intuitive to model the spatial dependencies
of the eyes and the mouth of a face by a cou-
pled structures consisting ofthreecoupling rays
(cf. Figure 1). The three rays originate from a
coupling center that is associated with the tip of
the nose. There is one coupling ray for each eye
and one for the mouth. The lengths and the an-
gles of each ray can be modeled by Gaussian dis-
tributed random variables. This is a reasonable
choice, because there is only one possible posi-
tion for each feature on its coupling ray, i.e.p%i(�i = l) � N (��i; ��2i )
and p%i(�i = ') � N (��i; ��2i ):
To characterize a certain face model completely
it is sufficient to specify the two means�;��i and
the two variances�;��2i of the distributions for
each ray%i. They may be set manually, or bet-
ter, obtained by evaluating a sample set of frontal
face images, or from physiological considera-
tion. For the experiments described later they
were chosen by hand, by taking a typical im-
age from the sequence and determining the cor-
responding properties of the face in image.

4.2 Tracking

For tracking of a coupled structure one is es-
pecially interested in the timely development
of the a posterior probability density functionp(stjft; : : : ; f0). Assuming that the object dy-
namics can be described as a temporal Markov
chain, i.e.p(stjst�1; : : : ; s0) = p(stjst�1):
and assuming the image dataf t to be indepen-
dent, both mutually and with respect to the ob-
ject’s dynamics, i.e.p(ft�1; : : : ;f0; stjst�1; : : : ; s0) == p(stjst�1) t�1Yi=0 p(fijsi)
the a posteriori probability density function can
be written asp(stjft; : : : ;f0) = 1zt p(ftjst)p(stjft�1; : : : ;f0)
wherep(stjft�1; : : : ;f0) == Zst�1p(stjst�1)p(st�1jft�1; : : : ;f0) (1)

with a normalizing constantzt.
Because we model a face by three coplanar

coupling rays and assume that the plane spanned
by the three coupling rays moves only parallel
to the image plane, the estimation of the prior
at time indext (Eq. 1) can be split into two
parts. The main advantage arises from the fact,
that in our case, the coupled structures can be
subdivided into a part that varies with time and
into a part that is independent from time. The
dependent part is the coordinate vector of the
coupling centermt. Because of the restricted
motion, the model parameters that represent the
coupling rays stay equal when time progresses.
Especially, the parameters are also invariant un-
der translation, i.e. they are independent on the
position of the coupling centermt (cf. Eq. 4).



So the prior can be rewritten asp(stjft�1; : : : ;f0) = 3Yi=1 p(%i) �� Zst�1p(mtjmt�1)p(st�1jft�1; : : : ;f0)
wherebymt�1 is the coupling center from the
coupled structurest�1.

With this splitting we can write the a posteriorp(stjft; : : : ;f0) asp(stjft; : : : ;f0) = 1zt p(ftjst) 3Yi=1 p(%i) �� Zst�1p(mtjmt�1)p(st�1jft�1; : : : ;f0): (2)

Now, we are able to apply the CONDENSA-
TION algorithm to track the development of the a
posteriorp(stjft; : : : ;f0) from Eq. 2. In contrast
to the original work in [7] we modify the fac-
tored sampling process to take into account the
splitting of a coupled structure into time depen-
dent and independent parts. Instead of sampling
from the posterior of the previous time step, pre-
dicting by the dynamic model, and evaluating the
predicted state by the data, we sample first the
time dependent part, i.e. the coupling centerm,
from the posterior of the previous time step and
predict it by the dynamical model. This leads
to an incomplete coupled structureest. Then for
each suchest, we sampleM times from each of
the time independent priors of the coupling rays
and evaluate now the3M feature positions fromp(f tj%i;mt) (cf. Eq. 3). Note, that it is3M
and notM3, because of the mutually indepen-
dence of the rays. The parameters of the3M ray
samples that maximize the fitness of their cor-
responding ray to the data, are taken as the pa-
rameters of the rays to completeest to become
a fully specifiedst. This way, the parameters
for the rays%i are chosen so thatp(%i)p(f j%i)
evaluates to the maximal value. Although the de-
scribed technique for sampling and evaluating is
intuitive and straight forward, unfortunately we
cannot yet give a formal proof for its correctness,
as it is given for the unsplit case in [7].

4.3 Measurements

During the propagation of the probability den-
sity functions with the CONDENSATION algo-
rithm, three application dependent parts are used.
These parts are given by the probability density
functionsp(mtjmt�1) (the object’s dynamics),p(f js) (the sensor model), andp(s) (the object
model). Here, the dynamic model is not consid-
ered further, because standard techniques can be
applied. In the following we describe how the
two remaining parts can modeled by mapping
them onto equivalent energy terms.

External Energy To model the measurement
processp(f js) we use a common method. The
correspondence of the models with the image
dataf is expressed by a Gibbs distributionp(f js) = 1zext

exp [�Eext(f ; s)℄
with zext being a normalizing constant. The termEext(f ; s) should return high positive values if
the image data does not correspond well to the
data which is expected, given the coupled struc-
ture s, and it should return low positive values
for good matches. Therefore, this term can be
interpreted as a kind ofexternal energy.

For the experiments described later a some-
what simple approach is used. One method that
directly supports the requirements above is that
of template matching [11], i.e. compute the error� between a templateT of sizem � n with an
image areaf at position(k; j) of equal size by�k;j = m�1X�=0 n�1X�=0 jfk+�;j+� � T�;�j
The smallest possible value of� is zero in case of
a perfect match betweenf andT .

This leads to the external energy for the whole
coupled structure, that consists of the sum of the
external energies of each of the three coupling
raysEext(f ; s) = 3Xi=1 Eext(f ;%i;m) = 3Xi=1 �%i (3)



with �%i being the value of�ki;ji with image co-
ordinateski andji obtained by the parameters of
the ray%i.

In our work, we defined the templates for the
both eyes and the mouth by cutting off appro-
priate image areas from a typical face in the im-
age sequence. It should be noticed, that it was
not an aim of our work to develop new features
for detecting eyes and mouths. Therefore, the
quality of the chosen external energy may not be
very sophisticated, but it was very fast to real-
ize. The external energy based on vertical ener-
gies provided by the DCT coefficients (cf. [12])
was found to be not specific enough for track-
ing facial features in an cluttered environment,
although it was successfully used for localization
in the static case.

Internal Energy As we are working in an
probabilistic context, the coupled structure
model is described by a probability density func-
tion p(s). This density function can be calcu-
lated in a given reference coordinate system byp(s) = p(%1) � p(%2) � � � � � p(%n) � p(m); (4)

where in generalp(%i) = p(�ij�i)p(�i):
Note that the independence assumption between
the rays is reasonable, because the dependencies
are implicitly given by the coupling centerm.

Especially, it was verified by a statistical
test, that the joint probability density functionp(�i; �i) can be written asp(%i) = p(�i)p(�i);
assuming independence of the length and the an-
gle of a coupling rayi. Therefore, the priorp(s)
in (Eq. 4) isp(s) = p(m) 3Yi=1 p(�i)p(�i):
Using the approach with the Gibbs distribution,
the prior can be written asp(s) = 1zint

exp [�Eint(s)℄ ;

with zint being a normalizing constant and the
termEint(s) = 3Xi=1 (��i � �i)2��2i + (��i � �i)2��2i :
Here,Eint(s) can be interpreted as aninternal
energythat has low positive value in case of little
deviation of the ray parameters from their mean
values, and that is zero in case of a good match.

Using these two energy terms, a total energy
for a coupled structures can be defined simply
as the sum of both. i.e.Etotal(s) = Eint(s) + Eext(s):
5 Experimental Results

The feasibility of the approach that was de-
scribed in the previous sections was tested using
an image sequence from a moving head in front
of heterogeneous background. The sequence
consists of 92 color frames of size 768�576 that
were recorded at a frame rate of 12.5 frames per
second. The person in front of the camera was
only told to face the camera while moving.

The �i and �i of the model ray parameters
were determined from evaluating the whole im-
age sequence. The values of the model parame-
ters are given in Table 1.%1 %2 %3��i 45.79 41.74 33.76��i 4.30 3.46 3.67��i 2.48 0.83 4.71��i 0.12 0.18 0.07

Table 1: The parameter values of the three rays
of the coupled structure. The lengths are given
in pixels and the angles in radians.

To predict the coordinates of the coupling cen-
ter from a time step to the next, a model of the
object’s dynamics is needed. In our case, we
used a simple two dimensional linear second or-
der dynamical model that is distorted by Gaus-
sian noise.



The templates that are needed for the compu-
tation of the external energy of a given coupled
structure are obtained from a typical frame of the
image sequence (cf. Figure 2).

Figure 2: The templates of the facial features
used for evaluating the external energy.

To evaluate the accuracy of the tracking pro-
cess, the true positions of the facial features in
the image sequence were manually labeled, so
they can be compared to the positions provided
by the tracking process. The results for each fa-
cial feature are listed in Table 2. The mean error
for the combined features is therefore about 21
pixels. For the tracking experiments, we used
500 samples for the coupling centers and then 20
samples for each ray. Therefore, a total number
of 30,000 samples were evaluated at each time
step. One iteration of the CONDENSATION algo-
rithm took about 50 s on a Pentium II with 300
MHz running Linux. In Figure 3 some example
images from the sequence with the found posi-
tions of the facial features are depicted.�" �" min" max"

Left eye 22.6 18.8 2.0 78.2
Right eye 20.2 19.6 1.0 85.0
Mouth 20.9 19.0 0.0 71.4

Table 2: Euclidean error for each feature over
the whole sequence. For each feature, the mean,
standard deviation, minimal and maximal error
in pixel is given.

An important role in the tracking process plays
the technique with which the obtained multi-
modal a posteriori probability density functionp(stjft; : : : ;f0) is evaluated at each time step.
Taking the mean structure of the sample set, as
it was proposed in [7], is not feasible because
of the many occurring modes. So we decided to
take that structure as the best one that provides

Figure 3: Every 18th image (from left to right)
from the test sequence, with the found locations
marked by black boxes.

the highest value ofp(stjft; : : : ;f0) in the sam-
ple set. This may sometimes lead to misdetec-
tion, because of outliers in the sample set.

6 Conclusion

We presented an approach for modeling of
multi–part objects in a probabilistic framework,
for extracting such objects in images by means of
maximum a posteriori estimation, and for track-
ing objects over time by propagating the con-
ditional density of the object’s state over time.
The experiment have proven the suitability and
advantages of the proposed method. For highly
distorted images as well as for cluttered back-
ground during tracking the probabilistic frame-
work is the most appropriate one to handle un-
certainty. This includes both the measurements
in the image, and the models for motion and the
object itself.

In this contribution no special effort has been
spent on choosing the right or most appropriate
motion model for the object’s trajectory. Such
an approach has been presented in [2]. As it was
already stated in the text, the feature detectors
themselves should be replaced by some more so-
phisticated and faster computable ones. In our
future work, we will also concentrate on learn-
ing typical motion trajectories for a certain class
of objects. Also, the approach will be applied
to a different application, and an extension of
the coupled structures to the 3–D case using 3–D
rays is planned.
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