
Combining Computer Graphis and Computer Vision forProbabilisti Visual Robot NavigationB. Heigla, J. Denzlerab, and H. NiemannaaLehrstuhl f�ur Mustererkennung, Universit�at Erlangen{N�urnberg, Erlangen, GermanybDepartment of Computer Siene, University of Rohester, Rohester (NY), USAABSTRACTIn this ontribution we present how tehniques from omputer graphis and omputer vision an be ombined to�nally navigate a robot in natural environment based on visual information. The key idea is to reonstrut an imagebased sene model, whih is used in the navigation task to judge position hypotheses by omparing the taken ameraimage with a virtual image reated from the image based sene model. Computer graphis ontributes to a methodfor photorealisti rendering in real{time, omputer vision methods are applied to fully automatially reonstrutthe sene model from image sequenes taken by a hand{held amera or a moving platform. During navigation, aprobabilisti state estimation algorithm is applied to handle unertainty in the image aquisition proess and thedynami model of the moving platform.We present experiments whih proof that our proposed approah, i.e. using an image based sene model fornavigation, is apable to globally loalize a moving platform with reasonable e�ort. Using o�{the{shelf omputergraphis hardware even real{time navigation is possible.Keywords: robot navigation, partile �lters, image based rendering1. INTRODUCTIONIn the past three years it ould be observed that omputer vision and omputer graphis are moving lose together.Augmented reality is an ative researh area, where both ommunities need eah other. In this paper we presentanother area where topis usually found in omputer graphis | namely the so{alled image based rendering tehnique| are an important part of a lassial omputer vision task | namely visual navigation of an autonomous mobilesystem. The ontribution of our work is, that we show1. how an image based sene model an be used to reate syntheti but nevertheless photorealisti images inreal{time, taken from any virtual viewpoint,2. that our image based sene model is apable also to model speular reetion and geometri struture in theworld, where the use of a geometri model (for example CAD model), is almost impossible, and3. how virtual views of the sene an be used to globally loalize a moving platform with high auray based onvisual information using a probabilisti loalization approah.The image based sene model that we use will allways need the position and projetion parameters of the hand{heldamera for eah frame of the input sequene. To get them, struture from motion tehniques an be applied. Inprevious works1,2 we have shown, how to extend the methods known from literature to be able to handle espeiallythe ase of image sequenes onsisting of hundereds of images, whih are neessary when reording light �elds.Our results an be used in several ways. First, the image based sene model an be used to predit the appearaneof the sene assuming a ertain position of the amera in the world. This inludes also existene of ertain features(light straight line, orners, et) dependent on the viewpoint, for example in the ase of speular reetions. In ourwork we onentrate on the sene model; the features that are used for loalization of the robot are based on thewhole image, i. e. we ompare pixel by pixel the image whih has been predited, with the image, whih is seenFurther author information: (Send orrespondene to B. Heigl)B. Heigl: E-mail: heigl�informatik.uni-erlangen.deJ. Denzler: E-mail: denzler�s.rohester.edu



by the amera. Seondly, beause of the salability of the quality and resolution of the sene model, the approahan be used either for global loalization, when almost no information about the position of the robot is available,or for loal re�nement of an position estimate. The latter one might be neessary for navigating between doorsor aurate doking tasks. Third, our work an be used in any environment, where a lassial geometri model isdiÆult to reonstrut or almost impossible. And �nally, the image based sene model an be ideally ombined withany other state estimation problem besides loalization and navigation, where some information extrated out of theimage must be ompared with the expetation given a ertain state estimate. Thus, the model �ts optimally intothe framework of probabilisti state estimation using partile �lters.The approah presented in this paper is related to and motivated by two previous publiations of other authorson probabilisti loalization and visual navigation. In the paper of Fox, e. a.3 an approah has been presented forprobabilisti self{loalization of a mobile system based on lassial roboti sensors. The approah was extended inthe work of Dellaert, e. a.4 to visual information from the eiling of a museum. In that lass of probabilisti methodsthe observation model | spoken in terms of statistis the likelihood of observing information given the urrent stateof the system | must be evaluated repeatedly. This means for visual navigation that features omputed in theamera image must be ompared with features whih would have been observed if being at a ertain position. Theomparison in ombination with the a priori information of being at a ertain position leads to the a posterioriprobability of the position. Self{loalization then means maximizing the a posteriori probability with respet to theunknown position.In the work of Dellaert4 a map of the eiling is manually built and for eah position the orresponding ameraimage was rendered. This an be done without muh e�ort, beause the amera points perpendiular to the eiling.As a result the degree of freedom of the system is three, i. e. the movement in a plane parallel to the eiling androtating around an axis whih is parallel to the optial axis. Having suh a on�guration, the rendered images dependonly on the position of the system and the rotation angle, sine the distane to the eiling is known and onstant.This makes rendering fast and map representation as simple as possible.In our work we extend this approah by using the idea of the so{alled light{�eld or lumigraph approah.5,6 Inorder to represent a sene, no expliit and omplete geometri model needs to be onstruted. In ontrast, the seneis represented by a ertain amount of images together with an in auray salable, loal geometri approximation. With this representation photo{realisti e�ets like mirroring or speular reetion an be modeled even for veryompliated objets, where geometri modeling is very diÆult or nearly impossible. Having suh an image basedmodel of a sene ertain algorithms exist for fast rendering of new and yet unsighted views. This means that given anarbitrary position in the world, the orresponding image whih would be seen by the amera an be omputed. Thisis exatly the demand for visual navigation, where no �xed or known relationships for the amera/sene on�gurationexist. Another advantage is that the light{�eld, i. e. the model of the sene, an be reonstruted automatiallywithout user interation by methods from struture from motion.1The idea and the struture of our paper is the following. First a light{�eld is reonstruted by using only avery rough or no geometrial approximation, omputed automatially by the approah desribed in a paper of Heigl,e. a.7 (Setion 2). During self{loalization, partile �lters are used whih propagate the onditional probability ofbeing at a position in the world given the observed data (Setion 3). Setion 4 desribes how to bring togetherthese two approahes for the task of visual navigation. In Setion 5 we present experimental results for doking arobot to a ertain position in the world based only on visual information and a model of the world presented bythe automatially generated light{�eld. The results show at least, that our image based model is aurate enoughto outperform loalization and navigation based on odometry information. The paper ends with a summary and anoutlook to future work (Setion 6).2. IMAGE BASED MODELING AND RENDERINGFor visual robot navigation, we need a powerful visualization model whih an be aquired easily and whih an beused to render views in real{time. As we don't want to restrit our environment to speial geometri, surfae, orillumination properties, we need a model whih is able to reate photo{realisti views in spite of omplex geometryand speular e�ets.One onept ful�lling these requirements is the so{alled light{�eld5 or lumigraph6 approah, whih is an imagebased method for visualizing senes in real{time. The main idea is the following. If a single view is taken from asene, it an be interpreted as a bundle of viewing rays oiniding in the projetion enter of the amera. Having



st
uvFigure 1. The light{�eld data struture. A viewing ray is parameterized by a quadruple (u; v; s; t). For eah viewingray a olor value is stored.many of suh sene views, one gets a more or less dense sampling of all possible viewing rays within the sene. Torender new virtual views, the required viewing rays must be interpolated from the disrete sampling. If informationabout sene geometry is known, it an be used to improve the interpolation. In ontrast to geometry based methods,this approah impliitly handles non{Lambertian e�ets like mirroring and speularities and even omplex geometrieslike fur and hair.The light{�eld data struture provides a disrete 4{D parameterization of viewing rays by onneting disretegrid positions on two �xed parallel planes. Figure 1 shows suh a on�guration. On eah plane, a loal oordinatesystem is de�ned, whih is able to address eah point by two oordinates s; t or u; v, respetively. A quadruple(u; v; s; t) spei�es one point on eah of the two planes. The intersetion line between those points orresponds tothe aording viewing ray. Usually, these oordinates are integer values and therefore only �xed disrete samples ofviewing rays an be stored in a given data struture of this type. There exists a speial interpretation of the twoplanes whih is useful when reating a light{�eld from real amera images. Suppose the ase that the grid points onthe st-plane are projetion enters of ameras. By onneting one st-point with any grid point in the uv-plane, allviewing rays of the amera view are spei�ed whih orrespond to a pixel olor value.This �xed spatial arrangement requires either that the amera view points are ordered in a grid or that this �xeddata struture has to be resampled from arbitrary views. The �rst alternative is diÆult to ahieve, as it requires aompliated tehnial equipment for moving the amera. The seond has the disadvantage, that image informationhas to be resampled twie: �rst for resampling the data struture and seond to render a virtual view. Furthermore,one has to hoose a �xed sampling resolution for all images, whih leads to subsampling or oversampling e�ets.To avoid all these disadvantages aused by using the light{�eld data struture, we have developed a new methodfor rendering virtual views diretly from real amera views.7 Depth information given by loal depth maps an beonsidered to improve rendering quality in an adjustable quality.The basi priniple of the method is the possibility to projet points of a plane into a amera by a single 3� 3projetive mapping matrix B. This proess also an be reverted so that eah pixel of an image is projeted onto aplane by multipliation of its oordinates with B�1. Having a real amera (subsribed with the image number i)and a virtual amera (subsribed with V ), the whole mapping from the real amera to the virtual one via a givenplane an be alulated by the multipliation with the 3� 3 matrix BVB�1i . Figure 2 visualizes this proedure.If the sene surfae orresponds to this plane and the surfae is Lambertian, this mapping will result in an optimalrendered view. Notie, that if the virtual view point is near the view point of the real amera, even speularitiesand small deviations of the plane from the true geometry a�et the rendered view just slightly. This e�et an beexploited when having many real views from many di�erent view points by suitably weighting those real ameraviews whih are most adjaent to the virtual view.



Figure 2. Mapping a amera im-age into a virtual view via a givenplane.
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virtual cameraFigure 3. Drawing triangles of neighboring projeted amera enters. Thesene geometry is approximated by a single plane.To determine these neighboring real ameras, their projetion enters are projeted into the virtual amera andtransformed to a net of triangles by Delauny{Triangulation. Within one suh triangle, parts of those images aresuperimposed whih orrespond to the triangle orners. In the implementation eah triangle is drawn for eahontributing image one, therefore three times. To get the orresponding pixels, the upper desribed transformationis applied bakwards resulting in the transformation matrix BiB�1V . The weighting fator of eah overlayed triangleis 1 at the orner whih orresponds to the ontributing image and 0 at the others. In between the weighting fatorsbuild a at ramp, similar to Gouraud Shading.In the simplest ase we an use a single plane to approximate the sene surfae for the upper desribed mappingproess. This may result in ghosting artifats at those parts of the surfae, where the sene geometry largely deviatesfrom this plane. To redue this e�et, approximating triangles an be used instead of one single plane.The orners of these triangles an be alulated from a depth value whih is available by a simple look{up in thedepth map orresponding to a real amera. The priniple an be seen in Figure 3. The onnetion lines of the virtualamera enter with eah amera enter of the reording positions are interseted with the sene surfae resulting ina orner of an approximating triangle. To get this intersetion point, we an use the distane of a reording amerato the sene in that viewing diretion whih is given by the upper notied onnetion line. This distane an bedetermined by a simple look-up in the depth map orresponding to the real amera view.The single triangles of the projeted net may beome very large if the virtual amera is situated very lose tothe reording positions and as a onsequene, the 3-D triangles also over large parts of the sene surfae and theapproximation of the sene geometry beomes worse. To avoid this e�et eah triangle an be subdivided further byinserting three new points at the medians of the sides.By this proedure, the reonstruted sene surfae hanges with the hange of the virtual view point. Thisapproximation overs adaptively exatly all those parts of the sene geometry whih are relevant to the atual view.For example, invisible onavities are not reonstruted. So the osts to render the triangles are redued enormouslyompared to the ase, when using a onsistent geometrial model for all virtual viewing points ommonly.Notie, that the whole method also is appliable without any hanges, when the virtual amera is situated betweenthe reording positions and the sene. In this ase, the same formulas for mapping are applied. The amera entersof the reording positions are projeted by the usual multipliation with the projetion matrix, ignoring the fat,that the projeted point then lies behind the virtual amera, resulting in a mirrored projeted triangle net. Thistriangle net exatly reets whih real views ontribute to a given image pixel in the same sense as mentioned above.3. PROBABILISTIC SELF{LOCALIZATION AND NAVIGATIONIn the this setion, we summarize a framework for probabilisti loalization, basially in aordane with the workof Dellaert, e.a..4 Knowing the position of the robot in world oordinate system, a sequene of small motions of



the robot to a prede�ned goal position an be done followed again by a self{loalization. We will denote this loop ofloalization and movement as doking mehanism.3.1. The FrameworkIn the previous setion we have introdued an image based sene model. The sene model is now applied to visionbased loalization of a mobile platform. Vision based loalization means, that based on an image ot taken at timestep t the position and heading xt of the moving platform is estimated. An advantage of loalization of a movingplatform is, that information of the relative hange of position and heading mt is available, too. This relativemovement information usually omes from the odometry of the moving platform. Odometry is a very aurate uein the sense of small, relative motions, but highly inaurate in a global sense.The desribed loalization problem an also be seen as a state estimation problem of a dynami system. Thedynami is given by the performed motionmt at time step t. The state is the position and heading xt of the platform.The observation is the image taken at time step t. Sine eah of these quantities, i.e. the motion and the observation,are usually disturbed by noise, we de�ne them as random variables. The main goal is to estimate the position of arobot given a sequene of ationsmt eah of them followed by observations ot. Written in a probabilisti frameworkwe seek for the most likely positionx�t = argmaxxt p(xtjHt) (1)= argmaxxt 1 p(otjxt)Zxt�1p(xtjxt�1;mt)p(xt�1jHt�1)dxt�1 (2)where Ht = fmt;ot;mt�1;ot�1; : : : ;m0;o0g is denoted as the history at time t. The step from (1) to (2) arisesfrom applying the Bayes rule (with  being a normalizing onstant independent of the argument xt) and assuminga Markov state for xt, i.e. the state xt only depends on the previous state xt�1 and the urrently hosen ationmt. More details onerning this step an be found, for example, in the original paper about Condensation8 or intextbooks about state estimation.9The right hand side of equation (2), whih involves a reursion from time step t�1 to time step t, an be dividedinto two steps for interpretation reasons: First, given a probability measure over the possible positions at time stept�1, p(xt�1jHt�1) and a ertain movement ationmt, from whih we know the statistial properties p(xtjxt�1;mt),we an update the a priori probability for being at a ertain position xt at time t. In the seond step, the robotsenses observations at position xt, modeled by p(otjxt) whih allows for updating the belief p(xtjHt) for being atthat position at time step t.Most approahes to the problem of loalization of a mobile platform di�er in the treatment of the likelihoodfuntion p(otjxt). Feature based approahes use a manually reated sene map, for example CAD models, to maththe observed features in the image with expeted ones in the map. High orrespondene in the feature mathingproess then means on�dene in the estimated position xt. Landmark based algorithms work in a similar way.In our approah, the light�eld provides an image based sene model, whih is the most general ase, sine suh amodel also allows a feature mathing strategy in the proess of omputing the likelihood funtion. Additionally, themodel is generated automatially as desribed in the previous setion and an model speular reetions, whih areviewpoint dependent. Suh artifats annot be treated by pure geometri sene models.3.2. Partile FiltersThe problem is now, how to ompute and propagate p(xtjHt) over time. Sine in general the probability densityfuntions involved in this proess annot be given in losed forms, espeially the likelihood funtion whih dependson the sensed data, one annot solve (2) diretly. The famous Kalman �lter10 and the extensions of it (for example,the extended Kalman �lter11) has been used over 20 years in omputer vision and roboti for state estimation.The Kalman �lter is an adequate way for solving (1), if the underlying assumptions (Gaussian noise, linear statetransition, unimodal state distribution for xt) are ful�lled. In most ases, when working with images in naturalsenes | whih means high bakground lutter and ambiguities | at least the treatment of the state distribution asa unimodal Gaussian one is violated. Espeially in the beginning of the loalization proess, when several positionsand headings xt are plausible, the approximation of p(xt�1jHt�1) by any kind of multimodal distribution is more



natural and useful. Then of ourse, the problem is how to evaluate the integral in (2), whih an be done in a straightforward way for Gaussian densities.During the past years so{alled partile �lters got an enormous interest in omputer vision12,8 and robotis.3Partile �lters allow to estimate and propagate moments of ertain probability density funtions without having anexpliit formulation of the density. They are also denoted as Monte Carlo Methods13 or Condensation algorithm.12Without going into detail (see for example the paper on original paper about the Condensation12 for a deepdisussion), partile �lters an be briey summarized as follows. We approximate p(xtjHt) by a set of m so{alledpartiles. Eah partile onsists of a state value, xt;i 2 IRn; 0 � i < m�1, and a probability or plausibility, pxt;i 2 [0:1℄,of being in this state. The number m of partiles has a diret inuene on how aurate the density p(xtjHt) isapproximated by this partile set. It an be shown that for m ! 1 the partile set onverges weakly towards thedensity p(xtjHt).12To propagate the density over time, i.e. to evaluate (2), the orresponding partile set must be propagated, whihinludes the appliation of the dynami model p(xtjxt�1;mt) to the state set and the evaluation of the likelihoodfuntion p(otjxt). For this, partiles xt;i are drawn from the partile set with probability proportional to pxt;i , andpropagated by drawing a sample xt+1;i from p(xt+1;ijxt;i;m). The probability pxt+1;i of the new partile is thenupdated by p(otjxt+1;i), inluding a �nal normalization suh thatPi pxt+1;i = 1. Problems, whih have to be solved,are the sampling mehanism (likelihood weighted sampling, fatored sampling, importane sampling13), i.e. howto draw samples from a probability distribution, and the number of partiles to approximate the density with theneessary auray.The main point of our approah is, that this frameworks an be used in an ideal manner with the image basedsene model. Every partile xt+1;i in the partile set represents a hypothesis for the position and heading of themobile platform together with a probability pxt+1;i , whih measures the likelihood that the platform is at positionxt+1;i. The probability pxt+1;i is updated by p(otjxt+1;i), whih makes it neessary to ompare the expeted imagewith the taken one. Having the image based sene model, for an arbitrary position and heading xt+1;i the expetedimage an be rendered eÆiently as desribed in the previous setion. In the next setion we will explain the wholeproess in more detail.4. BRINGING TOGETHER COMPUTER VISION AND COMPUTER GRAPHICSThe last two setions have shown how omputer vision and omputer graphis grow together. For self{loalizationusing partile �lters the likelihood in (2) must be evaluated repeatedly. This means that from an environmentalmap virtual views of the senes must be rendered very quikly. This is a lassial omputer graphis task. Sinethe rendered images shall be ompared with images of the sene taken by a amera, photo{realisti rendering isneessary. Both demands are ful�lled by the light{�eld approah. On the other side for reonstruting the light{�eldof a sene automatially lassial omputer vision algorithms (struture from motion) are neessary, whih loses theloop: omputer vision needs omputer graphis and vie versa. The omplete approah for loalization of a mobileplatform, for whih we show experiments in the next setion, an be summarized as follows:1. A light{�eld is reonstruted automatially based on the method desribed in Setion 2. The light{�eld servesas environmental map of the sene.2. In the sene a doking position is de�ned in world oordinates.3. The moving platform is initialized arbitrarily in the sene, whih means no a priori information about itsposition in world oordinates is provided. As a result p(x0) is uniformly distributed.4. The system then moves through the following steps until it reahes a high on�dene of being at the �naldoking position:� ompute the maximum of p(xt�1jHt�1) to get the estimated position xt�1� ompute a small movement mt based on the di�erene to the �nal doking position (translation in thex=y{plane and rotation around the z{axis)� take an image from the sene



Figure 4. The robot's sene environment. In thetest sequene, the robot starts from the left andmoves towards the left elevator button. Figure 5. The autonomous moving platform witha mounted stereo head. We only use one of the am-eras.� update the estimate of the position as desribed in Setion 3In the next setion we show an experiment whih illustrates the apabilities of this approah by loalizing a robotduring its movement towards an elevator button.5. EXPERIMENTAL RESULTSIn this setion we desribe experiments whih use the idea of our approah but performs no ative movement yet.Our sene for testing was a wall with three elevator doors as Figure 4 shows.Before doing loalization, an image based sene model must be generated, whih is apable to render new, virtualsene views. For this task, we moved our robot (see Figure 5) in front of the sene and took 28 images with the robot'samera. In this example instead of applying our struture from motion approah, we used the robot's odometry todetermine the amera movement, beause this example is not enough textured to extrat and trak enough pointfeatures to get a robust motion estimation. The sene geometry has been approximated by a single plane, whih hasroughly been estimated to be similar to the wall.To test the loalization apability of our approah and to simulate the navigation task, we let the robot movetowards the elevator button between the two left elevator doors. The movement enlosed translation and rotationwithin the plane of motion. During this movement we reorded 20 frames with the robot's amera. We used theinformation of the robot's odometry to get a rough estimate for the amera movement between eah image pair.In eah of the following expermients, we initialized the position of 195 partiles in a large area in front of theelevators randomly with arbitrary orientations in the range from 0 to 2�. In the left top image of Figure 6 a topview of the area in front of the elevators is shown with the positions of the partiles after initialization, whih aredrawn as gray dots.In a �rst experiment, we used the robot's odometry as the ationsmt, whih desribe the relative hanges of theposition and heading. Figure 6 shows a omparison of the real amera view with the rendered views of the estimatedposition and the position whih is given by odometry. The initial position of the odometry was adjusted manuallysuh that it is very lose to the true position of the robot.As the estimation of the robot's position is modeled as a whole density, we have the problem to deide for a singlepose estimation. For eÆieny reasons we hose the parameters of that partile number i as estimation whih has themaximum probability pxt;i . This approximation in theory orresponds to a maximum likelihood estimation insteadof to a maximum a posteriori estimation. Being aware of this, we found the position estimates always suÆientlyaurate.
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Figure 6. An experiment for testing the loalization apability of our approah when using the robot's odometry.The left images show a shemati top view of the area in front of the wall (gray area) with the elevator doors (blakretangles). The positions of the partiles are drawn as gray dots, the moving path as given by odometry is drawnas dark line, the atual position of the robot is drawn as a small blak square. The right three images show theomparison of real amera views (left) with rendered images at the estimated most likely position (middle) and atthe position whih is given by odometry (right). From top to bottom, the situation at the 1st, 10th, and 20th frameof the test sequene is shown.partiles real estimation odometry

Figure 7. An experiment similar to the one shown in Figure 6 exept that the used information about the robot'smovement is a perturbation of the odometry. This path is drawn as a gray line. The initialization step was the sameas in Figure 6, the two rows here show the situation at the 10th and the 20th frame of the test sequene.



In this experiment, the rendered view for the position whih is given by the odometry is very similar to the realamera view. Therefore, the estimation of the true position is just a small adjustment in omparison to the realamera view. But the initial position of the robot has been determined totally automatially and very aurate. Theauray an be ver�ed by omparing the rendered images related to the estimation with the real amera image,whih are both shown in the �rst row of Figure 6.To test the apability of our approah for the ase when the odometry is erroneous, we made a seond experimentby perturbing the odometry information and using this perturbed information as ations mt. Figure 7 shows theloalization results for this experiment in the same wise as Figure 6. The initialization step there was the same as inFigure reff:ergreal and therefore is omitted.It an be seen, that the partiles are ordered not as ompatly as in the �rst experiment, so beause of theerroneous odometry, an additional unertainty has been introdued. But nevertheless, the estimation of the robot'spose is omparable to the �rst experiment as an be ver�ed by omparing the rendered images for the estimation.Notie that in this example the used odometry was so erroneous that in the 20th frame, the elevator button evenwas not visible any more.The omputation time using software rendering was 0:14 seonds for eah partile. A oarse estimation of theomputation time using hardware aelerated rendering with o�{the{shelf graphis aelerator boards, whih hasnot been installed in our mobile platform, is approximately 0:0088 seonds per partile. Thus, in our experiments,every 1:73 seonds we get an update of the position estimate whih seems to be fast enough to loalize a robot.6. SUMMARYThe idea of ombining the photo{realisti and very eÆient visualization apabilities of omputer graphis withprobabilisti self{loalization approahes known from omputer vision enables global robot loalization in arbitrarynatural environments. The omplete framework, starting from light�eld reonstrution and ending with robot navi-gation, ould only be briey desribed in this paper. Due to lak of spae, we ould not go into detail desribing� the struture from motion approah we usually use for light�eld reonstrution. This is desribed elsewhere.1,2In our experiments we have used a simpi�ed method for reonstruting the ligh�eld, for reasons, we havedesribed in the experimental setion.� some general problems of the partile �lter approah, like the inuene of the number of partiles on the stateestimation results.� how we deide for a movement while having an a posteriori distribution over the position of the mobile system.This makes in general path planing mehanisms neessary, whih is beyond the sope of the paper.Nevertheless we laim, that image based sene models are a promissing alternative to lassial geometri basedmodels. More than that, image based sene models in ombination with eÆient hardware aelerated rendering arethe more general ase of a sene modeling, beause the appearane of the sene is modeled. The experiments haveshown, that even with a simple measure for omparing two images (in our ase, the pixel wise di�erene between twoolor images) probabilisti state estimation algorithms, like partile �lters, return a higly aurate position estimatein reasonable time.The bene�ts of our approah lie in the modeling tehnique, whih allows to handle senes or reetane proper-ties, that are diÆult to model with pure geometri approahes. Additionally, the model an be onstruted fullyautomatially. One of the main probleme of image based sene models is the amount of image data whih must bestored. Although ompression tehniques for light�elds exits14 a smart way must be found to devide the world ofthe robot into small areas, eah area being represented by a smaller light�eld. In a oarse loalization step, for oneof these areas must be deided.In our future work we will onentrate on showing loalization and also navigation in a more omplex environment.Also more experiments with quantitative evaluations will be performed. Finally we will prove in future experiments,that our sene model allows suh an aurate position estimation, that even navigation in narrow spaes is possible,for example passing through a door.
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