
Jochen Schmidt, Ingo Scholz, and Heinrich Niemann
Placing Arbitrary Objects in a Real Scene Using a Color Cube for Pose

Estimation

appeared in:
Pattern Recognition, 23rd DAGM Symposium, Lecture Notes inComputer Science

2191
München, Germany

p. 421–428
2001

c© Springer-Verlag



Placing Arbitrary Objects in a Real Scene Using a Color
Cube for Pose Estimation

Jochen Schmidt, Ingo Scholz⋆, and Heinrich Niemann

Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

jschmidt@informatik.uni-erlangen.de ,
http://www5.informatik.uni-erlangen.de

Abstract We describe an Augmented Reality system using the corners ofa color
cube for camera calibration. In the augmented image the cubeis replaced by a
computer generated virtual object. The cube is localized inan image by the CSC
color segmentation algorithm. The camera projection matrix is estimated with a
linear method that is followed by a nonlinear refinement step. Because of possible
missclassifications of the segmented color regions and the minimum number of
point correspondences used for calibration, the estimatedpose of the cube may
be very erroneous for some frames; therefore we perform outlier detection and
treatment for rendering the virtual object in an acceptablemanner.
Keywords: Augmented Reality, camera calibration, color segmentation

1 Introduction

In this paper a system is introduced which is an application of Augmented Reality, a
visual enhancement of real environments. Unlike many otherapplications in this field
the system described here uses no independent tracking device, but follows a so-called
vision-based approach, i. e. calibration information is derived solely from camera in-
put. Many common vision-based systems [10] use some kind of calibration pattern or
fiducials still visible in the scene even after augmentation, e. g. [8, 16]. Other methods
require manually selected control points [2], but do not usefiducials. In our approach,
a metal cube with a side length of 6 cm is used that is painted with a different color
on each side such that its position and orientation can be determined unambiguously.
A real scene can be augmented by rendering a virtual object inthe same pose, thus re-
placing the cube. A possible application of this system is the usage of a head-mounted
display for the visualization of three-dimensional objects that do not yet exist or only at
distant locations. The system works without human intervention, and no explicit cali-
bration step is required before using it. The main advantages of our approach comprise
the usability in indoor and outdoor applications, easy interaction with the user, and the
possibility of illumination estimation by exploiting the knowledge about the colors used
on the cube.

⋆ This work was partially funded by the German Science Foundation (DFG) under grant SFB
603/TP C2. Only the authors are responsible for the content.



Initialization

Color Training

Cube Tracker

Image Acquisition

Preprocessing

Color Segmentation

Cube Identification

Cube Candidate Search

Corner Estimation

Camera Calibration

Rendering of Virtual Object

resize

Figure 1. Overview of system structure with special focus on detection of cube corners.

2 System Overview

The first – and most time-consuming – task of the system is to detect the cube in the
image and to determine its corners, thus establishing a correspondence between 2-D
image and 3-D world points. In order to get a correct calibration of the camera, the
identification of the corners must be as accurate as possible. Details on the method
described here can be found in [15].

The system is basically structured as shown in Fig. 1. After an initialization phase
and the training of the color classificator, the main loop of the cube tracker is started.
This is the manager of the whole system: it contains general information, like the image
size and previously known positions of the cube, and it executes the subsequent phases.

In each loop the tracker reads the current image and preprocesses it as described in
Sect. 3. Color segmentation is done in two steps: first a version of the image that was
reduced in size is segmented and checked for cube canditates. If one or more candi-
dates are found, the corresponding image regions are segmented once more, this time
in normal resolution. The color segmentation yields a number of uniformely colored
regions. Cube candidates are identified out of these regionsby applying a number of
restrictions on sets of three or two regions. That is, their colors have to correspond to
those of the cube and they must fulfill some geometric properties. If none of the region
sets fits these qualities, the tracker discards this image and proceeds with the next one.
After that, a set of one or more cube candidates remains, eachof which is given a score
depending on how well it fits the conditions above. The cornerestimator then tries to
find the corners of the cubes with the highest scores. If this step fails, the candidate is
rejected and the next one is tried. If no candidate remains, the tracker continues with
the next image as well.

With the corner points identified, it is now possible to do camera calibration. Details
on that part are given in Sect. 4. The final step in the cycle is to render the virtual object
that is to replace the cube in the image. From this point on thesequence starts again



with the acquisition of the next image frame. If a cube was recognized, its position is
taken as a cue for where to start the search in the next image.

3 Finding the Cube

For locating the corners of the cube, two of its properties are used: its color and its
geometry. In order to distinguish the cube from the background it was painted in lus-
cious, matte colors. Each side received a unique color such that the system can identify
the cube’s correct orientation. Of course, in a natural scene it is very likely that other
objects are colored similarly. Therefore the geometric appearance of the objects in con-
sideration has to fit that of a cube as well. The input of the cube detector is a stream of
RGB images. An enhancement of quality is reached by applyinga Symmetric Nearest
Neighbour (SNN) filter as suggested in [12] which reduces noise like a mean filter, but
preserves edges. Each side of the cube is a region of almost uniform color, except for
shadows cast onto it. By choosing matte colors the problem ofhighlights reflected from
a light source was mostly eliminated. Therefore the first step in identifying the cube is
a color segmentation of the image. The algorithm used for this is the Color Structure
Code (CSC) as described in [12], which is based on an earlier method [5].

It is assumed that each visible side of the cube can be segmented as exactly one
region, given that a coarse enough parameterization for theCSC is used. A division of
a side happens only in extreme cases, e. g. if a shadow is partially cast over it. Thus
each region in the image is classified for being a possible cube side or not, according
to its mean color. The numerical classifier applied here usestwo feature vectors, the
RGB values of a region’s color and its hue and saturation values, taken from HSV
color space. The distance between a region’s mean color and acube side color class is
calculated by the Mahalanobis distance measure. As the color segmentation is costly,
the image is first shrunk to a fifth of its size and possible cubes are localized herein. The
corresponding windows are cut out of the full-size image, where the cube detection is
performed again. After color classification a set of regionsremains containing all the
regions that possibly are part of the cube. From these the ones truly belonging to the
cube have to be filtered out. The subsequent processing of theimage requires that at
least two sides of the cube are visible – a criterion which reduces the number of cube
side candidates, because the knowledge of adjacent colors on the cube can be exploited.
In addition, the regions must have the correct appearance: their edges have to be straight
lines, forming a parallelogram. Each of the remaining regions gets a score measuring
the regions’ affinity to the cube. Corners are determined forthe regions with the highest
scores. This is done by approximating the edges of each side with straight lines using
the Hough transform. The intersections of these lines are taken as the corners of the side.
In cases where lines are missing due to occlusion, the corners are approximated using
information from neighboring sides or the original image inCartesian coordinates.

The algorithms for camera calibration applied in the following sections need at least
six or seven point correspondences, depending on the method. With one side of the cube
visible only four points can be obtained, so that two or threesides have to be visible,
providing six or seven point pairs respectively. In the casewhere only one side is visible,
the method described in Sect. 4.4 can be applied.



4 Camera Calibration

Camera calibration is done in the following steps, which aredescribed in detail af-
terwards: Computation of additional point correspondences (Sect. 4.1), linear calibra-
tion of all camera parameters (Sect. 4.2), maximum-likelihood estimation of the focal
lengths (Sect. 4.2), nonlinear refinement of extrinsic camera parameters (Sect. 4.3), and
test of the validity of the computed parameters (Sect. 4.4).

4.1 Computing Additional Point Correspondences

Either six or seven 2-D/3-D point correspondences are established by the algorithm
described in the previous section. While six points are enough for one of the methods
described below, at least seven are needed for applying the algorithm of Tsai.

Since we use an object of known shape we can compute one additional point corre-
spondence for each side where all four corners have been detected by using the inter-
section of the two diagonals of a cube side. These additionalpoints are easy to compute
in the image and in 3-D and are valid correspondences becausethe perspective projec-
tion preserves intersections. Using projective geometry (see [4] for an introduction) the
intersectionqS of the diagonals in the image plane can be computed by

qS = (q1 × q3) × (q2 × q4) , (1)

whereqS, q i (i = 1, . . . , 4) are3-vectors representing image points in homogeneous
coordinates,q1 is opposite toq3, q2 is opposite toq4.

4.2 Linear Calibration

For calibration we assume a perspective camera model. A homogeneous 3-D pointw i

is projected onto a homogeneous 2-D pointq i in the image plane using the following
equation:

q i = Pw i = KRT(I 3| − t)w i , (2)

whereK is a3× 3 matrix containing the intrinsic parametersfx, fy, u0, andv0, R is a
rotation matrix whose columns correspond to the axes of the camera coordinate system,
t is a translation vector giving the position of the camera’s optical center, andI 3 is the
3 × 3 identity matrix.

After the previous steps there are enough point correspondences to apply a linear
calibration method. For this purpose we use either the algorithm of Tsai that can be
found in [18, 17], or the algorithm described in [17] for estimating the projection ma-
trix. Radial distortions are neglected, the angle between the axes of the image reference
frame is assumed to be90◦. Tsai’s method assumes that the principal point is known
and the camera parameters are computed directly, in contrast to the second method used
which estimates the projection matrix first and makes no assumptions about the prin-
cipal point. Both methods require non-coplanar point correspondences and the orthog-
onalization of the resulting rotation matrix which can be done by applying a singular
value decomposition (SVD) [11].



Sincefx, fy are assumed to be constant over the whole sequence, we can get
maximum-likelihood estimateŝfx, f̂y of these parameters at framet (t = 1, 2, . . . )
under the assumption of normally distributed, isotropic, and zero-mean noise by the
following recursive equation (given here for̂fx only):

f̂x,t =
1

t + 1

(

tf̂x,t−1 + f̃x,t

)

= f̂x,t−1 +
1

t + 1

(

f̃x,t − f̂x,t−1

)

, (3)

wheref̃x,t is the result of the linear calibration at time stept. Fort = 0 the initialization
f̂x,0 = f̃x,0 is used.

4.3 Nonlinear Refinement

Since we use only slightly more points than the minimum number required for calibra-
tion, nonlinear refinement of camera parameters with the linear estimation as initial-
ization is absolutely essential. Optimization is done herefor the extrinsic parameters
only, while the intrinsic parameters from the previous maximum-likelihood estimation
are used and held constant during nonlinear refinement. For this purpose the Gauss-
Newton algorithm with Levenberg-Marquardt extension (see[3] for details) is utilized
which computes a new estimate of a parameter vectora using a local parametrization
∆a by âk+1 = âk + ∆a where

∆a = −
(

λI + JTJ

)

−1

JT
ǫ(âk) . (4)

This method minimizes the mean square errorǫ
T
ǫ, whereǫ is a residual function that

computes in our case the (non-squared) back-projection error between each image point
(xi, yi) and the projectionq i = (qix, qiy, qiw)

T of its corresponding 3-D pointw i ob-
tained by equation (2):

ǫ =

(

x1 −
q1x

q1w
, y1 −

q1y

q1w
, . . . , xn −

qnx

qnw
, yn −

qny

qnw

)T

. (5)

J is the Jacobian of the first derivatives ofǫ evaluated at̂ak: J = ∂ǫ

∂a
(âk). Since

the matrix inversion in equation (4) may be numerically instable due to a nearly sin-
gular matrixJTJ , the factorλ is introduced in the Levenberg-Marquardt algorithm
and adapted during each iteration. One Levenberg-Marquardt iteration comprises the
following actions: Computation of a parameter update usingequation (4) as well as the
resulting back-projection error, acceptance of the new parameters if the error is smaller
than the error after the last iteration and division ofλ by a factor of10, or rejection
of the computed parameters and muliplication ofλ by a factor of10. Since the error
may increase during one iteration due to instabilities in matrix inversion, the preceding
steps are done until the new parameters yield a smaller errorthan at the end of the last
iteration. The parameter vectora contains the 3 components of the translationt plus 3
components parametrizing the rotation matrixR, which has 9 elements but only 3 de-
grees of freedom (DOF). A numerically stable parametrization should be used, i. e. ei-
ther the axis/angle representation or quaternions which are both a fair parametrization



of rotations in the sense of [6], while Euler angles are not. Arotation matrix can be rep-
resented by a3-vectorr = (r1, r2, r3)

T giving the direction of the rotation axis with
2 DOF plus the rotation angleθ encoded as the norm ofr . The corresponding rotation
matrixR can be calculated by Rodrigues’ formula [4]:

R = I 3 +
sin θ

θ





0 −r3 r2

r3 0 −r1

−r2 r1 0



 +
1 − cos θ

θ2





0 −r3 r2

r3 0 −r1

−r2 r1 0





2

. (6)

When using quaternions for nonlinear optimization it is necessary to consider that a
quaternion representing a rotation has 4 elements but only 3DOF, since it must be
normalized to 1. The Levenberg-Marquardt algorithm cannotdeal with constraints on
the parameters and it must be guaranteed that the norm of a quaternion is always 1
during optimization. In order to accomplish this goal a quaternion parametrization at
the operating point using only 3 elements was introduced in [13, 14].

4.4 Detection and Treatment of Outliers

For different reasons the virtual object in the resulting augmented image may be ren-
dered in a completely different pose than the cube. Most of the time this is not due to
calibration errors or badly localized cube corners, but to missclassification of the colors
painted on the sides of the cube. Additionally there are images where no cube could be
found at all. Both cases lead to visually inacceptable results and hence have to be dealt
with in an appropriate way. For detection of a non-valid pose, we use thresholds for
change in rotation (measured in distance between vectors inaxis/angle representation)
and translation with respect to the last valid frame.

The easiest solution is to keep the pose of the last valid frame. This is acceptable
when only a few frames have to be dropped. Otherwise a prediction of the cube’s move-
ment would yield a better result for the human observer. For this purpose we use linear
prediction, a technique classically applied in speech recognition [9]. Linear prediction
estimates then-th value of a sequence of discrete valuesgj using a combination of the
precedingk values as follows:

ĝn = −

k
∑

i=1

αign−i . (7)

Having a long enough sequence, one can estimate the unknownsαi from a linear system
of equations using e. g. the SVD which minimizes the mean square error. Theαi are in
turn used for predicting new values of the sequence. In our case we predict the elements
of the translation vector and of the rotation matrix in axis/angle representation.

5 Experiments

In our experiments we used images of size360× 288 pixels. Two results of augmenta-
tion are shown in Fig. 2. More images and video-sequences areavailable at [1].



Figure 2. Two examples of augmentation: Original (top left), CSC segmented cut-out (top mid-
dle), and augmented image (top right) on a turntable; original (bottom left) and augmented image
(bottom right) of cube held in hand.

We found that the part most prone to errors is the color classification due to dif-
ferent lighting conditions. Missclassification of a cube side leads to wrong 2-D/3-D
assignment and thus to unusable calibration results. The color classifier was trained
using 577 to 885 samples per color. The recognition rate for the whole cube ranges
from 74% - 93%, depending on the illumination of the scene. The mean detection accu-
racy (measured by hand) of the cube’s corners is about 1.3 pixels. If Tsai’s calibration
method is to be used, additional point correspondences mustbe computed when only
six points have been detected which leads to fairly good visual results. When using the
other method, simulations showed that calibration can be done accurately enough even
with only six point correspondences, while computation of additional points yields a
worse back-projection error and worse camera parameters.

The system is still working off-line, but since we have a real-time system in mind
we want to give an impression of the computation times neededfor one frame on a 800
MHz Pentium III. Using the Windows program of [12], the CSC took 40 to 130 msec
for two passes, one on the reduced size image and one on the cube cut-out, the given
time depending on the number of possible cube-regions foundin the reduced-size im-
age. Additional 150 to 250 msec are needed for color classification of the segmented
regions and computing the corners. The time needed for calibration is dominated by
nonlinear optimization; depending on the number of Levenberg-Marquardt iterations
done, computation time varied from 10 msec (5 iterations) toabout 30 msec (20 itera-
tions). OpenGL rendering takes additional 30 msec.

6 Conclusion and Future Work

In this contribution we present an Augmented Reality systemusing a color segmen-
tation approach for localizing a metal cube in an image whichcan be replaced by an
arbitrary computer-generated object. Camera calibrationwith a minimum number of



point correspondences works well and is fast enough for real-time applications even
when nonlinear refinement is done. Topics for further improvement are the speed and
accuracy of cube localization and corner detection. We alsowant to consider illumina-
tion estimation using information on the cube’s colors in the future.

References

1. http://www5.informatik.uni-erlangen.de/˜ar .
2. C.-S. Chen, C.-K. Yu, and Y.-P. Hung. New calibration-free approach for augmented reality

based on parameterized cuboid structure. In ICCV 99 [7], pages 30–37.
3. J. E. Dennis and R. B. Schnabel.Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.
4. Oliver Faugeras.Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press,

Cambridge, MA, 1993.
5. G. Hartmann. Recognition of hierarchically encoded images by technical and biological

systems.Biological Cybernetics, 57:73–84, 1987.
6. J. Hornegger and C. Tomasi. Representation issues in the ML estimation of camera motion.

In ICCV 99 [7], pages 640–647.
7. Proceedings of the7th International Conference on Computer Vision (ICCV), Corfu,

September 1999. IEEE Computer Society Press.
8. D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan. Automated camera

calibration and 3D egomotion estimation for augmented reality applications. InComputer
Analysis of Images and Patterns (CAIP), pages 199–206, Kiel, September 1997. Springer.

9. J. D. Markel and A. H. Gray Jr.Linear Prediction of Speech, volume 12 ofCommunications
and Cybernetics. Springer Verlag, Berlin, Heidelberg, New York, 1976.

10. Y. Ohta and H. Tamura, editors.Mixed Reality – Merging Real and Virtual Worlds. Spring-
er-Verlag, Berlin, 1999.

11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd edition,
1992.

12. V. Rehrmann and L. Priese. Fast and robust segmentation of natural color scenes. InProceed-
ings of the3rd Asian Conference on Computer Vision, volume 1, pages 598–606, HongKong,
January 1998.

13. J. Schmidt. Erarbeitung geeigneter Optimierungskriterien zur Berechnung von Kamerapa-
rametern und Szenengeometrie aus Bildfolgen. Diplomarbeit, Lehrstuhl für Mustererken-
nung, Universität Erlangen-Nürnberg, 2000.

14. J. Schmidt and H. Niemann. Using quaternions for parametrizing 3–D rotations in uncon-
strained nonlinear optimization. In T. Ertl, B. Girod, G. Greiner, H. Niemann, and H.-P.
Seidel, editors,Vision, Modeling, and Visualization 2001, Stuttgart, Germany, November
2001. Submitted.

15. I. Scholz. Augmented Reality: A System for the Visualization of Virtual Objects Using a
Head-mounted Display by Localization of a Real Object of Known Geometry and Color.
Diplomarbeit, Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, 2000.

16. Y. Seo and K. Sang Hong. Calibration-free augmented reality in perspective.IEEE Trans-
actions on Visualization and Computer Graphics, 6(4):346–359, 2000.

17. E. Trucco and A. Verri.Introductory Techniques for 3–D Computer Vision. Prentice Hall,
New York, 1998.

18. R. Y. Tsai. A versatile camera calibration technique forhigh-accuracy 3D machine vision
metrology using off-the-shelf TV cameras and lenses.IEEE Journal of Robotics and Au-
tomation, Ra-3(3):323–344, August 1987.


