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Abstract We describe an Augmented Reality system using the cornersabr
cube for camera calibration. In the augmented image the suteplaced by a
computer generated virtual object. The cube is localizexhirmage by the CSC
color segmentation algorithm. The camera projection méadrestimated with a
linear method that is followed by a nonlinear refinement.sBsgause of possible
missclassifications of the segmented color regions and thinum number of
point correspondences used for calibration, the estimaosd of the cube may
be very erroneous for some frames; therefore we perfornieoutétection and
treatment for rendering the virtual object in an acceptaidaner.
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1 Introduction

In this paper a system is introduced which is an applicatioAugmented Reality, a
visual enhancement of real environments. Unlike many adpgtications in this field
the system described here uses no independent trackingegeuit follows a so-called
vision-based approach, i. e. calibration information isival solely from camera in-
put. Many common vision-based systems [10] use some kindlifration pattern or
fiducials still visible in the scene even after augmentatéig. [8, 16]. Other methods
require manually selected control points [2], but do notfickécials. In our approach,
a metal cube with a side length of 6 cm is used that is paintéld aviifferent color
on each side such that its position and orientation can kerrdeted unambiguously.
A real scene can be augmented by rendering a virtual objébtisame pose, thus re-
placing the cube. A possible application of this system ésubage of a head-mounted
display for the visualization of three-dimensional obgettiat do not yet exist or only at
distant locations. The system works without human intetieanand no explicit cali-
bration step is required before using it. The main advarstafjeur approach comprise
the usability in indoor and outdoor applications, easyraxdgon with the user, and the
possibility of illumination estimation by exploiting thexkwledge about the colors used
on the cube.

* This work was partially funded by the German Science FouoddDFG) under grant SFB
603/TP C2. Only the authors are responsible for the content.
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Figure 1. Overview of system structure with special focus on deteatibcube corners.

2 System Overview

The first — and most time-consuming — task of the system is tectiéhe cube in the
image and to determine its corners, thus establishing a&gpondence between 2-D
image and 3-D world points. In order to get a correct calibrabf the camera, the
identification of the corners must be as accurate as pos$ielails on the method
described here can be found in [15].

The system is basically structured as shown in Fig. 1. Afteindialization phase
and the training of the color classificator, the main looph&f tube tracker is started.
This is the manager of the whole system: it contains gened@imation, like the image
size and previously known positions of the cube, and it etescine subsequent phases.

In each loop the tracker reads the current image and pregsesé as described in
Sect. 3. Color segmentation is done in two steps: first amersi the image that was
reduced in size is segmented and checked for cube canditate® or more candi-
dates are found, the corresponding image regions are sé¢ggin@mce more, this time
in normal resolution. The color segmentation yields a nunabeuniformely colored
regions. Cube candidates are identified out of these rediprapplying a number of
restrictions on sets of three or two regions. That is, thelors have to correspond to
those of the cube and they must fulfill some geometric prageertf none of the region
sets fits these qualities, the tracker discards this imag@eoteeds with the next one.
After that, a set of one or more cube candidates remains,afachich is given a score
depending on how well it fits the conditions above. The cogstimator then tries to
find the corners of the cubes with the highest scores. If this fails, the candidate is
rejected and the next one is tried. If no candidate remdirestracker continues with
the nextimage as well.

With the corner points identified, it is now possible to do eaacalibration. Details
on that part are given in Sect. 4. The final step in the cycle isider the virtual object
that is to replace the cube in the image. From this point ors#tgience starts again



with the acquisition of the next image frame. If a cube wasgeized, its position is
taken as a cue for where to start the search in the next image.

3 Finding the Cube

For locating the corners of the cube, two of its propertieswased: its color and its
geometry. In order to distinguish the cube from the backgdotiwas painted in lus-
cious, matte colors. Each side received a unique color $athtie system can identify
the cube’s correct orientation. Of course, in a natural séeis very likely that other
objects are colored similarly. Therefore the geometriceapance of the objects in con-
sideration has to fit that of a cube as well. The input of theealdtector is a stream of
RGB images. An enhancement of quality is reached by applyiBgmmetric Nearest
Neighbour (SNN) filter as suggested in [12] which reducesabke a mean filter, but
preserves edges. Each side of the cube is a region of almibstrarcolor, except for
shadows cast onto it. By choosing matte colors the problempdiights reflected from
a light source was mostly eliminated. Therefore the firgh stédentifying the cube is
a color segmentation of the image. The algorithm used fariththe Color Structure
Code (CSC) as described in [12], which is based on an earbénad [5].

It is assumed that each visible side of the cube can be segthastexactly one
region, given that a coarse enough parameterization fo€ 8t is used. A division of
a side happens only in extreme cases, e.qg. if a shadow islpadast over it. Thus
each region in the image is classified for being a possible side or not, according
to its mean color. The numerical classifier applied here tsesfeature vectors, the
RGB values of a region’s color and its hue and saturationegltaken from HSV
color space. The distance between a region’s mean color endeside color class is
calculated by the Mahalanobis distance measure. As the sepnentation is costly,
the image is first shrunk to a fifth of its size and possible swye localized herein. The
corresponding windows are cut out of the full-size imagegrehthe cube detection is
performed again. After color classification a set of regimeains containing all the
regions that possibly are part of the cube. From these the twaly belonging to the
cube have to be filtered out. The subsequent processing aitge requires that at
least two sides of the cube are visible — a criterion whicluced the number of cube
side candidates, because the knowledge of adjacent colthg @ube can be exploited.
In addition, the regions must have the correct appearaneie gdges have to be straight
lines, forming a parallelogram. Each of the remaining ragigets a score measuring
the regions’ affinity to the cube. Corners are determinethferegions with the highest
scores. This is done by approximating the edges of each stestraight lines using
the Hough transform. The intersections of these lines &emtas the corners of the side.
In cases where lines are missing due to occlusion, the coarerapproximated using
information from neighboring sides or the original imageartesian coordinates.

The algorithms for camera calibration applied in the follogvsections need at least
six or seven point correspondences, depending on the méfittdone side of the cube
visible only four points can be obtained, so that two or thsiges have to be visible,
providing six or seven point pairs respectively. In the aalere only one side is visible,
the method described in Sect. 4.4 can be applied.



4 Camera Calibration

Camera calibration is done in the following steps, which @escribed in detail af-
terwards: Computation of additional point correspondsr{&ct. 4.1), linear calibra-
tion of all camera parameters (Sect. 4.2), maximum-likedithestimation of the focal
lengths (Sect. 4.2), nonlinear refinement of extrinsic carparameters (Sect. 4.3), and
test of the validity of the computed parameters (Sect. 4.4).

4.1 Computing Additional Point Correspondences

Either six or seven 2-D/3-D point correspondences are kstiald by the algorithm
described in the previous section. While six points are ghdar one of the methods
described below, at least seven are needed for applyindghdtam of Tsai.

Since we use an object of known shape we can compute oneaadditioint corre-
spondence for each side where all four corners have beeatei@tey using the inter-
section of the two diagonals of a cube side. These additwriats are easy to compute
in the image and in 3-D and are valid correspondences betaigerspective projec-
tion preserves intersections. Using projective geomestg (4] for an introduction) the
intersectiongg of the diagonals in the image plane can be computed by

qs= (g, X q3) X (g2 X q4) ()

wheregg, g; (1 = 1,...,4) are3-vectors representing image points in homogeneous
coordinatesg, is opposite tag,, g, IS opposite tag,.

4.2 Linear Calibration

For calibration we assume a perspective camera model. A genamus 3-D poiniv;
is projected onto a homogeneous 2-D pajniin the image plane using the following
equation:

q; = Pw;= KR"(I3] — t)w; , )

whereK is a3 x 3 matrix containing the intrinsic parametefis fy, uo, andvg, R is a
rotation matrix whose columns correspond to the axes ofdheeca coordinate system,
t is a translation vector giving the position of the cameraBaal center, and s is the

3 x 3 identity matrix.

After the previous steps there are enough point correspmeseto apply a linear
calibration method. For this purpose we use either the dlgorof Tsai that can be
found in [18, 17], or the algorithm described in [17] for estiting the projection ma-
trix. Radial distortions are neglected, the angle betwkerakes of the image reference
frame is assumed to #°. Tsai’s method assumes that the principal point is known
and the camera parameters are computed directly, in cotdrdee second method used
which estimates the projection matrix first and makes noraptions about the prin-
cipal point. Both methods require non-coplanar point cgpoadences and the orthog-
onalization of the resulting rotation matrix which can benddy applying a singular
value decomposition (SVD) [11].



Since fy, fy are assumed to be constant over the whole sequence, we can get
maximume-likelihood estimateﬁx, fy of these parameters at framdt = 1,2,...)
under the assumption of normally distributed, isotropitd @ero-mean noise by the
following recursive equation (given here féy only):

fx,t = t—l—% (tfx,tfl + fx,t) = fx,tfl + t_i_% (fx,t - fx,tfl) ) (3)

wheref, ; is the result of the linear calibration at time stefort = 0 the initialization
fx,0 = fx,0 is used.

4.3 Nonlinear Refinement

Since we use only slightly more points than the minimum numéeguired for calibra-
tion, nonlinear refinement of camera parameters with thealirestimation as initial-
ization is absolutely essential. Optimization is done Herehe extrinsic parameters
only, while the intrinsic parameters from the previous maxin-likelihood estimation
are used and held constant during nonlinear refinement.hHi®ptrpose the Gauss-
Newton algorithm with Levenberg-Marquardt extension (&dor details) is utilized
which computes a new estimate of a parameter vactosing a local parametrization
Aa by ax1q1 = ar + Aa where

1
Aa=—(M+JTT) JTe(@r) . (@)
This method minimizes the mean square eerbe, wheree is a residual function that
computes in our case the (non-squared) back-projectionleetween each image point
(zi, ;) and the projectiony; = (gix, ¢y, QiW)T of its corresponding 3-D poink; ob-
tained by equation (2):

T
6<$1&aylﬂa"'aanﬂ7ynﬂ> . (5)
q1w q1w dnw qnw

J is the Jacobian of the first derivatives efevaluated ata,: J = %(dk). Since

the matrix inversion in equation (4) may be numerically &bé¢ due to a nearly sin-
gular matrixJ ' J, the factor) is introduced in the Levenberg-Marquardt algorithm
and adapted during each iteration. One Levenberg-Margitardtion comprises the
following actions: Computation of a parameter update usipgation (4) as well as the
resulting back-projection error, acceptance of the newarpaters if the error is smaller
than the error after the last iteration and division\oby a factor of10, or rejection
of the computed parameters and muliplicatiom\dby a factor of10. Since the error
may increase during one iteration due to instabilities inrmanversion, the preceding
steps are done until the new parameters yield a smaller taarat the end of the last
iteration. The parameter vectarcontains the 3 components of the translattgrius 3
components parametrizing the rotation matRxwhich has 9 elements but only 3 de-
grees of freedom (DOF). A numerically stable parametrizashould be used, i. e. ei-
ther the axis/angle representation or quaternions whietbath a fair parametrization



of rotations in the sense of [6], while Euler angles are nabt&tion matrix can be rep-
resented by &-vectorr = (r1,ro, T3)T giving the direction of the rotation axis with
2 DOF plus the rotation angkeencoded as the norm ef The corresponding rotation
matrix R can be calculated by Rodrigues’ formula [4]:

. 0 —r3 ry 0 —r3 r
0 1-— 0
R:I3+Sln rg 0 —ry +i r3 0 —rp . (6)
0 02
—Tr2 T1 0 —T2 T1 0

When using quaternions for nonlinear optimization it is essary to consider that a
quaternion representing a rotation has 4 elements but ofiDB, since it must be

normalized to 1. The Levenberg-Marquardt algorithm camteat with constraints on

the parameters and it must be guaranteed that the norm oftarniea is always 1

during optimization. In order to accomplish this goal a guaion parametrization at
the operating point using only 3 elements was introduced3y14].

4.4 Detection and Treatment of Outliers

For different reasons the virtual object in the resultingraented image may be ren-
dered in a completely different pose than the cube. Most@tithe this is not due to
calibration errors or badly localized cube corners, butigsniassification of the colors
painted on the sides of the cube. Additionally there are saghere no cube could be
found at all. Both cases lead to visually inacceptable tesuld hence have to be dealt
with in an appropriate way. For detection of a non-valid page use thresholds for
change in rotation (measured in distance between vect@ssfangle representation)
and translation with respect to the last valid frame.

The easiest solution is to keep the pose of the last validdrarhis is acceptable
when only a few frames have to be dropped. Otherwise a prediot the cube’s move-
ment would yield a better result for the human observer. Fisrgurpose we use linear
prediction, a technigue classically applied in speechgeitmn [9]. Linear prediction
estimates the-th value of a sequence of discrete valyesising a combination of the
precedingt values as follows:

k
gn = - Z Qign—i - (7)
=1

Having a long enough sequence, one can estimate the unkngvinasn a linear system
of equations using e. g. the SVD which minimizes the meanrsgeiaor. They; are in
turn used for predicting new values of the sequence. In @& e predict the elements
of the translation vector and of the rotation matrix in aatigjle representation.

5 Experiments

In our experiments we used images of s}Be x 288 pixels. Two results of augmenta-
tion are shown in Fig. 2. More images and video-sequencesvailable at [1].



Figure 2. Two examples of augmentation: Original (top left), CSC segted cut-out (top mid-
dle), and augmented image (top right) on a turntable; aaidimottom left) and augmented image
(bottom right) of cube held in hand.

We found that the part most prone to errors is the color diaatbn due to dif-
ferent lighting conditions. Missclassification of a cubdesieads to wrong 2-D/3-D
assignment and thus to unusable calibration results. Tl classifier was trained
using 577 to 885 samples per color. The recognition ratetfervthole cube ranges
from 74% - 93%, depending on the illumination of the scene Mean detection accu-
racy (measured by hand) of the cube’s corners is about 1e3spitf Tsai’s calibration
method is to be used, additional point correspondences beusbmputed when only
six points have been detected which leads to fairly goodavisesults. When using the
other method, simulations showed that calibration can e dacurately enough even
with only six point correspondences, while computation @ditional points yields a
worse back-projection error and worse camera parameters.

The system is still working off-line, but since we have a fé@le system in mind
we want to give an impression of the computation times neéatazhe frame on a 800
MHz Pentium Ill. Using the Windows program of [12], the CS©®ka10 to 130 msec
for two passes, one on the reduced size image and one on teetibut, the given
time depending on the number of possible cube-regions foutite reduced-size im-
age. Additional 150 to 250 msec are needed for color claasiic of the segmented
regions and computing the corners. The time needed forreditin is dominated by
nonlinear optimization; depending on the number of Levegidarquardt iterations
done, computation time varied from 10 msec (5 iterationg)tout 30 msec (20 itera-
tions). OpenGL rendering takes additional 30 msec.

6 Conclusion and Future Work

In this contribution we present an Augmented Reality systising a color segmen-
tation approach for localizing a metal cube in an image witih be replaced by an
arbitrary computer-generated object. Camera calibratiitih a minimum number of



point correspondences works well and is fast enough fortmea applications even
when nonlinear refinement is done. Topics for further improent are the speed and
accuracy of cube localization and corner detection. We wbsat to consider illumina-
tion estimation using information on the cube’s colors ia thture.
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